show_result.py 9.04 KB
Newer Older
liyinhao's avatar
liyinhao committed
1
2
3
import mmcv
import numpy as np
import trimesh
zhangwenwei's avatar
zhangwenwei committed
4
from os import path as osp
liyinhao's avatar
liyinhao committed
5

6
7
from .image_vis import draw_depth_bbox3d_on_img, draw_lidar_bbox3d_on_img

liyinhao's avatar
liyinhao committed
8

9
10
def _write_obj(points, out_filename):
    """Write points into ``obj`` format for meshlab visualization.
zhangwenwei's avatar
zhangwenwei committed
11
12
13
14
15

    Args:
        points (np.ndarray): Points in shape (N, dim).
        out_filename (str): Filename to be saved.
    """
liyinhao's avatar
liyinhao committed
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
    N = points.shape[0]
    fout = open(out_filename, 'w')
    for i in range(N):
        if points.shape[1] == 6:
            c = points[i, 3:].astype(int)
            fout.write(
                'v %f %f %f %d %d %d\n' %
                (points[i, 0], points[i, 1], points[i, 2], c[0], c[1], c[2]))

        else:
            fout.write('v %f %f %f\n' %
                       (points[i, 0], points[i, 1], points[i, 2]))
    fout.close()


def _write_oriented_bbox(scene_bbox, out_filename):
zhangwenwei's avatar
zhangwenwei committed
32
    """Export oriented (around Z axis) scene bbox to meshes.
liyinhao's avatar
liyinhao committed
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

    Args:
        scene_bbox(list[ndarray] or ndarray): xyz pos of center and
            3 lengths (dx,dy,dz) and heading angle around Z axis.
            Y forward, X right, Z upward. heading angle of positive X is 0,
            heading angle of positive Y is 90 degrees.
        out_filename(str): Filename.
    """

    def heading2rotmat(heading_angle):
        rotmat = np.zeros((3, 3))
        rotmat[2, 2] = 1
        cosval = np.cos(heading_angle)
        sinval = np.sin(heading_angle)
        rotmat[0:2, 0:2] = np.array([[cosval, -sinval], [sinval, cosval]])
        return rotmat

    def convert_oriented_box_to_trimesh_fmt(box):
        ctr = box[:3]
        lengths = box[3:6]
        trns = np.eye(4)
        trns[0:3, 3] = ctr
        trns[3, 3] = 1.0
        trns[0:3, 0:3] = heading2rotmat(box[6])
        box_trimesh_fmt = trimesh.creation.box(lengths, trns)
        return box_trimesh_fmt

    if len(scene_bbox) == 0:
        scene_bbox = np.zeros((1, 7))
    scene = trimesh.scene.Scene()
    for box in scene_bbox:
        scene.add_geometry(convert_oriented_box_to_trimesh_fmt(box))

    mesh_list = trimesh.util.concatenate(scene.dump())
67
68
    # save to obj file
    trimesh.io.export.export_mesh(mesh_list, out_filename, file_type='obj')
liyinhao's avatar
liyinhao committed
69
70
71
72

    return


73
def show_result(points, gt_bboxes, pred_bboxes, out_dir, filename, show=True):
zhangwenwei's avatar
zhangwenwei committed
74
75
76
77
78
79
80
81
    """Convert results into format that is directly readable for meshlab.

    Args:
        points (np.ndarray): Points.
        gt_bboxes (np.ndarray): Ground truth boxes.
        pred_bboxes (np.ndarray): Predicted boxes.
        out_dir (str): Path of output directory
        filename (str): Filename of the current frame.
82
        show (bool): Visualize the results online. Defaults to True.
zhangwenwei's avatar
zhangwenwei committed
83
    """
84
    if show:
85
86
        from .open3d_vis import Visualizer

87
88
89
90
91
92
93
        vis = Visualizer(points)
        if pred_bboxes is not None:
            vis.add_bboxes(bbox3d=pred_bboxes)
        if gt_bboxes is not None:
            vis.add_bboxes(bbox3d=gt_bboxes, bbox_color=(0, 0, 1))
        vis.show()

liyinhao's avatar
liyinhao committed
94
95
    result_path = osp.join(out_dir, filename)
    mmcv.mkdir_or_exist(result_path)
liyinhao's avatar
liyinhao committed
96

97
    if points is not None:
98
        _write_obj(points, osp.join(result_path, f'{filename}_points.obj'))
99

liyinhao's avatar
liyinhao committed
100
    if gt_bboxes is not None:
101
102
103
        # bottom center to gravity center
        gt_bboxes[..., 2] += gt_bboxes[..., 5] / 2
        # the positive direction for yaw in meshlab is clockwise
liyinhao's avatar
liyinhao committed
104
        gt_bboxes[:, 6] *= -1
liyinhao's avatar
liyinhao committed
105
        _write_oriented_bbox(gt_bboxes,
106
                             osp.join(result_path, f'{filename}_gt.obj'))
liyinhao's avatar
liyinhao committed
107
108

    if pred_bboxes is not None:
109
110
111
        # bottom center to gravity center
        pred_bboxes[..., 2] += pred_bboxes[..., 5] / 2
        # the positive direction for yaw in meshlab is clockwise
liyinhao's avatar
liyinhao committed
112
        pred_bboxes[:, 6] *= -1
liyinhao's avatar
liyinhao committed
113
        _write_oriented_bbox(pred_bboxes,
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
                             osp.join(result_path, f'{filename}_pred.obj'))


def show_seg_result(points,
                    gt_seg,
                    pred_seg,
                    out_dir,
                    filename,
                    palette,
                    ignore_index=None,
                    show=False):
    """Convert results into format that is directly readable for meshlab.

    Args:
        points (np.ndarray): Points.
        gt_seg (np.ndarray): Ground truth segmentation mask.
        pred_seg (np.ndarray): Predicted segmentation mask.
        out_dir (str): Path of output directory
        filename (str): Filename of the current frame.
        palette (np.ndarray): Mapping between class labels and colors.
        ignore_index (int, optional): The label index to be ignored, e.g. \
            unannotated points. Defaults to None.
        show (bool, optional): Visualize the results online. Defaults to False.
    """
138
139
140
141
    # we need 3D coordinates to visualize segmentation mask
    if gt_seg is not None or pred_seg is not None:
        assert points is not None, \
            '3D coordinates are required for segmentation visualization'
142
143
144
145
146
147
148
149
150
151
152

    # filter out ignored points
    if gt_seg is not None and ignore_index is not None:
        if points is not None:
            points = points[gt_seg != ignore_index]
        if pred_seg is not None:
            pred_seg = pred_seg[gt_seg != ignore_index]
        gt_seg = gt_seg[gt_seg != ignore_index]

    if gt_seg is not None:
        gt_seg_color = palette[gt_seg]
153
        gt_seg_color = np.concatenate([points[:, :3], gt_seg_color], axis=1)
154
155
    if pred_seg is not None:
        pred_seg_color = palette[pred_seg]
156
157
158
159
160
161
162
163
164
165
166
167
168
169
        pred_seg_color = np.concatenate([points[:, :3], pred_seg_color],
                                        axis=1)

    # online visualization of segmentation mask
    # we show three masks in a row, scene_points, gt_mask, pred_mask
    if show:
        from .open3d_vis import Visualizer
        mode = 'xyzrgb' if points.shape[1] == 6 else 'xyz'
        vis = Visualizer(points, mode=mode)
        if gt_seg is not None:
            vis.add_seg_mask(gt_seg_color)
        if pred_seg is not None:
            vis.add_seg_mask(pred_seg_color)
        vis.show()
170
171
172
173
174
175
176
177

    result_path = osp.join(out_dir, filename)
    mmcv.mkdir_or_exist(result_path)

    if points is not None:
        _write_obj(points, osp.join(result_path, f'{filename}_points.obj'))

    if gt_seg is not None:
178
        _write_obj(gt_seg_color, osp.join(result_path, f'{filename}_gt.obj'))
179
180

    if pred_seg is not None:
181
182
        _write_obj(pred_seg_color, osp.join(result_path,
                                            f'{filename}_pred.obj'))
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216


def show_multi_modality_result(img,
                               gt_bboxes,
                               pred_bboxes,
                               proj_mat,
                               out_dir,
                               filename,
                               depth_bbox=False,
                               img_metas=None,
                               show=True,
                               gt_bbox_color=(61, 102, 255),
                               pred_bbox_color=(241, 101, 72)):
    """Convert multi-modality detection results into 2D results.

    Project the predicted 3D bbox to 2D image plane and visualize them.

    Args:
        img (np.ndarray): The numpy array of image in cv2 fashion.
        gt_bboxes (np.ndarray): Ground truth boxes.
        pred_bboxes (np.ndarray): Predicted boxes.
        proj_mat (numpy.array, shape=[4, 4]): The projection matrix
            according to the camera intrinsic parameters.
        out_dir (str): Path of output directory
        filename (str): Filename of the current frame.
        depth_bbox (bool): Whether we are projecting camera bbox or lidar bbox.
        img_metas (dict): Used in projecting cameta bbox.
        show (bool): Visualize the results online. Defaults to True.
        gt_bbox_color (str or tuple(int)): Color of bbox lines.
           The tuple of color should be in BGR order. Default: (255, 102, 61)
        pred_bbox_color (str or tuple(int)): Color of bbox lines.
           The tuple of color should be in BGR order. Default: (72, 101, 241)
    """
    if depth_bbox:
217
        draw_bbox = draw_depth_bbox3d_on_img
218
    else:
219
        draw_bbox = draw_lidar_bbox3d_on_img
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249

    result_path = osp.join(out_dir, filename)
    mmcv.mkdir_or_exist(result_path)

    if show:
        show_img = img.copy()
        if gt_bboxes is not None:
            show_img = draw_bbox(
                gt_bboxes, show_img, proj_mat, img_metas, color=gt_bbox_color)
        if pred_bboxes is not None:
            show_img = draw_bbox(
                pred_bboxes,
                show_img,
                proj_mat,
                img_metas,
                color=pred_bbox_color)
        mmcv.imshow(show_img, win_name='project_bbox3d_img', wait_time=0)

    if img is not None:
        mmcv.imwrite(img, osp.join(result_path, f'{filename}_img.png'))

    if gt_bboxes is not None:
        gt_img = draw_bbox(
            gt_bboxes, img, proj_mat, img_metas, color=gt_bbox_color)
        mmcv.imwrite(gt_img, osp.join(result_path, f'{filename}_gt.png'))

    if pred_bboxes is not None:
        pred_img = draw_bbox(
            pred_bboxes, img, proj_mat, img_metas, color=pred_bbox_color)
        mmcv.imwrite(pred_img, osp.join(result_path, f'{filename}_pred.png'))