movement_pruning_glue.py 4.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import functools
from tqdm import tqdm

import torch
from torch.optim import Adam
from torch.utils.data import DataLoader

from datasets import load_metric, load_dataset
from transformers import (
    BertForSequenceClassification,
    BertTokenizerFast,
    DataCollatorWithPadding,
    set_seed
)

from nni.algorithms.compression.v2.pytorch.pruning import MovementPruner


task_to_keys = {
    "cola": ("sentence", None),
    "mnli": ("premise", "hypothesis"),
    "mrpc": ("sentence1", "sentence2"),
    "qnli": ("question", "sentence"),
    "qqp": ("question1", "question2"),
    "rte": ("sentence1", "sentence2"),
    "sst2": ("sentence", None),
    "stsb": ("sentence1", "sentence2"),
    "wnli": ("sentence1", "sentence2"),
}

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

gradient_accumulation_steps = 16

# a fake criterion because huggingface output already has loss
def criterion(input, target):
    return input.loss

def trainer(model, optimizer, criterion, train_dataloader):
    model.train()
    counter = 0
    for batch in tqdm(train_dataloader):
        counter += 1
        batch.to(device)
        optimizer.zero_grad()
        outputs = model(**batch)
        # pruner may wrap the criterion, for example, loss = origin_loss + norm(weight), so call criterion to get loss here
        loss = criterion(outputs, None)
        loss = loss / gradient_accumulation_steps
        loss.backward()
        if counter % gradient_accumulation_steps == 0 or counter == len(train_dataloader):
            optimizer.step()
        if counter % 16000 == 0:
            print('Step {}: {}'.format(counter // gradient_accumulation_steps, evaluator(model, metric, is_regression, validate_dataloader)))

def evaluator(model, metric, is_regression, eval_dataloader):
    model.eval()
    for batch in tqdm(eval_dataloader):
        batch.to(device)
        outputs = model(**batch)
        predictions = outputs.logits.argmax(dim=-1) if not is_regression else outputs.logits.squeeze()
        metric.add_batch(
            predictions=predictions,
            references=batch["labels"],
        )
    return metric.compute()

if __name__ == '__main__':
    task_name = 'mnli'
    is_regression = False
    num_labels = 1 if is_regression else (3 if task_name == 'mnli' else 2)
    train_batch_size = 8
    eval_batch_size = 8

    set_seed(1024)

    tokenizer = BertTokenizerFast.from_pretrained('bert-base-cased')
    sentence1_key, sentence2_key = task_to_keys[task_name]

    # used to preprocess the raw data
    def preprocess_function(examples):
        # Tokenize the texts
        args = (
            (examples[sentence1_key],) if sentence2_key is None else (examples[sentence1_key], examples[sentence2_key])
        )
        result = tokenizer(*args, padding=False, max_length=128, truncation=True)

        if "label" in examples:
            # In all cases, rename the column to labels because the model will expect that.
            result["labels"] = examples["label"]
        return result

    raw_datasets = load_dataset('glue', task_name, cache_dir='./data')
    processed_datasets = raw_datasets.map(preprocess_function, batched=True, remove_columns=raw_datasets["train"].column_names)

    train_dataset = processed_datasets['train']
    validate_dataset = processed_datasets['validation_matched' if task_name == "mnli" else 'validation']

    data_collator = DataCollatorWithPadding(tokenizer)
    train_dataloader = DataLoader(train_dataset, shuffle=True, collate_fn=data_collator, batch_size=train_batch_size)
    validate_dataloader = DataLoader(validate_dataset, collate_fn=data_collator, batch_size=eval_batch_size)

    metric = load_metric("glue", task_name)

    model = BertForSequenceClassification.from_pretrained('bert-base-cased', num_labels=num_labels).to(device)

    print('Initial: {}'.format(evaluator(model, metric, is_regression, validate_dataloader)))

    config_list = [{'op_types': ['Linear'], 'op_partial_names': ['bert.encoder'], 'sparsity': 0.9}]
    p_trainer = functools.partial(trainer, train_dataloader=train_dataloader)
    optimizer = Adam(model.parameters(), lr=2e-5)
    pruner = MovementPruner(model, config_list, p_trainer, optimizer, criterion, training_epochs=10,
                            warm_up_step=3000, cool_down_beginning_step=27000)

    _, masks = pruner.compress()
    pruner.show_pruned_weights()

    print('Final: {}'.format(evaluator(model, metric, is_regression, validate_dataloader)))

    optimizer = Adam(model.parameters(), lr=2e-5)
    trainer(model, optimizer, criterion, train_dataloader)
    print('After 1 epoch finetuning: {}'.format(evaluator(model, metric, is_regression, validate_dataloader)))