vote_head.py 35.4 KB
Newer Older
dingchang's avatar
dingchang committed
1
# Copyright (c) OpenMMLab. All rights reserved.
jshilong's avatar
jshilong committed
2
from typing import Dict, List, Optional, Tuple, Union
jshilong's avatar
jshilong committed
3

wuyuefeng's avatar
Votenet  
wuyuefeng committed
4
5
import numpy as np
import torch
6
from mmcv.ops import furthest_point_sample
jshilong's avatar
jshilong committed
7
from mmcv.runner import BaseModule
jshilong's avatar
jshilong committed
8
from mmengine import ConfigDict, InstanceData
jshilong's avatar
jshilong committed
9
from torch import Tensor
zhangwenwei's avatar
zhangwenwei committed
10
from torch.nn import functional as F
wuyuefeng's avatar
Votenet  
wuyuefeng committed
11
12
13
14

from mmdet3d.core.post_processing import aligned_3d_nms
from mmdet3d.models.losses import chamfer_distance
from mmdet3d.models.model_utils import VoteModule
15
from mmdet3d.ops import build_sa_module
jshilong's avatar
jshilong committed
16
17
18
from mmdet3d.registry import MODELS, TASK_UTILS
from mmdet.core.utils import multi_apply
from ...core import Det3DDataSample
19
from .base_conv_bbox_head import BaseConvBboxHead
wuyuefeng's avatar
Votenet  
wuyuefeng committed
20
21


22
@MODELS.register_module()
23
class VoteHead(BaseModule):
zhangwenwei's avatar
zhangwenwei committed
24
    r"""Bbox head of `Votenet <https://arxiv.org/abs/1904.09664>`_.
wuyuefeng's avatar
Votenet  
wuyuefeng committed
25
26
27

    Args:
        num_classes (int): The number of class.
jshilong's avatar
jshilong committed
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
        bbox_coder (ConfigDict, dict): Bbox coder for encoding and
            decoding boxes. Defaults to None.
        train_cfg (dict, optional): Config for training. Defaults to None.
        test_cfg (dict, optional): Config for testing. Defaults to None.
        vote_module_cfg (dict, optional): Config of VoteModule for
            point-wise votes. Defaults to None.
        vote_aggregation_cfg (dict, optional): Config of vote
            aggregation layer. Defaults to None.
        pred_layer_cfg (dict, optional): Config of classification
            and regression prediction layers. Defaults to None.
        objectness_loss (dict, optional): Config of objectness loss.
            Defaults to None.
        center_loss (dict, optional): Config of center loss.
            Defaults to None.
        dir_class_loss (dict, optional): Config of direction
            classification loss. Defaults to None.
        dir_res_loss (dict, optional): Config of direction
            residual regression loss. Defaults to None.
        size_class_loss (dict, optional): Config of size
            classification loss. Defaults to None.
        size_res_loss (dict, optional): Config of size
            residual regression loss. Defaults to None.
        semantic_loss (dict, optional): Config of point-wise
            semantic segmentation loss. Defaults to None.
        iou_loss (dict, optional): Config of IOU loss for
            regression. Defaults to None.
        init_cfg (dict, optional): Config of model weight
            initialization. Defaults to None.
wuyuefeng's avatar
Votenet  
wuyuefeng committed
56
57
58
    """

    def __init__(self,
jshilong's avatar
jshilong committed
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
                 num_classes: int,
                 bbox_coder: Union[ConfigDict, dict],
                 train_cfg: Optional[dict] = None,
                 test_cfg: Optional[dict] = None,
                 vote_module_cfg: Optional[dict] = None,
                 vote_aggregation_cfg: Optional[dict] = None,
                 pred_layer_cfg: Optional[dict] = None,
                 objectness_loss: Optional[dict] = None,
                 center_loss: Optional[dict] = None,
                 dir_class_loss: Optional[dict] = None,
                 dir_res_loss: Optional[dict] = None,
                 size_class_loss: Optional[dict] = None,
                 size_res_loss: Optional[dict] = None,
                 semantic_loss: Optional[dict] = None,
                 iou_loss: Optional[dict] = None,
                 init_cfg: Optional[dict] = None):
75
        super(VoteHead, self).__init__(init_cfg=init_cfg)
wuyuefeng's avatar
Votenet  
wuyuefeng committed
76
77
78
        self.num_classes = num_classes
        self.train_cfg = train_cfg
        self.test_cfg = test_cfg
jshilong's avatar
jshilong committed
79

80
        self.gt_per_seed = vote_module_cfg['gt_per_seed']
wuyuefeng's avatar
Votenet  
wuyuefeng committed
81
82
        self.num_proposal = vote_aggregation_cfg['num_point']

jshilong's avatar
jshilong committed
83
84
85
86
87
        self.loss_objectness = MODELS.build(objectness_loss)
        self.loss_center = MODELS.build(center_loss)
        self.loss_dir_res = MODELS.build(dir_res_loss)
        self.loss_dir_class = MODELS.build(dir_class_loss)
        self.loss_size_res = MODELS.build(size_res_loss)
88
        if size_class_loss is not None:
jshilong's avatar
jshilong committed
89
            self.size_class_loss = MODELS.build(size_class_loss)
90
        if semantic_loss is not None:
jshilong's avatar
jshilong committed
91
            self.semantic_loss = MODELS.build(semantic_loss)
92
        if iou_loss is not None:
jshilong's avatar
jshilong committed
93
            self.iou_loss = MODELS.build(iou_loss)
94
95
        else:
            self.iou_loss = None
wuyuefeng's avatar
Votenet  
wuyuefeng committed
96

jshilong's avatar
jshilong committed
97
        self.bbox_coder = TASK_UTILS.build(bbox_coder)
wuyuefeng's avatar
Votenet  
wuyuefeng committed
98
99
100
        self.num_sizes = self.bbox_coder.num_sizes
        self.num_dir_bins = self.bbox_coder.num_dir_bins

101
        self.vote_module = VoteModule(**vote_module_cfg)
102
        self.vote_aggregation = build_sa_module(vote_aggregation_cfg)
103
        self.fp16_enabled = False
wuyuefeng's avatar
Votenet  
wuyuefeng committed
104

105
106
107
108
109
110
        # Bbox classification and regression
        self.conv_pred = BaseConvBboxHead(
            **pred_layer_cfg,
            num_cls_out_channels=self._get_cls_out_channels(),
            num_reg_out_channels=self._get_reg_out_channels())

jshilong's avatar
jshilong committed
111
112
113
114
115
116
117
118
119
    @property
    def sample_mode(self):
        if self.training:
            sample_mode = self.train_cfg.sample_mode
        else:
            sample_mode = self.test_cfg.sample_mode
        assert sample_mode in ['vote', 'seed', 'random', 'spec']
        return sample_mode

120
121
122
123
124
125
126
    def _get_cls_out_channels(self):
        """Return the channel number of classification outputs."""
        # Class numbers (k) + objectness (2)
        return self.num_classes + 2

    def _get_reg_out_channels(self):
        """Return the channel number of regression outputs."""
wuyuefeng's avatar
Votenet  
wuyuefeng committed
127
128
129
        # Objectness scores (2), center residual (3),
        # heading class+residual (num_dir_bins*2),
        # size class+residual(num_sizes*4)
130
        return 3 + self.num_dir_bins * 2 + self.num_sizes * 4
wuyuefeng's avatar
Votenet  
wuyuefeng committed
131

jshilong's avatar
jshilong committed
132
    def _extract_input(self, feat_dict: dict) -> tuple:
133
134
135
136
137
138
        """Extract inputs from features dictionary.

        Args:
            feat_dict (dict): Feature dict from backbone.

        Returns:
jshilong's avatar
jshilong committed
139
140
141
142
143
            tuple[Tensor]: Arrage as following three tensor.

                - Coordinates of input points.
                - Features of input points.
                - Indices of input points.
144
        """
145
146
147
148
149
150
151
152
153
154
155
156
157

        # for imvotenet
        if 'seed_points' in feat_dict and \
           'seed_features' in feat_dict and \
           'seed_indices' in feat_dict:
            seed_points = feat_dict['seed_points']
            seed_features = feat_dict['seed_features']
            seed_indices = feat_dict['seed_indices']
        # for votenet
        else:
            seed_points = feat_dict['fp_xyz'][-1]
            seed_features = feat_dict['fp_features'][-1]
            seed_indices = feat_dict['fp_indices'][-1]
158
159

        return seed_points, seed_features, seed_indices
wuyuefeng's avatar
Votenet  
wuyuefeng committed
160

jshilong's avatar
jshilong committed
161
162
163
164
    def predict(self,
                points: List[torch.Tensor],
                feats_dict: Dict[str, torch.Tensor],
                batch_data_samples: List[Det3DDataSample],
jshilong's avatar
jshilong committed
165
                use_nms: bool = True,
jshilong's avatar
jshilong committed
166
167
168
169
170
171
172
                **kwargs) -> List[InstanceData]:
        """
        Args:
            points (list[tensor]): Point clouds of multiple samples.
            feats_dict (dict): Features from FPN or backbone..
            batch_data_samples (List[:obj:`Det3DDataSample`]): The Data
                Samples. It usually includes meta information of data.
jshilong's avatar
jshilong committed
173
174
            use_nms (bool): Whether do the nms for predictions.
                Defaults to True.
jshilong's avatar
jshilong committed
175
176
177
178
179
180
181

        Returns:
            list[:obj:`InstanceData`]: List of processed predictions. Each
            InstanceData contains 3d Bounding boxes and corresponding
            scores and labels.
        """
        preds_dict = self(feats_dict)
jshilong's avatar
jshilong committed
182
183
184
        # `preds_dict` can be used in H3DNET
        feats_dict.update(preds_dict)

jshilong's avatar
jshilong committed
185
186
187
188
189
190
191
        batch_size = len(batch_data_samples)
        batch_input_metas = []
        for batch_index in range(batch_size):
            metainfo = batch_data_samples[batch_index].metainfo
            batch_input_metas.append(metainfo)

        results_list = self.predict_by_feat(
jshilong's avatar
jshilong committed
192
            points, preds_dict, batch_input_metas, use_nms=use_nms, **kwargs)
jshilong's avatar
jshilong committed
193
194
        return results_list

jshilong's avatar
jshilong committed
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
    def loss_and_predict(self,
                         points: List[torch.Tensor],
                         feats_dict: Dict[str, torch.Tensor],
                         batch_data_samples: List[Det3DDataSample],
                         ret_target: bool = False,
                         proposal_cfg: dict = None,
                         **kwargs) -> Tuple:
        """
        Args:
            points (list[tensor]): Points cloud of multiple samples.
            feats_dict (dict): Predictions from backbone or FPN.
            batch_data_samples (list[:obj:`Det3DDataSample`]): Each item
                contains the meta information of each sample and
                corresponding annotations.
            ret_target (bool): Whether return the assigned target.
                Defaults to False.
            proposal_cfg (dict): Configure for proposal process.
                Defaults to True.

        Returns:
            tuple:  Contains loss and predictions after post-process.
        """
        preds_dict = self.forward(feats_dict)
        feats_dict.update(preds_dict)
        batch_gt_instance_3d = []
        batch_gt_instances_ignore = []
        batch_input_metas = []
        batch_pts_semantic_mask = []
        batch_pts_instance_mask = []
        for data_sample in batch_data_samples:
            batch_input_metas.append(data_sample.metainfo)
            batch_gt_instance_3d.append(data_sample.gt_instances_3d)
            batch_gt_instances_ignore.append(
                data_sample.get('ignored_instances', None))
            batch_pts_semantic_mask.append(
                data_sample.gt_pts_seg.get('pts_semantic_mask', None))
            batch_pts_instance_mask.append(
                data_sample.gt_pts_seg.get('pts_instance_mask', None))

        loss_inputs = (points, preds_dict, batch_gt_instance_3d)
        losses = self.loss_by_feat(
            *loss_inputs,
            batch_pts_semantic_mask=batch_pts_semantic_mask,
            batch_pts_instance_mask=batch_pts_instance_mask,
            batch_input_metas=batch_input_metas,
            batch_gt_instances_ignore=batch_gt_instances_ignore,
            ret_target=ret_target,
            **kwargs)

        results_list = self.predict_by_feat(
            points,
            preds_dict,
            batch_input_metas,
            use_nms=proposal_cfg.use_nms,
            **kwargs)

        return losses, results_list

    def loss(self,
             points: List[torch.Tensor],
             feats_dict: Dict[str, torch.Tensor],
             batch_data_samples: List[Det3DDataSample],
             ret_target: bool = False,
             **kwargs) -> dict:
jshilong's avatar
jshilong committed
259
260
261
262
263
264
265
        """
        Args:
            points (list[tensor]): Points cloud of multiple samples.
            feats_dict (dict): Predictions from backbone or FPN.
            batch_data_samples (list[:obj:`Det3DDataSample`]): Each item
                contains the meta information of each sample and
                corresponding annotations.
jshilong's avatar
jshilong committed
266
267
            ret_target (bool): Whether return the assigned target.
                Defaults to False.
jshilong's avatar
jshilong committed
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283

        Returns:
            dict:  A dictionary of loss components.
        """
        preds_dict = self.forward(feats_dict)
        batch_gt_instance_3d = []
        batch_gt_instances_ignore = []
        batch_input_metas = []
        batch_pts_semantic_mask = []
        batch_pts_instance_mask = []
        for data_sample in batch_data_samples:
            batch_input_metas.append(data_sample.metainfo)
            batch_gt_instance_3d.append(data_sample.gt_instances_3d)
            batch_gt_instances_ignore.append(
                data_sample.get('ignored_instances', None))
            batch_pts_semantic_mask.append(
jshilong's avatar
jshilong committed
284
                data_sample.gt_pts_seg.get('pts_semantic_mask', None))
jshilong's avatar
jshilong committed
285
            batch_pts_instance_mask.append(
jshilong's avatar
jshilong committed
286
                data_sample.gt_pts_seg.get('pts_instance_mask', None))
jshilong's avatar
jshilong committed
287
288
289
290
291
292
293

        loss_inputs = (points, preds_dict, batch_gt_instance_3d)
        losses = self.loss_by_feat(
            *loss_inputs,
            batch_pts_semantic_mask=batch_pts_semantic_mask,
            batch_pts_instance_mask=batch_pts_instance_mask,
            batch_input_metas=batch_input_metas,
jshilong's avatar
jshilong committed
294
295
296
            batch_gt_instances_ignore=batch_gt_instances_ignore,
            ret_target=ret_target,
            **kwargs)
jshilong's avatar
jshilong committed
297
298
299
        return losses

    def forward(self, feat_dict: dict) -> dict:
wuyuefeng's avatar
Votenet  
wuyuefeng committed
300
301
        """Forward pass.

zhangwenwei's avatar
zhangwenwei committed
302
        Note:
303
            The forward of VoteHead is divided into 4 steps:
zhangwenwei's avatar
zhangwenwei committed
304
305
306
307
308

                1. Generate vote_points from seed_points.
                2. Aggregate vote_points.
                3. Predict bbox and score.
                4. Decode predictions.
wuyuefeng's avatar
Votenet  
wuyuefeng committed
309
310

        Args:
wangtai's avatar
wangtai committed
311
            feat_dict (dict): Feature dict from backbone.
wuyuefeng's avatar
wuyuefeng committed
312
313
314

        Returns:
            dict: Predictions of vote head.
wuyuefeng's avatar
Votenet  
wuyuefeng committed
315
316
        """

317
318
        seed_points, seed_features, seed_indices = self._extract_input(
            feat_dict)
wuyuefeng's avatar
Votenet  
wuyuefeng committed
319
320

        # 1. generate vote_points from seed_points
321
322
        vote_points, vote_features, vote_offset = self.vote_module(
            seed_points, seed_features)
wuyuefeng's avatar
Votenet  
wuyuefeng committed
323
324
325
326
        results = dict(
            seed_points=seed_points,
            seed_indices=seed_indices,
            vote_points=vote_points,
327
328
            vote_features=vote_features,
            vote_offset=vote_offset)
wuyuefeng's avatar
Votenet  
wuyuefeng committed
329
330

        # 2. aggregate vote_points
jshilong's avatar
jshilong committed
331
        if self.sample_mode == 'vote':
wuyuefeng's avatar
Votenet  
wuyuefeng committed
332
            # use fps in vote_aggregation
333
334
            aggregation_inputs = dict(
                points_xyz=vote_points, features=vote_features)
jshilong's avatar
jshilong committed
335
        elif self.sample_mode == 'seed':
wuyuefeng's avatar
Votenet  
wuyuefeng committed
336
337
338
            # FPS on seed and choose the votes corresponding to the seeds
            sample_indices = furthest_point_sample(seed_points,
                                                   self.num_proposal)
339
340
341
342
            aggregation_inputs = dict(
                points_xyz=vote_points,
                features=vote_features,
                indices=sample_indices)
jshilong's avatar
jshilong committed
343
        elif self.sample_mode == 'random':
wuyuefeng's avatar
Votenet  
wuyuefeng committed
344
345
346
347
348
            # Random sampling from the votes
            batch_size, num_seed = seed_points.shape[:2]
            sample_indices = seed_points.new_tensor(
                torch.randint(0, num_seed, (batch_size, self.num_proposal)),
                dtype=torch.int32)
349
350
351
352
            aggregation_inputs = dict(
                points_xyz=vote_points,
                features=vote_features,
                indices=sample_indices)
jshilong's avatar
jshilong committed
353
        elif self.sample_mode == 'spec':
354
355
356
357
358
            # Specify the new center in vote_aggregation
            aggregation_inputs = dict(
                points_xyz=seed_points,
                features=seed_features,
                target_xyz=vote_points)
wuyuefeng's avatar
Votenet  
wuyuefeng committed
359
        else:
Wenwei Zhang's avatar
Wenwei Zhang committed
360
            raise NotImplementedError(
jshilong's avatar
jshilong committed
361
                f'Sample mode {self.sample_mode} is not supported!')
wuyuefeng's avatar
Votenet  
wuyuefeng committed
362

363
        vote_aggregation_ret = self.vote_aggregation(**aggregation_inputs)
wuyuefeng's avatar
Votenet  
wuyuefeng committed
364
        aggregated_points, features, aggregated_indices = vote_aggregation_ret
365

wuyuefeng's avatar
Votenet  
wuyuefeng committed
366
        results['aggregated_points'] = aggregated_points
encore-zhou's avatar
encore-zhou committed
367
        results['aggregated_features'] = features
wuyuefeng's avatar
Votenet  
wuyuefeng committed
368
369
370
        results['aggregated_indices'] = aggregated_indices

        # 3. predict bbox and score
371
        cls_predictions, reg_predictions = self.conv_pred(features)
wuyuefeng's avatar
Votenet  
wuyuefeng committed
372
373

        # 4. decode predictions
374
375
376
        decode_res = self.bbox_coder.split_pred(cls_predictions,
                                                reg_predictions,
                                                aggregated_points)
wuyuefeng's avatar
Votenet  
wuyuefeng committed
377
378
379
        results.update(decode_res)
        return results

jshilong's avatar
jshilong committed
380
381
382
383
384
385
386
387
388
    def loss_by_feat(
            self,
            points: List[torch.Tensor],
            bbox_preds_dict: dict,
            batch_gt_instances_3d: List[InstanceData],
            batch_pts_semantic_mask: Optional[List[torch.Tensor]] = None,
            batch_pts_instance_mask: Optional[List[torch.Tensor]] = None,
            ret_target: bool = False,
            **kwargs) -> dict:
wuyuefeng's avatar
wuyuefeng committed
389
390
391
        """Compute loss.

        Args:
liyinhao's avatar
liyinhao committed
392
            points (list[torch.Tensor]): Input points.
jshilong's avatar
jshilong committed
393
394
395
396
397
398
399
400
401
            bbox_preds_dict (dict): Predictions from forward of vote head.
            batch_gt_instances_3d (list[:obj:`InstanceData`]): Batch of
                gt_instances. It usually includes ``bboxes`` and ``labels``
                attributes.
            batch_pts_semantic_mask (list[tensor]): Semantic mask
                of points cloud. Defaults to None.
            batch_pts_semantic_mask (list[tensor]): Instance mask
                of points cloud. Defaults to None.
            batch_input_metas (list[dict]): Contain pcd and img's meta info.
jshilong's avatar
jshilong committed
402
            ret_target (bool): Return targets or not. Defaults to False.
wuyuefeng's avatar
wuyuefeng committed
403
404
405
406

        Returns:
            dict: Losses of Votenet.
        """
jshilong's avatar
jshilong committed
407
408
409
410
411

        targets = self.get_targets(points, bbox_preds_dict,
                                   batch_gt_instances_3d,
                                   batch_pts_semantic_mask,
                                   batch_pts_instance_mask)
wuyuefeng's avatar
Votenet  
wuyuefeng committed
412
        (vote_targets, vote_target_masks, size_class_targets, size_res_targets,
413
414
415
416
         dir_class_targets, dir_res_targets, center_targets,
         assigned_center_targets, mask_targets, valid_gt_masks,
         objectness_targets, objectness_weights, box_loss_weights,
         valid_gt_weights) = targets
wuyuefeng's avatar
Votenet  
wuyuefeng committed
417
418

        # calculate vote loss
jshilong's avatar
jshilong committed
419
420
421
        vote_loss = self.vote_module.get_loss(bbox_preds_dict['seed_points'],
                                              bbox_preds_dict['vote_points'],
                                              bbox_preds_dict['seed_indices'],
wuyuefeng's avatar
Votenet  
wuyuefeng committed
422
423
424
                                              vote_target_masks, vote_targets)

        # calculate objectness loss
jshilong's avatar
jshilong committed
425
426
        objectness_loss = self.loss_objectness(
            bbox_preds_dict['obj_scores'].transpose(2, 1),
wuyuefeng's avatar
Votenet  
wuyuefeng committed
427
428
429
430
            objectness_targets,
            weight=objectness_weights)

        # calculate center loss
jshilong's avatar
jshilong committed
431
432
        source2target_loss, target2source_loss = self.loss_center(
            bbox_preds_dict['center'],
wuyuefeng's avatar
Votenet  
wuyuefeng committed
433
434
435
436
437
438
            center_targets,
            src_weight=box_loss_weights,
            dst_weight=valid_gt_weights)
        center_loss = source2target_loss + target2source_loss

        # calculate direction class loss
jshilong's avatar
jshilong committed
439
440
        dir_class_loss = self.loss_dir_class(
            bbox_preds_dict['dir_class'].transpose(2, 1),
wuyuefeng's avatar
Votenet  
wuyuefeng committed
441
442
443
444
445
446
447
448
449
            dir_class_targets,
            weight=box_loss_weights)

        # calculate direction residual loss
        batch_size, proposal_num = size_class_targets.shape[:2]
        heading_label_one_hot = vote_targets.new_zeros(
            (batch_size, proposal_num, self.num_dir_bins))
        heading_label_one_hot.scatter_(2, dir_class_targets.unsqueeze(-1), 1)
        dir_res_norm = torch.sum(
jshilong's avatar
jshilong committed
450
451
            bbox_preds_dict['dir_res_norm'] * heading_label_one_hot, -1)
        dir_res_loss = self.loss_dir_res(
wuyuefeng's avatar
Votenet  
wuyuefeng committed
452
453
454
455
            dir_res_norm, dir_res_targets, weight=box_loss_weights)

        # calculate size class loss
        size_class_loss = self.size_class_loss(
jshilong's avatar
jshilong committed
456
            bbox_preds_dict['size_class'].transpose(2, 1),
wuyuefeng's avatar
Votenet  
wuyuefeng committed
457
458
459
460
461
462
463
464
            size_class_targets,
            weight=box_loss_weights)

        # calculate size residual loss
        one_hot_size_targets = vote_targets.new_zeros(
            (batch_size, proposal_num, self.num_sizes))
        one_hot_size_targets.scatter_(2, size_class_targets.unsqueeze(-1), 1)
        one_hot_size_targets_expand = one_hot_size_targets.unsqueeze(
Wenwei Zhang's avatar
Wenwei Zhang committed
465
            -1).repeat(1, 1, 1, 3).contiguous()
wuyuefeng's avatar
Votenet  
wuyuefeng committed
466
        size_residual_norm = torch.sum(
jshilong's avatar
jshilong committed
467
            bbox_preds_dict['size_res_norm'] * one_hot_size_targets_expand, 2)
wuyuefeng's avatar
Votenet  
wuyuefeng committed
468
469
        box_loss_weights_expand = box_loss_weights.unsqueeze(-1).repeat(
            1, 1, 3)
jshilong's avatar
jshilong committed
470
        size_res_loss = self.loss_size_res(
wuyuefeng's avatar
Votenet  
wuyuefeng committed
471
472
473
474
475
476
            size_residual_norm,
            size_res_targets,
            weight=box_loss_weights_expand)

        # calculate semantic loss
        semantic_loss = self.semantic_loss(
jshilong's avatar
jshilong committed
477
            bbox_preds_dict['sem_scores'].transpose(2, 1),
wuyuefeng's avatar
Votenet  
wuyuefeng committed
478
479
480
481
482
483
484
485
486
487
488
489
            mask_targets,
            weight=box_loss_weights)

        losses = dict(
            vote_loss=vote_loss,
            objectness_loss=objectness_loss,
            semantic_loss=semantic_loss,
            center_loss=center_loss,
            dir_class_loss=dir_class_loss,
            dir_res_loss=dir_res_loss,
            size_class_loss=size_class_loss,
            size_res_loss=size_res_loss)
encore-zhou's avatar
encore-zhou committed
490

491
492
        if self.iou_loss:
            corners_pred = self.bbox_coder.decode_corners(
jshilong's avatar
jshilong committed
493
                bbox_preds_dict['center'], size_residual_norm,
494
495
496
497
498
499
500
501
                one_hot_size_targets_expand)
            corners_target = self.bbox_coder.decode_corners(
                assigned_center_targets, size_res_targets,
                one_hot_size_targets_expand)
            iou_loss = self.iou_loss(
                corners_pred, corners_target, weight=box_loss_weights)
            losses['iou_loss'] = iou_loss

encore-zhou's avatar
encore-zhou committed
502
503
504
        if ret_target:
            losses['targets'] = targets

wuyuefeng's avatar
Votenet  
wuyuefeng committed
505
506
        return losses

jshilong's avatar
jshilong committed
507
508
509
510
511
512
513
514
    def get_targets(
        self,
        points,
        bbox_preds: dict = None,
        batch_gt_instances_3d: List[InstanceData] = None,
        batch_pts_semantic_mask: List[torch.Tensor] = None,
        batch_pts_instance_mask: List[torch.Tensor] = None,
    ):
wuyuefeng's avatar
wuyuefeng committed
515
        """Generate targets of vote head.
wuyuefeng's avatar
Votenet  
wuyuefeng committed
516
517

        Args:
liyinhao's avatar
liyinhao committed
518
            points (list[torch.Tensor]): Points of each batch.
wangtai's avatar
wangtai committed
519
            bbox_preds (torch.Tensor): Bounding box predictions of vote head.
jshilong's avatar
jshilong committed
520
521
522
523
            batch_gt_instances_3d (list[:obj:`InstanceData`]): Batch of
                gt_instances. It usually includes ``bboxes`` and ``labels``
                attributes.
            batch_pts_semantic_mask (list[tensor]): Semantic gt mask for
jshilong's avatar
jshilong committed
524
                point clouds. Defaults to None.
jshilong's avatar
jshilong committed
525
            batch_pts_instance_mask (list[tensor]): Instance gt mask for
jshilong's avatar
jshilong committed
526
                point clouds. Defaults to None.
wuyuefeng's avatar
Votenet  
wuyuefeng committed
527
528

        Returns:
529
            tuple[torch.Tensor]: Targets of vote head.
wuyuefeng's avatar
Votenet  
wuyuefeng committed
530
531
532
533
        """
        # find empty example
        valid_gt_masks = list()
        gt_num = list()
jshilong's avatar
jshilong committed
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
        batch_gt_labels_3d = [
            gt_instances_3d.labels_3d
            for gt_instances_3d in batch_gt_instances_3d
        ]
        batch_gt_bboxes_3d = [
            gt_instances_3d.bboxes_3d
            for gt_instances_3d in batch_gt_instances_3d
        ]
        for index in range(len(batch_gt_labels_3d)):
            if len(batch_gt_labels_3d[index]) == 0:
                fake_box = batch_gt_bboxes_3d[index].tensor.new_zeros(
                    1, batch_gt_bboxes_3d[index].tensor.shape[-1])
                batch_gt_bboxes_3d[index] = batch_gt_bboxes_3d[index].new_box(
                    fake_box)
                batch_gt_labels_3d[index] = batch_gt_labels_3d[
                    index].new_zeros(1)
                valid_gt_masks.append(batch_gt_labels_3d[index].new_zeros(1))
wuyuefeng's avatar
Votenet  
wuyuefeng committed
551
552
                gt_num.append(1)
            else:
jshilong's avatar
jshilong committed
553
554
555
                valid_gt_masks.append(batch_gt_labels_3d[index].new_ones(
                    batch_gt_labels_3d[index].shape))
                gt_num.append(batch_gt_labels_3d[index].shape[0])
wuyuefeng's avatar
Votenet  
wuyuefeng committed
556
557
558
559
        max_gt_num = max(gt_num)

        aggregated_points = [
            bbox_preds['aggregated_points'][i]
jshilong's avatar
jshilong committed
560
            for i in range(len(batch_gt_labels_3d))
wuyuefeng's avatar
Votenet  
wuyuefeng committed
561
562
563
        ]

        (vote_targets, vote_target_masks, size_class_targets, size_res_targets,
564
         dir_class_targets, dir_res_targets, center_targets,
jshilong's avatar
jshilong committed
565
566
567
568
569
         assigned_center_targets, mask_targets,
         objectness_targets, objectness_masks) = multi_apply(
             self._get_targets_single, points, batch_gt_bboxes_3d,
             batch_gt_labels_3d, batch_pts_semantic_mask,
             batch_pts_instance_mask, aggregated_points)
wuyuefeng's avatar
Votenet  
wuyuefeng committed
570
571

        # pad targets as original code of votenet.
jshilong's avatar
jshilong committed
572
573
        for index in range(len(batch_gt_labels_3d)):
            pad_num = max_gt_num - batch_gt_labels_3d[index].shape[0]
wuyuefeng's avatar
Votenet  
wuyuefeng committed
574
575
576
577
578
579
580
581
582
            center_targets[index] = F.pad(center_targets[index],
                                          (0, 0, 0, pad_num))
            valid_gt_masks[index] = F.pad(valid_gt_masks[index], (0, pad_num))

        vote_targets = torch.stack(vote_targets)
        vote_target_masks = torch.stack(vote_target_masks)
        center_targets = torch.stack(center_targets)
        valid_gt_masks = torch.stack(valid_gt_masks)

583
        assigned_center_targets = torch.stack(assigned_center_targets)
wuyuefeng's avatar
Votenet  
wuyuefeng committed
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
        objectness_targets = torch.stack(objectness_targets)
        objectness_weights = torch.stack(objectness_masks)
        objectness_weights /= (torch.sum(objectness_weights) + 1e-6)
        box_loss_weights = objectness_targets.float() / (
            torch.sum(objectness_targets).float() + 1e-6)
        valid_gt_weights = valid_gt_masks.float() / (
            torch.sum(valid_gt_masks.float()) + 1e-6)
        dir_class_targets = torch.stack(dir_class_targets)
        dir_res_targets = torch.stack(dir_res_targets)
        size_class_targets = torch.stack(size_class_targets)
        size_res_targets = torch.stack(size_res_targets)
        mask_targets = torch.stack(mask_targets)

        return (vote_targets, vote_target_masks, size_class_targets,
                size_res_targets, dir_class_targets, dir_res_targets,
599
600
601
                center_targets, assigned_center_targets, mask_targets,
                valid_gt_masks, objectness_targets, objectness_weights,
                box_loss_weights, valid_gt_weights)
wuyuefeng's avatar
Votenet  
wuyuefeng committed
602

jshilong's avatar
jshilong committed
603
604
605
606
607
608
609
    def _get_targets_single(self,
                            points,
                            gt_bboxes_3d,
                            gt_labels_3d,
                            pts_semantic_mask=None,
                            pts_instance_mask=None,
                            aggregated_points=None):
wuyuefeng's avatar
wuyuefeng committed
610
611
612
        """Generate targets of vote head for single batch.

        Args:
liyinhao's avatar
liyinhao committed
613
            points (torch.Tensor): Points of each batch.
614
            gt_bboxes_3d (:obj:`BaseInstance3DBoxes`): Ground truth
wangtai's avatar
wangtai committed
615
616
                boxes of each batch.
            gt_labels_3d (torch.Tensor): Labels of each batch.
617
            pts_semantic_mask (torch.Tensor): Point-wise semantic
wuyuefeng's avatar
wuyuefeng committed
618
                label of each batch.
619
            pts_instance_mask (torch.Tensor): Point-wise instance
wuyuefeng's avatar
wuyuefeng committed
620
                label of each batch.
liyinhao's avatar
liyinhao committed
621
            aggregated_points (torch.Tensor): Aggregated points from
wuyuefeng's avatar
wuyuefeng committed
622
623
624
                vote aggregation layer.

        Returns:
625
            tuple[torch.Tensor]: Targets of vote head.
wuyuefeng's avatar
wuyuefeng committed
626
        """
wuyuefeng's avatar
Votenet  
wuyuefeng committed
627
628
        assert self.bbox_coder.with_rot or pts_semantic_mask is not None

wuyuefeng's avatar
wuyuefeng committed
629
630
        gt_bboxes_3d = gt_bboxes_3d.to(points.device)

wuyuefeng's avatar
Votenet  
wuyuefeng committed
631
632
633
634
635
636
637
        # generate votes target
        num_points = points.shape[0]
        if self.bbox_coder.with_rot:
            vote_targets = points.new_zeros([num_points, 3 * self.gt_per_seed])
            vote_target_masks = points.new_zeros([num_points],
                                                 dtype=torch.long)
            vote_target_idx = points.new_zeros([num_points], dtype=torch.long)
638
            box_indices_all = gt_bboxes_3d.points_in_boxes_all(points)
wuyuefeng's avatar
wuyuefeng committed
639
            for i in range(gt_labels_3d.shape[0]):
wuyuefeng's avatar
Votenet  
wuyuefeng committed
640
                box_indices = box_indices_all[:, i]
641
642
                indices = torch.nonzero(
                    box_indices, as_tuple=False).squeeze(-1)
wuyuefeng's avatar
Votenet  
wuyuefeng committed
643
644
645
                selected_points = points[indices]
                vote_target_masks[indices] = 1
                vote_targets_tmp = vote_targets[indices]
wuyuefeng's avatar
wuyuefeng committed
646
                votes = gt_bboxes_3d.gravity_center[i].unsqueeze(
wuyuefeng's avatar
Votenet  
wuyuefeng committed
647
648
649
650
                    0) - selected_points[:, :3]

                for j in range(self.gt_per_seed):
                    column_indices = torch.nonzero(
651
652
                        vote_target_idx[indices] == j,
                        as_tuple=False).squeeze(-1)
wuyuefeng's avatar
Votenet  
wuyuefeng committed
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
                    vote_targets_tmp[column_indices,
                                     int(j * 3):int(j * 3 +
                                                    3)] = votes[column_indices]
                    if j == 0:
                        vote_targets_tmp[column_indices] = votes[
                            column_indices].repeat(1, self.gt_per_seed)

                vote_targets[indices] = vote_targets_tmp
                vote_target_idx[indices] = torch.clamp(
                    vote_target_idx[indices] + 1, max=2)
        elif pts_semantic_mask is not None:
            vote_targets = points.new_zeros([num_points, 3])
            vote_target_masks = points.new_zeros([num_points],
                                                 dtype=torch.long)
            for i in torch.unique(pts_instance_mask):
668
669
                indices = torch.nonzero(
                    pts_instance_mask == i, as_tuple=False).squeeze(-1)
wuyuefeng's avatar
Votenet  
wuyuefeng committed
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
                if pts_semantic_mask[indices[0]] < self.num_classes:
                    selected_points = points[indices, :3]
                    center = 0.5 * (
                        selected_points.min(0)[0] + selected_points.max(0)[0])
                    vote_targets[indices, :] = center - selected_points
                    vote_target_masks[indices] = 1
            vote_targets = vote_targets.repeat((1, self.gt_per_seed))
        else:
            raise NotImplementedError

        (center_targets, size_class_targets, size_res_targets,
         dir_class_targets,
         dir_res_targets) = self.bbox_coder.encode(gt_bboxes_3d, gt_labels_3d)

        proposal_num = aggregated_points.shape[0]
        distance1, _, assignment, _ = chamfer_distance(
            aggregated_points.unsqueeze(0),
            center_targets.unsqueeze(0),
            reduction='none')
        assignment = assignment.squeeze(0)
        euclidean_distance1 = torch.sqrt(distance1.squeeze(0) + 1e-6)

        objectness_targets = points.new_zeros((proposal_num), dtype=torch.long)
        objectness_targets[
            euclidean_distance1 < self.train_cfg['pos_distance_thr']] = 1

        objectness_masks = points.new_zeros((proposal_num))
        objectness_masks[
            euclidean_distance1 < self.train_cfg['pos_distance_thr']] = 1.0
        objectness_masks[
            euclidean_distance1 > self.train_cfg['neg_distance_thr']] = 1.0

        dir_class_targets = dir_class_targets[assignment]
        dir_res_targets = dir_res_targets[assignment]
        dir_res_targets /= (np.pi / self.num_dir_bins)
        size_class_targets = size_class_targets[assignment]
        size_res_targets = size_res_targets[assignment]

wuyuefeng's avatar
wuyuefeng committed
708
        one_hot_size_targets = gt_bboxes_3d.tensor.new_zeros(
wuyuefeng's avatar
Votenet  
wuyuefeng committed
709
710
711
712
713
714
715
716
717
718
            (proposal_num, self.num_sizes))
        one_hot_size_targets.scatter_(1, size_class_targets.unsqueeze(-1), 1)
        one_hot_size_targets = one_hot_size_targets.unsqueeze(-1).repeat(
            1, 1, 3)
        mean_sizes = size_res_targets.new_tensor(
            self.bbox_coder.mean_sizes).unsqueeze(0)
        pos_mean_sizes = torch.sum(one_hot_size_targets * mean_sizes, 1)
        size_res_targets /= pos_mean_sizes

        mask_targets = gt_labels_3d[assignment]
719
        assigned_center_targets = center_targets[assignment]
wuyuefeng's avatar
Votenet  
wuyuefeng committed
720
721

        return (vote_targets, vote_target_masks, size_class_targets,
722
723
                size_res_targets, dir_class_targets,
                dir_res_targets, center_targets, assigned_center_targets,
wuyuefeng's avatar
Votenet  
wuyuefeng committed
724
725
                mask_targets.long(), objectness_targets, objectness_masks)

jshilong's avatar
jshilong committed
726
727
728
729
730
731
    def predict_by_feat(self,
                        points: List[torch.Tensor],
                        bbox_preds_dict: dict,
                        batch_input_metas: List[dict],
                        use_nms: bool = True,
                        **kwargs) -> List[InstanceData]:
wuyuefeng's avatar
wuyuefeng committed
732
733
734
        """Generate bboxes from vote head predictions.

        Args:
jshilong's avatar
jshilong committed
735
736
737
738
            points (List[torch.Tensor]): Input points of multiple samples.
            bbox_preds_dict (dict): Predictions from vote head.
            batch_input_metas (list[dict]): Each item
                contains the meta information of each sample.
encore-zhou's avatar
encore-zhou committed
739
740
            use_nms (bool): Whether to apply NMS, skip nms postprocessing
                while using vote head in rpn stage.
wuyuefeng's avatar
wuyuefeng committed
741
742

        Returns:
jshilong's avatar
jshilong committed
743
744
745
746
            list[:obj:`InstanceData`] or Tensor: Return list of processed
            predictions when `use_nms` is True. Each InstanceData cantains
            3d Bounding boxes and corresponding scores and labels.
            Return raw bboxes when `use_nms` is False.
wuyuefeng's avatar
wuyuefeng committed
747
        """
wuyuefeng's avatar
Votenet  
wuyuefeng committed
748
        # decode boxes
jshilong's avatar
jshilong committed
749
750
751
752
753
754
755
        stack_points = torch.stack(points)
        obj_scores = F.softmax(bbox_preds_dict['obj_scores'], dim=-1)[..., -1]
        sem_scores = F.softmax(bbox_preds_dict['sem_scores'], dim=-1)
        bbox3d = self.bbox_coder.decode(bbox_preds_dict)

        batch_size = bbox3d.shape[0]
        results_list = list()
jshilong's avatar
jshilong committed
756
        if use_nms:
zhangshilong's avatar
zhangshilong committed
757
            for batch_index in range(batch_size):
jshilong's avatar
jshilong committed
758
                temp_results = InstanceData()
encore-zhou's avatar
encore-zhou committed
759
                bbox_selected, score_selected, labels = \
zhangshilong's avatar
zhangshilong committed
760
761
762
763
764
765
766
                    self.multiclass_nms_single(
                        obj_scores[batch_index],
                        sem_scores[batch_index],
                        bbox3d[batch_index],
                        stack_points[batch_index, ..., :3],
                        batch_input_metas[batch_index])
                bbox = batch_input_metas[batch_index]['box_type_3d'](
jshilong's avatar
jshilong committed
767
768
769
770
771
772
773
                    bbox_selected,
                    box_dim=bbox_selected.shape[-1],
                    with_yaw=self.bbox_coder.with_rot)
                temp_results.bboxes_3d = bbox
                temp_results.scores_3d = score_selected
                temp_results.labels_3d = labels
                results_list.append(temp_results)
encore-zhou's avatar
encore-zhou committed
774

jshilong's avatar
jshilong committed
775
776
777
778
            return results_list
        else:
            # TODO unify it when refactor the Augtest
            return bbox3d
wuyuefeng's avatar
Votenet  
wuyuefeng committed
779

jshilong's avatar
jshilong committed
780
781
782
    def multiclass_nms_single(self, obj_scores: Tensor, sem_scores: Tensor,
                              bbox: Tensor, points: Tensor,
                              input_meta: dict) -> Tuple:
wangtai's avatar
wangtai committed
783
        """Multi-class nms in single batch.
wuyuefeng's avatar
wuyuefeng committed
784
785

        Args:
wangtai's avatar
wangtai committed
786
787
788
            obj_scores (torch.Tensor): Objectness score of bounding boxes.
            sem_scores (torch.Tensor): semantic class score of bounding boxes.
            bbox (torch.Tensor): Predicted bounding boxes.
liyinhao's avatar
liyinhao committed
789
            points (torch.Tensor): Input points.
wangtai's avatar
wangtai committed
790
            input_meta (dict): Point cloud and image's meta info.
wuyuefeng's avatar
wuyuefeng committed
791
792

        Returns:
wangtai's avatar
wangtai committed
793
            tuple[torch.Tensor]: Bounding boxes, scores and labels.
wuyuefeng's avatar
wuyuefeng committed
794
        """
wuyuefeng's avatar
wuyuefeng committed
795
796
797
798
799
        bbox = input_meta['box_type_3d'](
            bbox,
            box_dim=bbox.shape[-1],
            with_yaw=self.bbox_coder.with_rot,
            origin=(0.5, 0.5, 0.5))
800
        box_indices = bbox.points_in_boxes_all(points)
wuyuefeng's avatar
Votenet  
wuyuefeng committed
801

wuyuefeng's avatar
wuyuefeng committed
802
        corner3d = bbox.corners
wuyuefeng's avatar
Votenet  
wuyuefeng committed
803
804
805
806
        minmax_box3d = corner3d.new(torch.Size((corner3d.shape[0], 6)))
        minmax_box3d[:, :3] = torch.min(corner3d, dim=1)[0]
        minmax_box3d[:, 3:] = torch.max(corner3d, dim=1)[0]

wuyuefeng's avatar
wuyuefeng committed
807
808
809
        nonempty_box_mask = box_indices.T.sum(1) > 5

        bbox_classes = torch.argmax(sem_scores, -1)
wuyuefeng's avatar
Votenet  
wuyuefeng committed
810
811
812
813
814
815
816
        nms_selected = aligned_3d_nms(minmax_box3d[nonempty_box_mask],
                                      obj_scores[nonempty_box_mask],
                                      bbox_classes[nonempty_box_mask],
                                      self.test_cfg.nms_thr)

        # filter empty boxes and boxes with low score
        scores_mask = (obj_scores > self.test_cfg.score_thr)
817
818
        nonempty_box_inds = torch.nonzero(
            nonempty_box_mask, as_tuple=False).flatten()
wuyuefeng's avatar
Votenet  
wuyuefeng committed
819
820
821
822
823
824
825
        nonempty_mask = torch.zeros_like(bbox_classes).scatter(
            0, nonempty_box_inds[nms_selected], 1)
        selected = (nonempty_mask.bool() & scores_mask.bool())

        if self.test_cfg.per_class_proposal:
            bbox_selected, score_selected, labels = [], [], []
            for k in range(sem_scores.shape[-1]):
wuyuefeng's avatar
wuyuefeng committed
826
                bbox_selected.append(bbox[selected].tensor)
wuyuefeng's avatar
Votenet  
wuyuefeng committed
827
828
829
830
831
832
833
834
                score_selected.append(obj_scores[selected] *
                                      sem_scores[selected][:, k])
                labels.append(
                    torch.zeros_like(bbox_classes[selected]).fill_(k))
            bbox_selected = torch.cat(bbox_selected, 0)
            score_selected = torch.cat(score_selected, 0)
            labels = torch.cat(labels, 0)
        else:
wuyuefeng's avatar
wuyuefeng committed
835
            bbox_selected = bbox[selected].tensor
wuyuefeng's avatar
Votenet  
wuyuefeng committed
836
837
838
839
            score_selected = obj_scores[selected]
            labels = bbox_classes[selected]

        return bbox_selected, score_selected, labels