test_v2_pruner_torch.py 7.46 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.

import unittest

import torch
import torch.nn.functional as F

from nni.algorithms.compression.v2.pytorch.pruning import (
    LevelPruner,
    L1NormPruner,
    L2NormPruner,
    SlimPruner,
    FPGMPruner,
    ActivationAPoZRankPruner,
    ActivationMeanRankPruner,
    TaylorFOWeightPruner,
18
19
    ADMMPruner,
    MovementPruner
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
)
from nni.algorithms.compression.v2.pytorch.utils import compute_sparsity_mask2compact


class TorchModel(torch.nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = torch.nn.Conv2d(1, 5, 5, 1)
        self.bn1 = torch.nn.BatchNorm2d(5)
        self.conv2 = torch.nn.Conv2d(5, 10, 5, 1)
        self.bn2 = torch.nn.BatchNorm2d(10)
        self.fc1 = torch.nn.Linear(4 * 4 * 10, 100)
        self.fc2 = torch.nn.Linear(100, 10)

    def forward(self, x):
        x = F.relu(self.bn1(self.conv1(x)))
        x = F.max_pool2d(x, 2, 2)
        x = F.relu(self.bn2(self.conv2(x)))
        x = F.max_pool2d(x, 2, 2)
        x = x.view(-1, 4 * 4 * 10)
        x = F.relu(self.fc1(x))
        x = self.fc2(x)
        return F.log_softmax(x, dim=1)


def trainer(model, optimizer, criterion):
    model.train()
    input = torch.rand(10, 1, 28, 28)
    label = torch.Tensor(list(range(10))).type(torch.LongTensor)
    optimizer.zero_grad()
    output = model(input)
    loss = criterion(output, label)
    loss.backward()
    optimizer.step()


def get_optimizer(model):
    return torch.optim.SGD(model.parameters(), lr=0.1, momentum=0.9, weight_decay=5e-4)


criterion = torch.nn.CrossEntropyLoss()


class PrunerTestCase(unittest.TestCase):
    def test_level_pruner(self):
        model = TorchModel()
        config_list = [{'op_types': ['Conv2d'], 'sparsity': 0.8}]
        pruner = LevelPruner(model=model, config_list=config_list)
        pruned_model, masks = pruner.compress()
        pruner._unwrap_model()
        sparsity_list = compute_sparsity_mask2compact(pruned_model, masks, config_list)
71
        assert 0.78 < sparsity_list[0]['total_sparsity'] < 0.82
72
73
74
75
76
77
78
79
80

    def test_l1_norm_pruner(self):
        model = TorchModel()
        config_list = [{'op_types': ['Conv2d'], 'sparsity': 0.8}]
        pruner = L1NormPruner(model=model, config_list=config_list, mode='dependency_aware',
                              dummy_input=torch.rand(10, 1, 28, 28))
        pruned_model, masks = pruner.compress()
        pruner._unwrap_model()
        sparsity_list = compute_sparsity_mask2compact(pruned_model, masks, config_list)
81
        assert 0.78 < sparsity_list[0]['total_sparsity'] < 0.82
82
83
84
85
86
87
88
89
90

    def test_l2_norm_pruner(self):
        model = TorchModel()
        config_list = [{'op_types': ['Conv2d'], 'sparsity': 0.8}]
        pruner = L2NormPruner(model=model, config_list=config_list, mode='dependency_aware',
                              dummy_input=torch.rand(10, 1, 28, 28))
        pruned_model, masks = pruner.compress()
        pruner._unwrap_model()
        sparsity_list = compute_sparsity_mask2compact(pruned_model, masks, config_list)
91
        assert 0.78 < sparsity_list[0]['total_sparsity'] < 0.82
92
93
94
95
96
97
98
99
100

    def test_fpgm_pruner(self):
        model = TorchModel()
        config_list = [{'op_types': ['Conv2d'], 'sparsity': 0.8}]
        pruner = FPGMPruner(model=model, config_list=config_list, mode='dependency_aware',
                            dummy_input=torch.rand(10, 1, 28, 28))
        pruned_model, masks = pruner.compress()
        pruner._unwrap_model()
        sparsity_list = compute_sparsity_mask2compact(pruned_model, masks, config_list)
101
        assert 0.78 < sparsity_list[0]['total_sparsity'] < 0.82
102
103
104
105
106
107
108
109
110

    def test_slim_pruner(self):
        model = TorchModel()
        config_list = [{'op_types': ['BatchNorm2d'], 'total_sparsity': 0.8}]
        pruner = SlimPruner(model=model, config_list=config_list, trainer=trainer, optimizer=get_optimizer(model),
                            criterion=criterion, training_epochs=1, scale=0.001, mode='global')
        pruned_model, masks = pruner.compress()
        pruner._unwrap_model()
        sparsity_list = compute_sparsity_mask2compact(pruned_model, masks, config_list)
111
        assert 0.78 < sparsity_list[0]['total_sparsity'] < 0.82
112
113
114
115
116
117
118
119
120
121
122

    def test_activation_apoz_rank_pruner(self):
        model = TorchModel()
        config_list = [{'op_types': ['Conv2d'], 'sparsity': 0.8}]
        pruner = ActivationAPoZRankPruner(model=model, config_list=config_list, trainer=trainer,
                                          optimizer=get_optimizer(model), criterion=criterion, training_batches=1,
                                          activation='relu', mode='dependency_aware',
                                          dummy_input=torch.rand(10, 1, 28, 28))
        pruned_model, masks = pruner.compress()
        pruner._unwrap_model()
        sparsity_list = compute_sparsity_mask2compact(pruned_model, masks, config_list)
123
        assert 0.78 < sparsity_list[0]['total_sparsity'] < 0.82
124
125
126
127
128
129
130
131
132
133
134

    def test_activation_mean_rank_pruner(self):
        model = TorchModel()
        config_list = [{'op_types': ['Conv2d'], 'sparsity': 0.8}]
        pruner = ActivationMeanRankPruner(model=model, config_list=config_list, trainer=trainer,
                                          optimizer=get_optimizer(model), criterion=criterion, training_batches=1,
                                          activation='relu', mode='dependency_aware',
                                          dummy_input=torch.rand(10, 1, 28, 28))
        pruned_model, masks = pruner.compress()
        pruner._unwrap_model()
        sparsity_list = compute_sparsity_mask2compact(pruned_model, masks, config_list)
135
        assert 0.78 < sparsity_list[0]['total_sparsity'] < 0.82
136
137
138
139
140
141
142
143
144
145

    def test_taylor_fo_pruner(self):
        model = TorchModel()
        config_list = [{'op_types': ['Conv2d'], 'sparsity': 0.8}]
        pruner = TaylorFOWeightPruner(model=model, config_list=config_list, trainer=trainer,
                                      optimizer=get_optimizer(model), criterion=criterion, training_batches=1,
                                      mode='dependency_aware', dummy_input=torch.rand(10, 1, 28, 28))
        pruned_model, masks = pruner.compress()
        pruner._unwrap_model()
        sparsity_list = compute_sparsity_mask2compact(pruned_model, masks, config_list)
146
        assert 0.78 < sparsity_list[0]['total_sparsity'] < 0.82
147
148
149
150
151
152
153
154
155

    def test_admm_pruner(self):
        model = TorchModel()
        config_list = [{'op_types': ['Conv2d'], 'sparsity': 0.8, 'rho': 1e-3}]
        pruner = ADMMPruner(model=model, config_list=config_list, trainer=trainer, optimizer=get_optimizer(model),
                            criterion=criterion, iterations=2, training_epochs=1)
        pruned_model, masks = pruner.compress()
        pruner._unwrap_model()
        sparsity_list = compute_sparsity_mask2compact(pruned_model, masks, config_list)
156
157
158
159
160
161
162
163
164
165
166
167
        assert 0.78 < sparsity_list[0]['total_sparsity'] < 0.82

    def test_movement_pruner(self):
        model = TorchModel()
        config_list = [{'op_types': ['Conv2d'], 'sparsity': 0.8}]
        pruner = MovementPruner(model=model, config_list=config_list, trainer=trainer, optimizer=get_optimizer(model),
                                criterion=criterion, training_epochs=5, warm_up_step=0, cool_down_beginning_step=4)
        pruned_model, masks = pruner.compress()
        pruner._unwrap_model()
        sparsity_list = compute_sparsity_mask2compact(pruned_model, masks, config_list)
        assert 0.78 < sparsity_list[0]['total_sparsity'] < 0.82

168
169
170

if __name__ == '__main__':
    unittest.main()