movement_pruning_glue.py 4.72 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
import functools
from tqdm import tqdm

import torch
from torch.optim import Adam
from torch.utils.data import DataLoader

from datasets import load_metric, load_dataset
from transformers import (
    BertForSequenceClassification,
    BertTokenizerFast,
    DataCollatorWithPadding,
    set_seed
)

J-shang's avatar
J-shang committed
16
import nni
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
from nni.algorithms.compression.v2.pytorch.pruning import MovementPruner


task_to_keys = {
    "cola": ("sentence", None),
    "mnli": ("premise", "hypothesis"),
    "mrpc": ("sentence1", "sentence2"),
    "qnli": ("question", "sentence"),
    "qqp": ("question1", "question2"),
    "rte": ("sentence1", "sentence2"),
    "sst2": ("sentence", None),
    "stsb": ("sentence1", "sentence2"),
    "wnli": ("sentence1", "sentence2"),
}

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

gradient_accumulation_steps = 16

# a fake criterion because huggingface output already has loss
def criterion(input, target):
    return input.loss

def trainer(model, optimizer, criterion, train_dataloader):
    model.train()
    counter = 0
    for batch in tqdm(train_dataloader):
        counter += 1
        batch.to(device)
        optimizer.zero_grad()
        outputs = model(**batch)
        # pruner may wrap the criterion, for example, loss = origin_loss + norm(weight), so call criterion to get loss here
        loss = criterion(outputs, None)
        loss = loss / gradient_accumulation_steps
        loss.backward()
        if counter % gradient_accumulation_steps == 0 or counter == len(train_dataloader):
            optimizer.step()
        if counter % 16000 == 0:
            print('Step {}: {}'.format(counter // gradient_accumulation_steps, evaluator(model, metric, is_regression, validate_dataloader)))

def evaluator(model, metric, is_regression, eval_dataloader):
    model.eval()
    for batch in tqdm(eval_dataloader):
        batch.to(device)
        outputs = model(**batch)
        predictions = outputs.logits.argmax(dim=-1) if not is_regression else outputs.logits.squeeze()
        metric.add_batch(
            predictions=predictions,
            references=batch["labels"],
        )
    return metric.compute()

if __name__ == '__main__':
    task_name = 'mnli'
    is_regression = False
    num_labels = 1 if is_regression else (3 if task_name == 'mnli' else 2)
    train_batch_size = 8
    eval_batch_size = 8

    set_seed(1024)

    tokenizer = BertTokenizerFast.from_pretrained('bert-base-cased')
    sentence1_key, sentence2_key = task_to_keys[task_name]

    # used to preprocess the raw data
    def preprocess_function(examples):
        # Tokenize the texts
        args = (
            (examples[sentence1_key],) if sentence2_key is None else (examples[sentence1_key], examples[sentence2_key])
        )
        result = tokenizer(*args, padding=False, max_length=128, truncation=True)

        if "label" in examples:
            # In all cases, rename the column to labels because the model will expect that.
            result["labels"] = examples["label"]
        return result

    raw_datasets = load_dataset('glue', task_name, cache_dir='./data')
    processed_datasets = raw_datasets.map(preprocess_function, batched=True, remove_columns=raw_datasets["train"].column_names)

    train_dataset = processed_datasets['train']
    validate_dataset = processed_datasets['validation_matched' if task_name == "mnli" else 'validation']

    data_collator = DataCollatorWithPadding(tokenizer)
    train_dataloader = DataLoader(train_dataset, shuffle=True, collate_fn=data_collator, batch_size=train_batch_size)
    validate_dataloader = DataLoader(validate_dataset, collate_fn=data_collator, batch_size=eval_batch_size)

    metric = load_metric("glue", task_name)

    model = BertForSequenceClassification.from_pretrained('bert-base-cased', num_labels=num_labels).to(device)

    print('Initial: {}'.format(evaluator(model, metric, is_regression, validate_dataloader)))

    config_list = [{'op_types': ['Linear'], 'op_partial_names': ['bert.encoder'], 'sparsity': 0.9}]
    p_trainer = functools.partial(trainer, train_dataloader=train_dataloader)
112

J-shang's avatar
J-shang committed
113
114
    # make sure you have used nni.trace to wrap the optimizer class before initialize
    traced_optimizer = nni.trace(Adam)(model.parameters(), lr=2e-5)
115
    pruner = MovementPruner(model, config_list, p_trainer, traced_optimizer, criterion, training_epochs=10,
116
117
118
119
120
121
122
123
124
125
                            warm_up_step=3000, cool_down_beginning_step=27000)

    _, masks = pruner.compress()
    pruner.show_pruned_weights()

    print('Final: {}'.format(evaluator(model, metric, is_regression, validate_dataloader)))

    optimizer = Adam(model.parameters(), lr=2e-5)
    trainer(model, optimizer, criterion, train_dataloader)
    print('After 1 epoch finetuning: {}'.format(evaluator(model, metric, is_regression, validate_dataloader)))