vote_head.py 26.3 KB
Newer Older
wuyuefeng's avatar
Votenet  
wuyuefeng committed
1
2
import numpy as np
import torch
3
from mmcv.runner import force_fp32
zhangwenwei's avatar
zhangwenwei committed
4
5
from torch import nn as nn
from torch.nn import functional as F
wuyuefeng's avatar
Votenet  
wuyuefeng committed
6
7
8
9
10

from mmdet3d.core.post_processing import aligned_3d_nms
from mmdet3d.models.builder import build_loss
from mmdet3d.models.losses import chamfer_distance
from mmdet3d.models.model_utils import VoteModule
11
from mmdet3d.ops import build_sa_module, furthest_point_sample
zhangwenwei's avatar
zhangwenwei committed
12
from mmdet.core import build_bbox_coder, multi_apply
wuyuefeng's avatar
Votenet  
wuyuefeng committed
13
from mmdet.models import HEADS
14
from .base_conv_bbox_head import BaseConvBboxHead
wuyuefeng's avatar
Votenet  
wuyuefeng committed
15
16
17
18


@HEADS.register_module()
class VoteHead(nn.Module):
zhangwenwei's avatar
zhangwenwei committed
19
    r"""Bbox head of `Votenet <https://arxiv.org/abs/1904.09664>`_.
wuyuefeng's avatar
Votenet  
wuyuefeng committed
20
21
22

    Args:
        num_classes (int): The number of class.
23
        bbox_coder (:obj:`BaseBBoxCoder`): Bbox coder for encoding and
wuyuefeng's avatar
Votenet  
wuyuefeng committed
24
25
26
            decoding boxes.
        train_cfg (dict): Config for training.
        test_cfg (dict): Config for testing.
27
        vote_module_cfg (dict): Config of VoteModule for point-wise votes.
wuyuefeng's avatar
Votenet  
wuyuefeng committed
28
        vote_aggregation_cfg (dict): Config of vote aggregation layer.
29
30
        pred_layer_cfg (dict): Config of classfication and regression
            prediction layers.
wuyuefeng's avatar
Votenet  
wuyuefeng committed
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
        conv_cfg (dict): Config of convolution in prediction layer.
        norm_cfg (dict): Config of BN in prediction layer.
        objectness_loss (dict): Config of objectness loss.
        center_loss (dict): Config of center loss.
        dir_class_loss (dict): Config of direction classification loss.
        dir_res_loss (dict): Config of direction residual regression loss.
        size_class_loss (dict): Config of size classification loss.
        size_res_loss (dict): Config of size residual regression loss.
        semantic_loss (dict): Config of point-wise semantic segmentation loss.
    """

    def __init__(self,
                 num_classes,
                 bbox_coder,
                 train_cfg=None,
                 test_cfg=None,
47
                 vote_module_cfg=None,
wuyuefeng's avatar
Votenet  
wuyuefeng committed
48
                 vote_aggregation_cfg=None,
49
                 pred_layer_cfg=None,
wuyuefeng's avatar
Votenet  
wuyuefeng committed
50
51
52
53
54
55
56
57
58
59
60
61
62
                 conv_cfg=dict(type='Conv1d'),
                 norm_cfg=dict(type='BN1d'),
                 objectness_loss=None,
                 center_loss=None,
                 dir_class_loss=None,
                 dir_res_loss=None,
                 size_class_loss=None,
                 size_res_loss=None,
                 semantic_loss=None):
        super(VoteHead, self).__init__()
        self.num_classes = num_classes
        self.train_cfg = train_cfg
        self.test_cfg = test_cfg
63
        self.gt_per_seed = vote_module_cfg['gt_per_seed']
wuyuefeng's avatar
Votenet  
wuyuefeng committed
64
65
66
67
68
        self.num_proposal = vote_aggregation_cfg['num_point']

        self.objectness_loss = build_loss(objectness_loss)
        self.center_loss = build_loss(center_loss)
        self.dir_res_loss = build_loss(dir_res_loss)
69
        self.dir_class_loss = build_loss(dir_class_loss)
wuyuefeng's avatar
Votenet  
wuyuefeng committed
70
        self.size_res_loss = build_loss(size_res_loss)
71
72
73
74
        if size_class_loss is not None:
            self.size_class_loss = build_loss(size_class_loss)
        if semantic_loss is not None:
            self.semantic_loss = build_loss(semantic_loss)
wuyuefeng's avatar
Votenet  
wuyuefeng committed
75
76
77
78
79

        self.bbox_coder = build_bbox_coder(bbox_coder)
        self.num_sizes = self.bbox_coder.num_sizes
        self.num_dir_bins = self.bbox_coder.num_dir_bins

80
        self.vote_module = VoteModule(**vote_module_cfg)
81
        self.vote_aggregation = build_sa_module(vote_aggregation_cfg)
82
        self.fp16_enabled = False
wuyuefeng's avatar
Votenet  
wuyuefeng committed
83

84
85
86
87
88
89
90
91
92
        # Bbox classification and regression
        self.conv_pred = BaseConvBboxHead(
            **pred_layer_cfg,
            num_cls_out_channels=self._get_cls_out_channels(),
            num_reg_out_channels=self._get_reg_out_channels())

    def init_weights(self):
        """Initialize weights of VoteHead."""
        pass
wuyuefeng's avatar
Votenet  
wuyuefeng committed
93

94
95
96
97
98
99
100
    def _get_cls_out_channels(self):
        """Return the channel number of classification outputs."""
        # Class numbers (k) + objectness (2)
        return self.num_classes + 2

    def _get_reg_out_channels(self):
        """Return the channel number of regression outputs."""
wuyuefeng's avatar
Votenet  
wuyuefeng committed
101
102
103
        # Objectness scores (2), center residual (3),
        # heading class+residual (num_dir_bins*2),
        # size class+residual(num_sizes*4)
104
        return 3 + self.num_dir_bins * 2 + self.num_sizes * 4
wuyuefeng's avatar
Votenet  
wuyuefeng committed
105

106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
    def _extract_input(self, feat_dict):
        """Extract inputs from features dictionary.

        Args:
            feat_dict (dict): Feature dict from backbone.

        Returns:
            torch.Tensor: Coordinates of input points.
            torch.Tensor: Features of input points.
            torch.Tensor: Indices of input points.
        """
        seed_points = feat_dict['fp_xyz'][-1]
        seed_features = feat_dict['fp_features'][-1]
        seed_indices = feat_dict['fp_indices'][-1]

        return seed_points, seed_features, seed_indices
wuyuefeng's avatar
Votenet  
wuyuefeng committed
122
123
124
125

    def forward(self, feat_dict, sample_mod):
        """Forward pass.

zhangwenwei's avatar
zhangwenwei committed
126
127
128
129
130
131
132
        Note:
            The forward of VoteHead is devided into 4 steps:

                1. Generate vote_points from seed_points.
                2. Aggregate vote_points.
                3. Predict bbox and score.
                4. Decode predictions.
wuyuefeng's avatar
Votenet  
wuyuefeng committed
133
134

        Args:
wangtai's avatar
wangtai committed
135
136
            feat_dict (dict): Feature dict from backbone.
            sample_mod (str): Sample mode for vote aggregation layer.
137
                valid modes are "vote", "seed", "random" and "spec".
wuyuefeng's avatar
wuyuefeng committed
138
139
140

        Returns:
            dict: Predictions of vote head.
wuyuefeng's avatar
Votenet  
wuyuefeng committed
141
        """
142
        assert sample_mod in ['vote', 'seed', 'random', 'spec']
wuyuefeng's avatar
Votenet  
wuyuefeng committed
143

144
145
        seed_points, seed_features, seed_indices = self._extract_input(
            feat_dict)
wuyuefeng's avatar
Votenet  
wuyuefeng committed
146
147

        # 1. generate vote_points from seed_points
148
149
        vote_points, vote_features, vote_offset = self.vote_module(
            seed_points, seed_features)
wuyuefeng's avatar
Votenet  
wuyuefeng committed
150
151
152
153
        results = dict(
            seed_points=seed_points,
            seed_indices=seed_indices,
            vote_points=vote_points,
154
155
            vote_features=vote_features,
            vote_offset=vote_offset)
wuyuefeng's avatar
Votenet  
wuyuefeng committed
156
157
158
159

        # 2. aggregate vote_points
        if sample_mod == 'vote':
            # use fps in vote_aggregation
160
161
            aggregation_inputs = dict(
                points_xyz=vote_points, features=vote_features)
wuyuefeng's avatar
Votenet  
wuyuefeng committed
162
163
164
165
        elif sample_mod == 'seed':
            # FPS on seed and choose the votes corresponding to the seeds
            sample_indices = furthest_point_sample(seed_points,
                                                   self.num_proposal)
166
167
168
169
            aggregation_inputs = dict(
                points_xyz=vote_points,
                features=vote_features,
                indices=sample_indices)
wuyuefeng's avatar
Votenet  
wuyuefeng committed
170
171
172
173
174
175
        elif sample_mod == 'random':
            # Random sampling from the votes
            batch_size, num_seed = seed_points.shape[:2]
            sample_indices = seed_points.new_tensor(
                torch.randint(0, num_seed, (batch_size, self.num_proposal)),
                dtype=torch.int32)
176
177
178
179
180
181
182
183
184
185
            aggregation_inputs = dict(
                points_xyz=vote_points,
                features=vote_features,
                indices=sample_indices)
        elif sample_mod == 'spec':
            # Specify the new center in vote_aggregation
            aggregation_inputs = dict(
                points_xyz=seed_points,
                features=seed_features,
                target_xyz=vote_points)
wuyuefeng's avatar
Votenet  
wuyuefeng committed
186
        else:
Wenwei Zhang's avatar
Wenwei Zhang committed
187
188
            raise NotImplementedError(
                f'Sample mode {sample_mod} is not supported!')
wuyuefeng's avatar
Votenet  
wuyuefeng committed
189

190
        vote_aggregation_ret = self.vote_aggregation(**aggregation_inputs)
wuyuefeng's avatar
Votenet  
wuyuefeng committed
191
        aggregated_points, features, aggregated_indices = vote_aggregation_ret
192

wuyuefeng's avatar
Votenet  
wuyuefeng committed
193
        results['aggregated_points'] = aggregated_points
encore-zhou's avatar
encore-zhou committed
194
        results['aggregated_features'] = features
wuyuefeng's avatar
Votenet  
wuyuefeng committed
195
196
197
        results['aggregated_indices'] = aggregated_indices

        # 3. predict bbox and score
198
        cls_predictions, reg_predictions = self.conv_pred(features)
wuyuefeng's avatar
Votenet  
wuyuefeng committed
199
200

        # 4. decode predictions
201
202
203
204
        decode_res = self.bbox_coder.split_pred(cls_predictions,
                                                reg_predictions,
                                                aggregated_points)

wuyuefeng's avatar
Votenet  
wuyuefeng committed
205
206
207
208
        results.update(decode_res)

        return results

209
    @force_fp32(apply_to=('bbox_preds', ))
wuyuefeng's avatar
Votenet  
wuyuefeng committed
210
211
212
213
214
215
216
    def loss(self,
             bbox_preds,
             points,
             gt_bboxes_3d,
             gt_labels_3d,
             pts_semantic_mask=None,
             pts_instance_mask=None,
zhangwenwei's avatar
zhangwenwei committed
217
             img_metas=None,
encore-zhou's avatar
encore-zhou committed
218
219
             gt_bboxes_ignore=None,
             ret_target=False):
wuyuefeng's avatar
wuyuefeng committed
220
221
222
223
        """Compute loss.

        Args:
            bbox_preds (dict): Predictions from forward of vote head.
liyinhao's avatar
liyinhao committed
224
            points (list[torch.Tensor]): Input points.
wangtai's avatar
wangtai committed
225
226
227
            gt_bboxes_3d (list[:obj:`BaseInstance3DBoxes`]): Ground truth \
                bboxes of each sample.
            gt_labels_3d (list[torch.Tensor]): Labels of each sample.
liyinhao's avatar
liyinhao committed
228
229
230
231
            pts_semantic_mask (None | list[torch.Tensor]): Point-wise
                semantic mask.
            pts_instance_mask (None | list[torch.Tensor]): Point-wise
                instance mask.
zhangwenwei's avatar
zhangwenwei committed
232
            img_metas (list[dict]): Contain pcd and img's meta info.
liyinhao's avatar
liyinhao committed
233
234
            gt_bboxes_ignore (None | list[torch.Tensor]): Specify
                which bounding.
encore-zhou's avatar
encore-zhou committed
235
            ret_target (Bool): Return targets or not.
wuyuefeng's avatar
wuyuefeng committed
236
237
238
239

        Returns:
            dict: Losses of Votenet.
        """
wuyuefeng's avatar
Votenet  
wuyuefeng committed
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
        targets = self.get_targets(points, gt_bboxes_3d, gt_labels_3d,
                                   pts_semantic_mask, pts_instance_mask,
                                   bbox_preds)
        (vote_targets, vote_target_masks, size_class_targets, size_res_targets,
         dir_class_targets, dir_res_targets, center_targets, mask_targets,
         valid_gt_masks, objectness_targets, objectness_weights,
         box_loss_weights, valid_gt_weights) = targets

        # calculate vote loss
        vote_loss = self.vote_module.get_loss(bbox_preds['seed_points'],
                                              bbox_preds['vote_points'],
                                              bbox_preds['seed_indices'],
                                              vote_target_masks, vote_targets)

        # calculate objectness loss
        objectness_loss = self.objectness_loss(
            bbox_preds['obj_scores'].transpose(2, 1),
            objectness_targets,
            weight=objectness_weights)

        # calculate center loss
        source2target_loss, target2source_loss = self.center_loss(
            bbox_preds['center'],
            center_targets,
            src_weight=box_loss_weights,
            dst_weight=valid_gt_weights)
        center_loss = source2target_loss + target2source_loss

        # calculate direction class loss
        dir_class_loss = self.dir_class_loss(
            bbox_preds['dir_class'].transpose(2, 1),
            dir_class_targets,
            weight=box_loss_weights)

        # calculate direction residual loss
        batch_size, proposal_num = size_class_targets.shape[:2]
        heading_label_one_hot = vote_targets.new_zeros(
            (batch_size, proposal_num, self.num_dir_bins))
        heading_label_one_hot.scatter_(2, dir_class_targets.unsqueeze(-1), 1)
        dir_res_norm = torch.sum(
            bbox_preds['dir_res_norm'] * heading_label_one_hot, -1)
        dir_res_loss = self.dir_res_loss(
            dir_res_norm, dir_res_targets, weight=box_loss_weights)

        # calculate size class loss
        size_class_loss = self.size_class_loss(
            bbox_preds['size_class'].transpose(2, 1),
            size_class_targets,
            weight=box_loss_weights)

        # calculate size residual loss
        one_hot_size_targets = vote_targets.new_zeros(
            (batch_size, proposal_num, self.num_sizes))
        one_hot_size_targets.scatter_(2, size_class_targets.unsqueeze(-1), 1)
        one_hot_size_targets_expand = one_hot_size_targets.unsqueeze(
Wenwei Zhang's avatar
Wenwei Zhang committed
295
            -1).repeat(1, 1, 1, 3).contiguous()
wuyuefeng's avatar
Votenet  
wuyuefeng committed
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
        size_residual_norm = torch.sum(
            bbox_preds['size_res_norm'] * one_hot_size_targets_expand, 2)
        box_loss_weights_expand = box_loss_weights.unsqueeze(-1).repeat(
            1, 1, 3)
        size_res_loss = self.size_res_loss(
            size_residual_norm,
            size_res_targets,
            weight=box_loss_weights_expand)

        # calculate semantic loss
        semantic_loss = self.semantic_loss(
            bbox_preds['sem_scores'].transpose(2, 1),
            mask_targets,
            weight=box_loss_weights)

        losses = dict(
            vote_loss=vote_loss,
            objectness_loss=objectness_loss,
            semantic_loss=semantic_loss,
            center_loss=center_loss,
            dir_class_loss=dir_class_loss,
            dir_res_loss=dir_res_loss,
            size_class_loss=size_class_loss,
            size_res_loss=size_res_loss)
encore-zhou's avatar
encore-zhou committed
320
321
322
323

        if ret_target:
            losses['targets'] = targets

wuyuefeng's avatar
Votenet  
wuyuefeng committed
324
325
326
327
328
329
330
331
332
        return losses

    def get_targets(self,
                    points,
                    gt_bboxes_3d,
                    gt_labels_3d,
                    pts_semantic_mask=None,
                    pts_instance_mask=None,
                    bbox_preds=None):
wuyuefeng's avatar
wuyuefeng committed
333
        """Generate targets of vote head.
wuyuefeng's avatar
Votenet  
wuyuefeng committed
334
335

        Args:
liyinhao's avatar
liyinhao committed
336
            points (list[torch.Tensor]): Points of each batch.
wangtai's avatar
wangtai committed
337
338
339
340
            gt_bboxes_3d (list[:obj:`BaseInstance3DBoxes`]): Ground truth \
                bboxes of each batch.
            gt_labels_3d (list[torch.Tensor]): Labels of each batch.
            pts_semantic_mask (None | list[torch.Tensor]): Point-wise semantic
wuyuefeng's avatar
Votenet  
wuyuefeng committed
341
                label of each batch.
wangtai's avatar
wangtai committed
342
            pts_instance_mask (None | list[torch.Tensor]): Point-wise instance
wuyuefeng's avatar
Votenet  
wuyuefeng committed
343
                label of each batch.
wangtai's avatar
wangtai committed
344
            bbox_preds (torch.Tensor): Bounding box predictions of vote head.
wuyuefeng's avatar
Votenet  
wuyuefeng committed
345
346

        Returns:
347
            tuple[torch.Tensor]: Targets of vote head.
wuyuefeng's avatar
Votenet  
wuyuefeng committed
348
349
350
351
352
353
        """
        # find empty example
        valid_gt_masks = list()
        gt_num = list()
        for index in range(len(gt_labels_3d)):
            if len(gt_labels_3d[index]) == 0:
wuyuefeng's avatar
wuyuefeng committed
354
355
356
                fake_box = gt_bboxes_3d[index].tensor.new_zeros(
                    1, gt_bboxes_3d[index].tensor.shape[-1])
                gt_bboxes_3d[index] = gt_bboxes_3d[index].new_box(fake_box)
wuyuefeng's avatar
Votenet  
wuyuefeng committed
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
                gt_labels_3d[index] = gt_labels_3d[index].new_zeros(1)
                valid_gt_masks.append(gt_labels_3d[index].new_zeros(1))
                gt_num.append(1)
            else:
                valid_gt_masks.append(gt_labels_3d[index].new_ones(
                    gt_labels_3d[index].shape))
                gt_num.append(gt_labels_3d[index].shape[0])
        max_gt_num = max(gt_num)

        if pts_semantic_mask is None:
            pts_semantic_mask = [None for i in range(len(gt_labels_3d))]
            pts_instance_mask = [None for i in range(len(gt_labels_3d))]

        aggregated_points = [
            bbox_preds['aggregated_points'][i]
            for i in range(len(gt_labels_3d))
        ]

        (vote_targets, vote_target_masks, size_class_targets, size_res_targets,
         dir_class_targets, dir_res_targets, center_targets, mask_targets,
         objectness_targets, objectness_masks) = multi_apply(
             self.get_targets_single, points, gt_bboxes_3d, gt_labels_3d,
             pts_semantic_mask, pts_instance_mask, aggregated_points)

        # pad targets as original code of votenet.
        for index in range(len(gt_labels_3d)):
            pad_num = max_gt_num - gt_labels_3d[index].shape[0]
            center_targets[index] = F.pad(center_targets[index],
                                          (0, 0, 0, pad_num))
            valid_gt_masks[index] = F.pad(valid_gt_masks[index], (0, pad_num))

        vote_targets = torch.stack(vote_targets)
        vote_target_masks = torch.stack(vote_target_masks)
        center_targets = torch.stack(center_targets)
        valid_gt_masks = torch.stack(valid_gt_masks)

        objectness_targets = torch.stack(objectness_targets)
        objectness_weights = torch.stack(objectness_masks)
        objectness_weights /= (torch.sum(objectness_weights) + 1e-6)
        box_loss_weights = objectness_targets.float() / (
            torch.sum(objectness_targets).float() + 1e-6)
        valid_gt_weights = valid_gt_masks.float() / (
            torch.sum(valid_gt_masks.float()) + 1e-6)
        dir_class_targets = torch.stack(dir_class_targets)
        dir_res_targets = torch.stack(dir_res_targets)
        size_class_targets = torch.stack(size_class_targets)
        size_res_targets = torch.stack(size_res_targets)
        mask_targets = torch.stack(mask_targets)

        return (vote_targets, vote_target_masks, size_class_targets,
                size_res_targets, dir_class_targets, dir_res_targets,
                center_targets, mask_targets, valid_gt_masks,
                objectness_targets, objectness_weights, box_loss_weights,
                valid_gt_weights)

    def get_targets_single(self,
                           points,
                           gt_bboxes_3d,
                           gt_labels_3d,
                           pts_semantic_mask=None,
                           pts_instance_mask=None,
                           aggregated_points=None):
wuyuefeng's avatar
wuyuefeng committed
419
420
421
        """Generate targets of vote head for single batch.

        Args:
liyinhao's avatar
liyinhao committed
422
            points (torch.Tensor): Points of each batch.
wangtai's avatar
wangtai committed
423
424
425
426
            gt_bboxes_3d (:obj:`BaseInstance3DBoxes`): Ground truth \
                boxes of each batch.
            gt_labels_3d (torch.Tensor): Labels of each batch.
            pts_semantic_mask (None | torch.Tensor): Point-wise semantic
wuyuefeng's avatar
wuyuefeng committed
427
                label of each batch.
wangtai's avatar
wangtai committed
428
            pts_instance_mask (None | torch.Tensor): Point-wise instance
wuyuefeng's avatar
wuyuefeng committed
429
                label of each batch.
liyinhao's avatar
liyinhao committed
430
            aggregated_points (torch.Tensor): Aggregated points from
wuyuefeng's avatar
wuyuefeng committed
431
432
433
                vote aggregation layer.

        Returns:
434
            tuple[torch.Tensor]: Targets of vote head.
wuyuefeng's avatar
wuyuefeng committed
435
        """
wuyuefeng's avatar
Votenet  
wuyuefeng committed
436
437
        assert self.bbox_coder.with_rot or pts_semantic_mask is not None

wuyuefeng's avatar
wuyuefeng committed
438
439
        gt_bboxes_3d = gt_bboxes_3d.to(points.device)

wuyuefeng's avatar
Votenet  
wuyuefeng committed
440
441
442
443
444
445
446
        # generate votes target
        num_points = points.shape[0]
        if self.bbox_coder.with_rot:
            vote_targets = points.new_zeros([num_points, 3 * self.gt_per_seed])
            vote_target_masks = points.new_zeros([num_points],
                                                 dtype=torch.long)
            vote_target_idx = points.new_zeros([num_points], dtype=torch.long)
wuyuefeng's avatar
wuyuefeng committed
447
448
            box_indices_all = gt_bboxes_3d.points_in_boxes(points)
            for i in range(gt_labels_3d.shape[0]):
wuyuefeng's avatar
Votenet  
wuyuefeng committed
449
                box_indices = box_indices_all[:, i]
450
451
                indices = torch.nonzero(
                    box_indices, as_tuple=False).squeeze(-1)
wuyuefeng's avatar
Votenet  
wuyuefeng committed
452
453
454
                selected_points = points[indices]
                vote_target_masks[indices] = 1
                vote_targets_tmp = vote_targets[indices]
wuyuefeng's avatar
wuyuefeng committed
455
                votes = gt_bboxes_3d.gravity_center[i].unsqueeze(
wuyuefeng's avatar
Votenet  
wuyuefeng committed
456
457
458
459
                    0) - selected_points[:, :3]

                for j in range(self.gt_per_seed):
                    column_indices = torch.nonzero(
460
461
                        vote_target_idx[indices] == j,
                        as_tuple=False).squeeze(-1)
wuyuefeng's avatar
Votenet  
wuyuefeng committed
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
                    vote_targets_tmp[column_indices,
                                     int(j * 3):int(j * 3 +
                                                    3)] = votes[column_indices]
                    if j == 0:
                        vote_targets_tmp[column_indices] = votes[
                            column_indices].repeat(1, self.gt_per_seed)

                vote_targets[indices] = vote_targets_tmp
                vote_target_idx[indices] = torch.clamp(
                    vote_target_idx[indices] + 1, max=2)
        elif pts_semantic_mask is not None:
            vote_targets = points.new_zeros([num_points, 3])
            vote_target_masks = points.new_zeros([num_points],
                                                 dtype=torch.long)

            for i in torch.unique(pts_instance_mask):
478
479
                indices = torch.nonzero(
                    pts_instance_mask == i, as_tuple=False).squeeze(-1)
wuyuefeng's avatar
Votenet  
wuyuefeng committed
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
                if pts_semantic_mask[indices[0]] < self.num_classes:
                    selected_points = points[indices, :3]
                    center = 0.5 * (
                        selected_points.min(0)[0] + selected_points.max(0)[0])
                    vote_targets[indices, :] = center - selected_points
                    vote_target_masks[indices] = 1
            vote_targets = vote_targets.repeat((1, self.gt_per_seed))
        else:
            raise NotImplementedError

        (center_targets, size_class_targets, size_res_targets,
         dir_class_targets,
         dir_res_targets) = self.bbox_coder.encode(gt_bboxes_3d, gt_labels_3d)

        proposal_num = aggregated_points.shape[0]
        distance1, _, assignment, _ = chamfer_distance(
            aggregated_points.unsqueeze(0),
            center_targets.unsqueeze(0),
            reduction='none')
        assignment = assignment.squeeze(0)
        euclidean_distance1 = torch.sqrt(distance1.squeeze(0) + 1e-6)

        objectness_targets = points.new_zeros((proposal_num), dtype=torch.long)
        objectness_targets[
            euclidean_distance1 < self.train_cfg['pos_distance_thr']] = 1

        objectness_masks = points.new_zeros((proposal_num))
        objectness_masks[
            euclidean_distance1 < self.train_cfg['pos_distance_thr']] = 1.0
        objectness_masks[
            euclidean_distance1 > self.train_cfg['neg_distance_thr']] = 1.0

        dir_class_targets = dir_class_targets[assignment]
        dir_res_targets = dir_res_targets[assignment]
        dir_res_targets /= (np.pi / self.num_dir_bins)
        size_class_targets = size_class_targets[assignment]
        size_res_targets = size_res_targets[assignment]

wuyuefeng's avatar
wuyuefeng committed
518
        one_hot_size_targets = gt_bboxes_3d.tensor.new_zeros(
wuyuefeng's avatar
Votenet  
wuyuefeng committed
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
            (proposal_num, self.num_sizes))
        one_hot_size_targets.scatter_(1, size_class_targets.unsqueeze(-1), 1)
        one_hot_size_targets = one_hot_size_targets.unsqueeze(-1).repeat(
            1, 1, 3)
        mean_sizes = size_res_targets.new_tensor(
            self.bbox_coder.mean_sizes).unsqueeze(0)
        pos_mean_sizes = torch.sum(one_hot_size_targets * mean_sizes, 1)
        size_res_targets /= pos_mean_sizes

        mask_targets = gt_labels_3d[assignment]

        return (vote_targets, vote_target_masks, size_class_targets,
                size_res_targets,
                dir_class_targets, dir_res_targets, center_targets,
                mask_targets.long(), objectness_targets, objectness_masks)

encore-zhou's avatar
encore-zhou committed
535
536
537
538
539
540
    def get_bboxes(self,
                   points,
                   bbox_preds,
                   input_metas,
                   rescale=False,
                   use_nms=True):
wuyuefeng's avatar
wuyuefeng committed
541
542
543
        """Generate bboxes from vote head predictions.

        Args:
liyinhao's avatar
liyinhao committed
544
            points (torch.Tensor): Input points.
wuyuefeng's avatar
wuyuefeng committed
545
            bbox_preds (dict): Predictions from vote head.
wangtai's avatar
wangtai committed
546
            input_metas (list[dict]): Point cloud and image's meta info.
wuyuefeng's avatar
wuyuefeng committed
547
            rescale (bool): Whether to rescale bboxes.
encore-zhou's avatar
encore-zhou committed
548
549
            use_nms (bool): Whether to apply NMS, skip nms postprocessing
                while using vote head in rpn stage.
wuyuefeng's avatar
wuyuefeng committed
550
551

        Returns:
wangtai's avatar
wangtai committed
552
            list[tuple[torch.Tensor]]: Bounding boxes, scores and labels.
wuyuefeng's avatar
wuyuefeng committed
553
        """
wuyuefeng's avatar
Votenet  
wuyuefeng committed
554
555
556
        # decode boxes
        obj_scores = F.softmax(bbox_preds['obj_scores'], dim=-1)[..., -1]
        sem_scores = F.softmax(bbox_preds['sem_scores'], dim=-1)
wuyuefeng's avatar
wuyuefeng committed
557
        bbox3d = self.bbox_coder.decode(bbox_preds)
wuyuefeng's avatar
Votenet  
wuyuefeng committed
558

encore-zhou's avatar
encore-zhou committed
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
        if use_nms:
            batch_size = bbox3d.shape[0]
            results = list()
            for b in range(batch_size):
                bbox_selected, score_selected, labels = \
                    self.multiclass_nms_single(obj_scores[b], sem_scores[b],
                                               bbox3d[b], points[b, ..., :3],
                                               input_metas[b])
                bbox = input_metas[b]['box_type_3d'](
                    bbox_selected,
                    box_dim=bbox_selected.shape[-1],
                    with_yaw=self.bbox_coder.with_rot)
                results.append((bbox, score_selected, labels))

            return results
        else:
            return bbox3d
wuyuefeng's avatar
Votenet  
wuyuefeng committed
576

wuyuefeng's avatar
wuyuefeng committed
577
578
    def multiclass_nms_single(self, obj_scores, sem_scores, bbox, points,
                              input_meta):
wangtai's avatar
wangtai committed
579
        """Multi-class nms in single batch.
wuyuefeng's avatar
wuyuefeng committed
580
581

        Args:
wangtai's avatar
wangtai committed
582
583
584
            obj_scores (torch.Tensor): Objectness score of bounding boxes.
            sem_scores (torch.Tensor): semantic class score of bounding boxes.
            bbox (torch.Tensor): Predicted bounding boxes.
liyinhao's avatar
liyinhao committed
585
            points (torch.Tensor): Input points.
wangtai's avatar
wangtai committed
586
            input_meta (dict): Point cloud and image's meta info.
wuyuefeng's avatar
wuyuefeng committed
587
588

        Returns:
wangtai's avatar
wangtai committed
589
            tuple[torch.Tensor]: Bounding boxes, scores and labels.
wuyuefeng's avatar
wuyuefeng committed
590
        """
wuyuefeng's avatar
wuyuefeng committed
591
592
593
594
595
596
        bbox = input_meta['box_type_3d'](
            bbox,
            box_dim=bbox.shape[-1],
            with_yaw=self.bbox_coder.with_rot,
            origin=(0.5, 0.5, 0.5))
        box_indices = bbox.points_in_boxes(points)
wuyuefeng's avatar
Votenet  
wuyuefeng committed
597

wuyuefeng's avatar
wuyuefeng committed
598
        corner3d = bbox.corners
wuyuefeng's avatar
Votenet  
wuyuefeng committed
599
600
601
602
        minmax_box3d = corner3d.new(torch.Size((corner3d.shape[0], 6)))
        minmax_box3d[:, :3] = torch.min(corner3d, dim=1)[0]
        minmax_box3d[:, 3:] = torch.max(corner3d, dim=1)[0]

wuyuefeng's avatar
wuyuefeng committed
603
604
605
        nonempty_box_mask = box_indices.T.sum(1) > 5

        bbox_classes = torch.argmax(sem_scores, -1)
wuyuefeng's avatar
Votenet  
wuyuefeng committed
606
607
608
609
610
611
612
        nms_selected = aligned_3d_nms(minmax_box3d[nonempty_box_mask],
                                      obj_scores[nonempty_box_mask],
                                      bbox_classes[nonempty_box_mask],
                                      self.test_cfg.nms_thr)

        # filter empty boxes and boxes with low score
        scores_mask = (obj_scores > self.test_cfg.score_thr)
613
614
        nonempty_box_inds = torch.nonzero(
            nonempty_box_mask, as_tuple=False).flatten()
wuyuefeng's avatar
Votenet  
wuyuefeng committed
615
616
617
618
619
620
621
        nonempty_mask = torch.zeros_like(bbox_classes).scatter(
            0, nonempty_box_inds[nms_selected], 1)
        selected = (nonempty_mask.bool() & scores_mask.bool())

        if self.test_cfg.per_class_proposal:
            bbox_selected, score_selected, labels = [], [], []
            for k in range(sem_scores.shape[-1]):
wuyuefeng's avatar
wuyuefeng committed
622
                bbox_selected.append(bbox[selected].tensor)
wuyuefeng's avatar
Votenet  
wuyuefeng committed
623
624
625
626
627
628
629
630
                score_selected.append(obj_scores[selected] *
                                      sem_scores[selected][:, k])
                labels.append(
                    torch.zeros_like(bbox_classes[selected]).fill_(k))
            bbox_selected = torch.cat(bbox_selected, 0)
            score_selected = torch.cat(score_selected, 0)
            labels = torch.cat(labels, 0)
        else:
wuyuefeng's avatar
wuyuefeng committed
631
            bbox_selected = bbox[selected].tensor
wuyuefeng's avatar
Votenet  
wuyuefeng committed
632
633
634
635
            score_selected = obj_scores[selected]
            labels = bbox_classes[selected]

        return bbox_selected, score_selected, labels