test_v2_pruner_torch.py 6.85 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.

import unittest

import torch
import torch.nn.functional as F

from nni.algorithms.compression.v2.pytorch.pruning import (
    LevelPruner,
    L1NormPruner,
    L2NormPruner,
    SlimPruner,
    FPGMPruner,
    ActivationAPoZRankPruner,
    ActivationMeanRankPruner,
    TaylorFOWeightPruner,
    ADMMPruner
)
from nni.algorithms.compression.v2.pytorch.utils import compute_sparsity_mask2compact


class TorchModel(torch.nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = torch.nn.Conv2d(1, 5, 5, 1)
        self.bn1 = torch.nn.BatchNorm2d(5)
        self.conv2 = torch.nn.Conv2d(5, 10, 5, 1)
        self.bn2 = torch.nn.BatchNorm2d(10)
        self.fc1 = torch.nn.Linear(4 * 4 * 10, 100)
        self.fc2 = torch.nn.Linear(100, 10)

    def forward(self, x):
        x = F.relu(self.bn1(self.conv1(x)))
        x = F.max_pool2d(x, 2, 2)
        x = F.relu(self.bn2(self.conv2(x)))
        x = F.max_pool2d(x, 2, 2)
        x = x.view(-1, 4 * 4 * 10)
        x = F.relu(self.fc1(x))
        x = self.fc2(x)
        return F.log_softmax(x, dim=1)


def trainer(model, optimizer, criterion):
    model.train()
    input = torch.rand(10, 1, 28, 28)
    label = torch.Tensor(list(range(10))).type(torch.LongTensor)
    optimizer.zero_grad()
    output = model(input)
    loss = criterion(output, label)
    loss.backward()
    optimizer.step()


def get_optimizer(model):
    return torch.optim.SGD(model.parameters(), lr=0.1, momentum=0.9, weight_decay=5e-4)


criterion = torch.nn.CrossEntropyLoss()


class PrunerTestCase(unittest.TestCase):
    def test_level_pruner(self):
        model = TorchModel()
        config_list = [{'op_types': ['Conv2d'], 'sparsity': 0.8}]
        pruner = LevelPruner(model=model, config_list=config_list)
        pruned_model, masks = pruner.compress()
        pruner._unwrap_model()
        sparsity_list = compute_sparsity_mask2compact(pruned_model, masks, config_list)
        assert 0.79 < sparsity_list[0]['total_sparsity'] < 0.81

    def test_l1_norm_pruner(self):
        model = TorchModel()
        config_list = [{'op_types': ['Conv2d'], 'sparsity': 0.8}]
        pruner = L1NormPruner(model=model, config_list=config_list, mode='dependency_aware',
                              dummy_input=torch.rand(10, 1, 28, 28))
        pruned_model, masks = pruner.compress()
        pruner._unwrap_model()
        sparsity_list = compute_sparsity_mask2compact(pruned_model, masks, config_list)
        assert 0.79 < sparsity_list[0]['total_sparsity'] < 0.81

    def test_l2_norm_pruner(self):
        model = TorchModel()
        config_list = [{'op_types': ['Conv2d'], 'sparsity': 0.8}]
        pruner = L2NormPruner(model=model, config_list=config_list, mode='dependency_aware',
                              dummy_input=torch.rand(10, 1, 28, 28))
        pruned_model, masks = pruner.compress()
        pruner._unwrap_model()
        sparsity_list = compute_sparsity_mask2compact(pruned_model, masks, config_list)
        assert 0.79 < sparsity_list[0]['total_sparsity'] < 0.81

    def test_fpgm_pruner(self):
        model = TorchModel()
        config_list = [{'op_types': ['Conv2d'], 'sparsity': 0.8}]
        pruner = FPGMPruner(model=model, config_list=config_list, mode='dependency_aware',
                            dummy_input=torch.rand(10, 1, 28, 28))
        pruned_model, masks = pruner.compress()
        pruner._unwrap_model()
        sparsity_list = compute_sparsity_mask2compact(pruned_model, masks, config_list)
        assert 0.79 < sparsity_list[0]['total_sparsity'] < 0.81

    def test_slim_pruner(self):
        model = TorchModel()
        config_list = [{'op_types': ['BatchNorm2d'], 'total_sparsity': 0.8}]
        pruner = SlimPruner(model=model, config_list=config_list, trainer=trainer, optimizer=get_optimizer(model),
                            criterion=criterion, training_epochs=1, scale=0.001, mode='global')
        pruned_model, masks = pruner.compress()
        pruner._unwrap_model()
        sparsity_list = compute_sparsity_mask2compact(pruned_model, masks, config_list)
        assert 0.79 < sparsity_list[0]['total_sparsity'] < 0.81

    def test_activation_apoz_rank_pruner(self):
        model = TorchModel()
        config_list = [{'op_types': ['Conv2d'], 'sparsity': 0.8}]
        pruner = ActivationAPoZRankPruner(model=model, config_list=config_list, trainer=trainer,
                                          optimizer=get_optimizer(model), criterion=criterion, training_batches=1,
                                          activation='relu', mode='dependency_aware',
                                          dummy_input=torch.rand(10, 1, 28, 28))
        pruned_model, masks = pruner.compress()
        pruner._unwrap_model()
        sparsity_list = compute_sparsity_mask2compact(pruned_model, masks, config_list)
        assert 0.79 < sparsity_list[0]['total_sparsity'] < 0.81

    def test_activation_mean_rank_pruner(self):
        model = TorchModel()
        config_list = [{'op_types': ['Conv2d'], 'sparsity': 0.8}]
        pruner = ActivationMeanRankPruner(model=model, config_list=config_list, trainer=trainer,
                                          optimizer=get_optimizer(model), criterion=criterion, training_batches=1,
                                          activation='relu', mode='dependency_aware',
                                          dummy_input=torch.rand(10, 1, 28, 28))
        pruned_model, masks = pruner.compress()
        pruner._unwrap_model()
        sparsity_list = compute_sparsity_mask2compact(pruned_model, masks, config_list)
        assert 0.79 < sparsity_list[0]['total_sparsity'] < 0.81

    def test_taylor_fo_pruner(self):
        model = TorchModel()
        config_list = [{'op_types': ['Conv2d'], 'sparsity': 0.8}]
        pruner = TaylorFOWeightPruner(model=model, config_list=config_list, trainer=trainer,
                                      optimizer=get_optimizer(model), criterion=criterion, training_batches=1,
                                      mode='dependency_aware', dummy_input=torch.rand(10, 1, 28, 28))
        pruned_model, masks = pruner.compress()
        pruner._unwrap_model()
        sparsity_list = compute_sparsity_mask2compact(pruned_model, masks, config_list)
        assert 0.79 < sparsity_list[0]['total_sparsity'] < 0.81

    def test_admm_pruner(self):
        model = TorchModel()
        config_list = [{'op_types': ['Conv2d'], 'sparsity': 0.8, 'rho': 1e-3}]
        pruner = ADMMPruner(model=model, config_list=config_list, trainer=trainer, optimizer=get_optimizer(model),
                            criterion=criterion, iterations=2, training_epochs=1)
        pruned_model, masks = pruner.compress()
        pruner._unwrap_model()
        sparsity_list = compute_sparsity_mask2compact(pruned_model, masks, config_list)
        assert 0.79 < sparsity_list[0]['total_sparsity'] < 0.81

if __name__ == '__main__':
    unittest.main()