show_result.py 10.8 KB
Newer Older
dingchang's avatar
dingchang committed
1
# Copyright (c) OpenMMLab. All rights reserved.
liyinhao's avatar
liyinhao committed
2
3
4
import mmcv
import numpy as np
import trimesh
zhangwenwei's avatar
zhangwenwei committed
5
from os import path as osp
liyinhao's avatar
liyinhao committed
6

7
8
from .image_vis import (draw_camera_bbox3d_on_img, draw_depth_bbox3d_on_img,
                        draw_lidar_bbox3d_on_img)
9

liyinhao's avatar
liyinhao committed
10

11
12
def _write_obj(points, out_filename):
    """Write points into ``obj`` format for meshlab visualization.
zhangwenwei's avatar
zhangwenwei committed
13
14
15
16
17

    Args:
        points (np.ndarray): Points in shape (N, dim).
        out_filename (str): Filename to be saved.
    """
liyinhao's avatar
liyinhao committed
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
    N = points.shape[0]
    fout = open(out_filename, 'w')
    for i in range(N):
        if points.shape[1] == 6:
            c = points[i, 3:].astype(int)
            fout.write(
                'v %f %f %f %d %d %d\n' %
                (points[i, 0], points[i, 1], points[i, 2], c[0], c[1], c[2]))

        else:
            fout.write('v %f %f %f\n' %
                       (points[i, 0], points[i, 1], points[i, 2]))
    fout.close()


def _write_oriented_bbox(scene_bbox, out_filename):
zhangwenwei's avatar
zhangwenwei committed
34
    """Export oriented (around Z axis) scene bbox to meshes.
liyinhao's avatar
liyinhao committed
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

    Args:
        scene_bbox(list[ndarray] or ndarray): xyz pos of center and
            3 lengths (dx,dy,dz) and heading angle around Z axis.
            Y forward, X right, Z upward. heading angle of positive X is 0,
            heading angle of positive Y is 90 degrees.
        out_filename(str): Filename.
    """

    def heading2rotmat(heading_angle):
        rotmat = np.zeros((3, 3))
        rotmat[2, 2] = 1
        cosval = np.cos(heading_angle)
        sinval = np.sin(heading_angle)
        rotmat[0:2, 0:2] = np.array([[cosval, -sinval], [sinval, cosval]])
        return rotmat

    def convert_oriented_box_to_trimesh_fmt(box):
        ctr = box[:3]
        lengths = box[3:6]
        trns = np.eye(4)
        trns[0:3, 3] = ctr
        trns[3, 3] = 1.0
        trns[0:3, 0:3] = heading2rotmat(box[6])
        box_trimesh_fmt = trimesh.creation.box(lengths, trns)
        return box_trimesh_fmt

    if len(scene_bbox) == 0:
        scene_bbox = np.zeros((1, 7))
    scene = trimesh.scene.Scene()
    for box in scene_bbox:
        scene.add_geometry(convert_oriented_box_to_trimesh_fmt(box))

    mesh_list = trimesh.util.concatenate(scene.dump())
69
70
    # save to obj file
    trimesh.io.export.export_mesh(mesh_list, out_filename, file_type='obj')
liyinhao's avatar
liyinhao committed
71
72
73
74

    return


75
76
77
78
79
def show_result(points,
                gt_bboxes,
                pred_bboxes,
                out_dir,
                filename,
ChaimZhu's avatar
ChaimZhu committed
80
                show=False,
MilkClouds's avatar
MilkClouds committed
81
82
                snapshot=False,
                pred_labels=None):
zhangwenwei's avatar
zhangwenwei committed
83
84
85
86
87
88
89
90
    """Convert results into format that is directly readable for meshlab.

    Args:
        points (np.ndarray): Points.
        gt_bboxes (np.ndarray): Ground truth boxes.
        pred_bboxes (np.ndarray): Predicted boxes.
        out_dir (str): Path of output directory
        filename (str): Filename of the current frame.
MilkClouds's avatar
MilkClouds committed
91
92
93
94
95
        show (bool, optional): Visualize the results online. Defaults to False.
        snapshot (bool, optional): Whether to save the online results.
            Defaults to False.
        pred_labels (np.ndarray, optional): Predicted labels of boxes.
            Defaults to None.
zhangwenwei's avatar
zhangwenwei committed
96
    """
97
98
99
    result_path = osp.join(out_dir, filename)
    mmcv.mkdir_or_exist(result_path)

100
    if show:
101
102
        from .open3d_vis import Visualizer

103
104
        vis = Visualizer(points)
        if pred_bboxes is not None:
MilkClouds's avatar
MilkClouds committed
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
            if pred_labels is None:
                vis.add_bboxes(bbox3d=pred_bboxes)
            else:
                palette = np.random.randint(
                    0, 255, size=(pred_labels.max() + 1, 3)) / 256
                labelDict = {}
                for j in range(len(pred_labels)):
                    i = int(pred_labels[j].numpy())
                    if labelDict.get(i) is None:
                        labelDict[i] = []
                    labelDict[i].append(pred_bboxes[j])
                for i in labelDict:
                    vis.add_bboxes(
                        bbox3d=np.array(labelDict[i]),
                        bbox_color=palette[i],
                        points_in_box_color=palette[i])

122
123
        if gt_bboxes is not None:
            vis.add_bboxes(bbox3d=gt_bboxes, bbox_color=(0, 0, 1))
124
125
126
        show_path = osp.join(result_path,
                             f'{filename}_online.png') if snapshot else None
        vis.show(show_path)
liyinhao's avatar
liyinhao committed
127

128
    if points is not None:
129
        _write_obj(points, osp.join(result_path, f'{filename}_points.obj'))
130

liyinhao's avatar
liyinhao committed
131
    if gt_bboxes is not None:
132
133
134
        # bottom center to gravity center
        gt_bboxes[..., 2] += gt_bboxes[..., 5] / 2
        # the positive direction for yaw in meshlab is clockwise
liyinhao's avatar
liyinhao committed
135
        gt_bboxes[:, 6] *= -1
liyinhao's avatar
liyinhao committed
136
        _write_oriented_bbox(gt_bboxes,
137
                             osp.join(result_path, f'{filename}_gt.obj'))
liyinhao's avatar
liyinhao committed
138
139

    if pred_bboxes is not None:
140
141
142
        # bottom center to gravity center
        pred_bboxes[..., 2] += pred_bboxes[..., 5] / 2
        # the positive direction for yaw in meshlab is clockwise
liyinhao's avatar
liyinhao committed
143
        pred_bboxes[:, 6] *= -1
liyinhao's avatar
liyinhao committed
144
        _write_oriented_bbox(pred_bboxes,
145
146
147
148
149
150
151
152
153
154
                             osp.join(result_path, f'{filename}_pred.obj'))


def show_seg_result(points,
                    gt_seg,
                    pred_seg,
                    out_dir,
                    filename,
                    palette,
                    ignore_index=None,
Ziyi Wu's avatar
Ziyi Wu committed
155
                    show=True,
156
                    snapshot=False):
157
158
159
160
161
162
163
164
165
166
167
168
    """Convert results into format that is directly readable for meshlab.

    Args:
        points (np.ndarray): Points.
        gt_seg (np.ndarray): Ground truth segmentation mask.
        pred_seg (np.ndarray): Predicted segmentation mask.
        out_dir (str): Path of output directory
        filename (str): Filename of the current frame.
        palette (np.ndarray): Mapping between class labels and colors.
        ignore_index (int, optional): The label index to be ignored, e.g. \
            unannotated points. Defaults to None.
        show (bool, optional): Visualize the results online. Defaults to False.
169
170
        snapshot (bool, optional): Whether to save the online results. \
            Defaults to False.
171
    """
172
173
174
175
    # we need 3D coordinates to visualize segmentation mask
    if gt_seg is not None or pred_seg is not None:
        assert points is not None, \
            '3D coordinates are required for segmentation visualization'
176
177
178
179
180
181
182
183
184
185
186

    # filter out ignored points
    if gt_seg is not None and ignore_index is not None:
        if points is not None:
            points = points[gt_seg != ignore_index]
        if pred_seg is not None:
            pred_seg = pred_seg[gt_seg != ignore_index]
        gt_seg = gt_seg[gt_seg != ignore_index]

    if gt_seg is not None:
        gt_seg_color = palette[gt_seg]
187
        gt_seg_color = np.concatenate([points[:, :3], gt_seg_color], axis=1)
188
189
    if pred_seg is not None:
        pred_seg_color = palette[pred_seg]
190
191
192
        pred_seg_color = np.concatenate([points[:, :3], pred_seg_color],
                                        axis=1)

193
194
195
    result_path = osp.join(out_dir, filename)
    mmcv.mkdir_or_exist(result_path)

196
197
198
199
200
201
202
203
204
205
    # online visualization of segmentation mask
    # we show three masks in a row, scene_points, gt_mask, pred_mask
    if show:
        from .open3d_vis import Visualizer
        mode = 'xyzrgb' if points.shape[1] == 6 else 'xyz'
        vis = Visualizer(points, mode=mode)
        if gt_seg is not None:
            vis.add_seg_mask(gt_seg_color)
        if pred_seg is not None:
            vis.add_seg_mask(pred_seg_color)
206
207
208
        show_path = osp.join(result_path,
                             f'{filename}_online.png') if snapshot else None
        vis.show(show_path)
209
210
211
212
213

    if points is not None:
        _write_obj(points, osp.join(result_path, f'{filename}_points.obj'))

    if gt_seg is not None:
214
        _write_obj(gt_seg_color, osp.join(result_path, f'{filename}_gt.obj'))
215
216

    if pred_seg is not None:
217
218
        _write_obj(pred_seg_color, osp.join(result_path,
                                            f'{filename}_pred.obj'))
219
220
221
222
223
224
225
226


def show_multi_modality_result(img,
                               gt_bboxes,
                               pred_bboxes,
                               proj_mat,
                               out_dir,
                               filename,
227
                               box_mode='lidar',
228
                               img_metas=None,
Ziyi Wu's avatar
Ziyi Wu committed
229
                               show=True,
230
231
232
233
234
235
236
237
                               gt_bbox_color=(61, 102, 255),
                               pred_bbox_color=(241, 101, 72)):
    """Convert multi-modality detection results into 2D results.

    Project the predicted 3D bbox to 2D image plane and visualize them.

    Args:
        img (np.ndarray): The numpy array of image in cv2 fashion.
238
239
        gt_bboxes (:obj:`BaseInstance3DBoxes`): Ground truth boxes.
        pred_bboxes (:obj:`BaseInstance3DBoxes`): Predicted boxes.
240
241
        proj_mat (numpy.array, shape=[4, 4]): The projection matrix
            according to the camera intrinsic parameters.
242
        out_dir (str): Path of output directory.
243
        filename (str): Filename of the current frame.
244
245
        box_mode (str): Coordinate system the boxes are in. Should be one of
           'depth', 'lidar' and 'camera'. Defaults to 'lidar'.
246
        img_metas (dict): Used in projecting depth bbox.
247
        show (bool): Visualize the results online. Defaults to False.
248
249
250
251
252
        gt_bbox_color (str or tuple(int)): Color of bbox lines.
           The tuple of color should be in BGR order. Default: (255, 102, 61)
        pred_bbox_color (str or tuple(int)): Color of bbox lines.
           The tuple of color should be in BGR order. Default: (72, 101, 241)
    """
253
    if box_mode == 'depth':
254
        draw_bbox = draw_depth_bbox3d_on_img
255
    elif box_mode == 'lidar':
256
        draw_bbox = draw_lidar_bbox3d_on_img
257
258
259
260
    elif box_mode == 'camera':
        draw_bbox = draw_camera_bbox3d_on_img
    else:
        raise NotImplementedError(f'unsupported box mode {box_mode}')
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290

    result_path = osp.join(out_dir, filename)
    mmcv.mkdir_or_exist(result_path)

    if show:
        show_img = img.copy()
        if gt_bboxes is not None:
            show_img = draw_bbox(
                gt_bboxes, show_img, proj_mat, img_metas, color=gt_bbox_color)
        if pred_bboxes is not None:
            show_img = draw_bbox(
                pred_bboxes,
                show_img,
                proj_mat,
                img_metas,
                color=pred_bbox_color)
        mmcv.imshow(show_img, win_name='project_bbox3d_img', wait_time=0)

    if img is not None:
        mmcv.imwrite(img, osp.join(result_path, f'{filename}_img.png'))

    if gt_bboxes is not None:
        gt_img = draw_bbox(
            gt_bboxes, img, proj_mat, img_metas, color=gt_bbox_color)
        mmcv.imwrite(gt_img, osp.join(result_path, f'{filename}_gt.png'))

    if pred_bboxes is not None:
        pred_img = draw_bbox(
            pred_bboxes, img, proj_mat, img_metas, color=pred_bbox_color)
        mmcv.imwrite(pred_img, osp.join(result_path, f'{filename}_pred.png'))