vote_head.py 26.2 KB
Newer Older
wuyuefeng's avatar
Votenet  
wuyuefeng committed
1
2
import numpy as np
import torch
zhangwenwei's avatar
zhangwenwei committed
3
4
from torch import nn as nn
from torch.nn import functional as F
wuyuefeng's avatar
Votenet  
wuyuefeng committed
5
6
7
8
9

from mmdet3d.core.post_processing import aligned_3d_nms
from mmdet3d.models.builder import build_loss
from mmdet3d.models.losses import chamfer_distance
from mmdet3d.models.model_utils import VoteModule
10
from mmdet3d.ops import build_sa_module, furthest_point_sample
zhangwenwei's avatar
zhangwenwei committed
11
from mmdet.core import build_bbox_coder, multi_apply
wuyuefeng's avatar
Votenet  
wuyuefeng committed
12
from mmdet.models import HEADS
13
from .base_conv_bbox_head import BaseConvBboxHead
wuyuefeng's avatar
Votenet  
wuyuefeng committed
14
15
16
17


@HEADS.register_module()
class VoteHead(nn.Module):
zhangwenwei's avatar
zhangwenwei committed
18
    r"""Bbox head of `Votenet <https://arxiv.org/abs/1904.09664>`_.
wuyuefeng's avatar
Votenet  
wuyuefeng committed
19
20
21

    Args:
        num_classes (int): The number of class.
22
        bbox_coder (:obj:`BaseBBoxCoder`): Bbox coder for encoding and
wuyuefeng's avatar
Votenet  
wuyuefeng committed
23
24
25
            decoding boxes.
        train_cfg (dict): Config for training.
        test_cfg (dict): Config for testing.
26
        vote_module_cfg (dict): Config of VoteModule for point-wise votes.
wuyuefeng's avatar
Votenet  
wuyuefeng committed
27
        vote_aggregation_cfg (dict): Config of vote aggregation layer.
28
29
        pred_layer_cfg (dict): Config of classfication and regression
            prediction layers.
wuyuefeng's avatar
Votenet  
wuyuefeng committed
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
        conv_cfg (dict): Config of convolution in prediction layer.
        norm_cfg (dict): Config of BN in prediction layer.
        objectness_loss (dict): Config of objectness loss.
        center_loss (dict): Config of center loss.
        dir_class_loss (dict): Config of direction classification loss.
        dir_res_loss (dict): Config of direction residual regression loss.
        size_class_loss (dict): Config of size classification loss.
        size_res_loss (dict): Config of size residual regression loss.
        semantic_loss (dict): Config of point-wise semantic segmentation loss.
    """

    def __init__(self,
                 num_classes,
                 bbox_coder,
                 train_cfg=None,
                 test_cfg=None,
46
                 vote_module_cfg=None,
wuyuefeng's avatar
Votenet  
wuyuefeng committed
47
                 vote_aggregation_cfg=None,
48
                 pred_layer_cfg=None,
wuyuefeng's avatar
Votenet  
wuyuefeng committed
49
50
51
52
53
54
55
56
57
58
59
60
61
                 conv_cfg=dict(type='Conv1d'),
                 norm_cfg=dict(type='BN1d'),
                 objectness_loss=None,
                 center_loss=None,
                 dir_class_loss=None,
                 dir_res_loss=None,
                 size_class_loss=None,
                 size_res_loss=None,
                 semantic_loss=None):
        super(VoteHead, self).__init__()
        self.num_classes = num_classes
        self.train_cfg = train_cfg
        self.test_cfg = test_cfg
62
        self.gt_per_seed = vote_module_cfg['gt_per_seed']
wuyuefeng's avatar
Votenet  
wuyuefeng committed
63
64
65
66
67
        self.num_proposal = vote_aggregation_cfg['num_point']

        self.objectness_loss = build_loss(objectness_loss)
        self.center_loss = build_loss(center_loss)
        self.dir_res_loss = build_loss(dir_res_loss)
68
        self.dir_class_loss = build_loss(dir_class_loss)
wuyuefeng's avatar
Votenet  
wuyuefeng committed
69
        self.size_res_loss = build_loss(size_res_loss)
70
71
72
73
        if size_class_loss is not None:
            self.size_class_loss = build_loss(size_class_loss)
        if semantic_loss is not None:
            self.semantic_loss = build_loss(semantic_loss)
wuyuefeng's avatar
Votenet  
wuyuefeng committed
74
75
76
77
78

        self.bbox_coder = build_bbox_coder(bbox_coder)
        self.num_sizes = self.bbox_coder.num_sizes
        self.num_dir_bins = self.bbox_coder.num_dir_bins

79
        self.vote_module = VoteModule(**vote_module_cfg)
80
        self.vote_aggregation = build_sa_module(vote_aggregation_cfg)
wuyuefeng's avatar
Votenet  
wuyuefeng committed
81

82
83
84
85
86
87
88
89
90
        # Bbox classification and regression
        self.conv_pred = BaseConvBboxHead(
            **pred_layer_cfg,
            num_cls_out_channels=self._get_cls_out_channels(),
            num_reg_out_channels=self._get_reg_out_channels())

    def init_weights(self):
        """Initialize weights of VoteHead."""
        pass
wuyuefeng's avatar
Votenet  
wuyuefeng committed
91

92
93
94
95
96
97
98
    def _get_cls_out_channels(self):
        """Return the channel number of classification outputs."""
        # Class numbers (k) + objectness (2)
        return self.num_classes + 2

    def _get_reg_out_channels(self):
        """Return the channel number of regression outputs."""
wuyuefeng's avatar
Votenet  
wuyuefeng committed
99
100
101
        # Objectness scores (2), center residual (3),
        # heading class+residual (num_dir_bins*2),
        # size class+residual(num_sizes*4)
102
        return 3 + self.num_dir_bins * 2 + self.num_sizes * 4
wuyuefeng's avatar
Votenet  
wuyuefeng committed
103

104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
    def _extract_input(self, feat_dict):
        """Extract inputs from features dictionary.

        Args:
            feat_dict (dict): Feature dict from backbone.

        Returns:
            torch.Tensor: Coordinates of input points.
            torch.Tensor: Features of input points.
            torch.Tensor: Indices of input points.
        """
        seed_points = feat_dict['fp_xyz'][-1]
        seed_features = feat_dict['fp_features'][-1]
        seed_indices = feat_dict['fp_indices'][-1]

        return seed_points, seed_features, seed_indices
wuyuefeng's avatar
Votenet  
wuyuefeng committed
120
121
122
123

    def forward(self, feat_dict, sample_mod):
        """Forward pass.

zhangwenwei's avatar
zhangwenwei committed
124
125
126
127
128
129
130
        Note:
            The forward of VoteHead is devided into 4 steps:

                1. Generate vote_points from seed_points.
                2. Aggregate vote_points.
                3. Predict bbox and score.
                4. Decode predictions.
wuyuefeng's avatar
Votenet  
wuyuefeng committed
131
132

        Args:
wangtai's avatar
wangtai committed
133
134
            feat_dict (dict): Feature dict from backbone.
            sample_mod (str): Sample mode for vote aggregation layer.
135
                valid modes are "vote", "seed", "random" and "spec".
wuyuefeng's avatar
wuyuefeng committed
136
137
138

        Returns:
            dict: Predictions of vote head.
wuyuefeng's avatar
Votenet  
wuyuefeng committed
139
        """
140
        assert sample_mod in ['vote', 'seed', 'random', 'spec']
wuyuefeng's avatar
Votenet  
wuyuefeng committed
141

142
143
        seed_points, seed_features, seed_indices = self._extract_input(
            feat_dict)
wuyuefeng's avatar
Votenet  
wuyuefeng committed
144
145

        # 1. generate vote_points from seed_points
146
147
        vote_points, vote_features, vote_offset = self.vote_module(
            seed_points, seed_features)
wuyuefeng's avatar
Votenet  
wuyuefeng committed
148
149
150
151
        results = dict(
            seed_points=seed_points,
            seed_indices=seed_indices,
            vote_points=vote_points,
152
153
            vote_features=vote_features,
            vote_offset=vote_offset)
wuyuefeng's avatar
Votenet  
wuyuefeng committed
154
155
156
157

        # 2. aggregate vote_points
        if sample_mod == 'vote':
            # use fps in vote_aggregation
158
159
            aggregation_inputs = dict(
                points_xyz=vote_points, features=vote_features)
wuyuefeng's avatar
Votenet  
wuyuefeng committed
160
161
162
163
        elif sample_mod == 'seed':
            # FPS on seed and choose the votes corresponding to the seeds
            sample_indices = furthest_point_sample(seed_points,
                                                   self.num_proposal)
164
165
166
167
            aggregation_inputs = dict(
                points_xyz=vote_points,
                features=vote_features,
                indices=sample_indices)
wuyuefeng's avatar
Votenet  
wuyuefeng committed
168
169
170
171
172
173
        elif sample_mod == 'random':
            # Random sampling from the votes
            batch_size, num_seed = seed_points.shape[:2]
            sample_indices = seed_points.new_tensor(
                torch.randint(0, num_seed, (batch_size, self.num_proposal)),
                dtype=torch.int32)
174
175
176
177
178
179
180
181
182
183
            aggregation_inputs = dict(
                points_xyz=vote_points,
                features=vote_features,
                indices=sample_indices)
        elif sample_mod == 'spec':
            # Specify the new center in vote_aggregation
            aggregation_inputs = dict(
                points_xyz=seed_points,
                features=seed_features,
                target_xyz=vote_points)
wuyuefeng's avatar
Votenet  
wuyuefeng committed
184
        else:
Wenwei Zhang's avatar
Wenwei Zhang committed
185
186
            raise NotImplementedError(
                f'Sample mode {sample_mod} is not supported!')
wuyuefeng's avatar
Votenet  
wuyuefeng committed
187

188
        vote_aggregation_ret = self.vote_aggregation(**aggregation_inputs)
wuyuefeng's avatar
Votenet  
wuyuefeng committed
189
        aggregated_points, features, aggregated_indices = vote_aggregation_ret
190

wuyuefeng's avatar
Votenet  
wuyuefeng committed
191
        results['aggregated_points'] = aggregated_points
encore-zhou's avatar
encore-zhou committed
192
        results['aggregated_features'] = features
wuyuefeng's avatar
Votenet  
wuyuefeng committed
193
194
195
        results['aggregated_indices'] = aggregated_indices

        # 3. predict bbox and score
196
        cls_predictions, reg_predictions = self.conv_pred(features)
wuyuefeng's avatar
Votenet  
wuyuefeng committed
197
198

        # 4. decode predictions
199
200
201
202
        decode_res = self.bbox_coder.split_pred(cls_predictions,
                                                reg_predictions,
                                                aggregated_points)

wuyuefeng's avatar
Votenet  
wuyuefeng committed
203
204
205
206
207
208
209
210
211
212
213
        results.update(decode_res)

        return results

    def loss(self,
             bbox_preds,
             points,
             gt_bboxes_3d,
             gt_labels_3d,
             pts_semantic_mask=None,
             pts_instance_mask=None,
zhangwenwei's avatar
zhangwenwei committed
214
             img_metas=None,
encore-zhou's avatar
encore-zhou committed
215
216
             gt_bboxes_ignore=None,
             ret_target=False):
wuyuefeng's avatar
wuyuefeng committed
217
218
219
220
        """Compute loss.

        Args:
            bbox_preds (dict): Predictions from forward of vote head.
liyinhao's avatar
liyinhao committed
221
            points (list[torch.Tensor]): Input points.
wangtai's avatar
wangtai committed
222
223
224
            gt_bboxes_3d (list[:obj:`BaseInstance3DBoxes`]): Ground truth \
                bboxes of each sample.
            gt_labels_3d (list[torch.Tensor]): Labels of each sample.
liyinhao's avatar
liyinhao committed
225
226
227
228
            pts_semantic_mask (None | list[torch.Tensor]): Point-wise
                semantic mask.
            pts_instance_mask (None | list[torch.Tensor]): Point-wise
                instance mask.
zhangwenwei's avatar
zhangwenwei committed
229
            img_metas (list[dict]): Contain pcd and img's meta info.
liyinhao's avatar
liyinhao committed
230
231
            gt_bboxes_ignore (None | list[torch.Tensor]): Specify
                which bounding.
encore-zhou's avatar
encore-zhou committed
232
            ret_target (Bool): Return targets or not.
wuyuefeng's avatar
wuyuefeng committed
233
234
235
236

        Returns:
            dict: Losses of Votenet.
        """
wuyuefeng's avatar
Votenet  
wuyuefeng committed
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
        targets = self.get_targets(points, gt_bboxes_3d, gt_labels_3d,
                                   pts_semantic_mask, pts_instance_mask,
                                   bbox_preds)
        (vote_targets, vote_target_masks, size_class_targets, size_res_targets,
         dir_class_targets, dir_res_targets, center_targets, mask_targets,
         valid_gt_masks, objectness_targets, objectness_weights,
         box_loss_weights, valid_gt_weights) = targets

        # calculate vote loss
        vote_loss = self.vote_module.get_loss(bbox_preds['seed_points'],
                                              bbox_preds['vote_points'],
                                              bbox_preds['seed_indices'],
                                              vote_target_masks, vote_targets)

        # calculate objectness loss
        objectness_loss = self.objectness_loss(
            bbox_preds['obj_scores'].transpose(2, 1),
            objectness_targets,
            weight=objectness_weights)

        # calculate center loss
        source2target_loss, target2source_loss = self.center_loss(
            bbox_preds['center'],
            center_targets,
            src_weight=box_loss_weights,
            dst_weight=valid_gt_weights)
        center_loss = source2target_loss + target2source_loss

        # calculate direction class loss
        dir_class_loss = self.dir_class_loss(
            bbox_preds['dir_class'].transpose(2, 1),
            dir_class_targets,
            weight=box_loss_weights)

        # calculate direction residual loss
        batch_size, proposal_num = size_class_targets.shape[:2]
        heading_label_one_hot = vote_targets.new_zeros(
            (batch_size, proposal_num, self.num_dir_bins))
        heading_label_one_hot.scatter_(2, dir_class_targets.unsqueeze(-1), 1)
        dir_res_norm = torch.sum(
            bbox_preds['dir_res_norm'] * heading_label_one_hot, -1)
        dir_res_loss = self.dir_res_loss(
            dir_res_norm, dir_res_targets, weight=box_loss_weights)

        # calculate size class loss
        size_class_loss = self.size_class_loss(
            bbox_preds['size_class'].transpose(2, 1),
            size_class_targets,
            weight=box_loss_weights)

        # calculate size residual loss
        one_hot_size_targets = vote_targets.new_zeros(
            (batch_size, proposal_num, self.num_sizes))
        one_hot_size_targets.scatter_(2, size_class_targets.unsqueeze(-1), 1)
        one_hot_size_targets_expand = one_hot_size_targets.unsqueeze(
Wenwei Zhang's avatar
Wenwei Zhang committed
292
            -1).repeat(1, 1, 1, 3).contiguous()
wuyuefeng's avatar
Votenet  
wuyuefeng committed
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
        size_residual_norm = torch.sum(
            bbox_preds['size_res_norm'] * one_hot_size_targets_expand, 2)
        box_loss_weights_expand = box_loss_weights.unsqueeze(-1).repeat(
            1, 1, 3)
        size_res_loss = self.size_res_loss(
            size_residual_norm,
            size_res_targets,
            weight=box_loss_weights_expand)

        # calculate semantic loss
        semantic_loss = self.semantic_loss(
            bbox_preds['sem_scores'].transpose(2, 1),
            mask_targets,
            weight=box_loss_weights)

        losses = dict(
            vote_loss=vote_loss,
            objectness_loss=objectness_loss,
            semantic_loss=semantic_loss,
            center_loss=center_loss,
            dir_class_loss=dir_class_loss,
            dir_res_loss=dir_res_loss,
            size_class_loss=size_class_loss,
            size_res_loss=size_res_loss)
encore-zhou's avatar
encore-zhou committed
317
318
319
320

        if ret_target:
            losses['targets'] = targets

wuyuefeng's avatar
Votenet  
wuyuefeng committed
321
322
323
324
325
326
327
328
329
        return losses

    def get_targets(self,
                    points,
                    gt_bboxes_3d,
                    gt_labels_3d,
                    pts_semantic_mask=None,
                    pts_instance_mask=None,
                    bbox_preds=None):
wuyuefeng's avatar
wuyuefeng committed
330
        """Generate targets of vote head.
wuyuefeng's avatar
Votenet  
wuyuefeng committed
331
332

        Args:
liyinhao's avatar
liyinhao committed
333
            points (list[torch.Tensor]): Points of each batch.
wangtai's avatar
wangtai committed
334
335
336
337
            gt_bboxes_3d (list[:obj:`BaseInstance3DBoxes`]): Ground truth \
                bboxes of each batch.
            gt_labels_3d (list[torch.Tensor]): Labels of each batch.
            pts_semantic_mask (None | list[torch.Tensor]): Point-wise semantic
wuyuefeng's avatar
Votenet  
wuyuefeng committed
338
                label of each batch.
wangtai's avatar
wangtai committed
339
            pts_instance_mask (None | list[torch.Tensor]): Point-wise instance
wuyuefeng's avatar
Votenet  
wuyuefeng committed
340
                label of each batch.
wangtai's avatar
wangtai committed
341
            bbox_preds (torch.Tensor): Bounding box predictions of vote head.
wuyuefeng's avatar
Votenet  
wuyuefeng committed
342
343

        Returns:
344
            tuple[torch.Tensor]: Targets of vote head.
wuyuefeng's avatar
Votenet  
wuyuefeng committed
345
346
347
348
349
350
        """
        # find empty example
        valid_gt_masks = list()
        gt_num = list()
        for index in range(len(gt_labels_3d)):
            if len(gt_labels_3d[index]) == 0:
wuyuefeng's avatar
wuyuefeng committed
351
352
353
                fake_box = gt_bboxes_3d[index].tensor.new_zeros(
                    1, gt_bboxes_3d[index].tensor.shape[-1])
                gt_bboxes_3d[index] = gt_bboxes_3d[index].new_box(fake_box)
wuyuefeng's avatar
Votenet  
wuyuefeng committed
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
                gt_labels_3d[index] = gt_labels_3d[index].new_zeros(1)
                valid_gt_masks.append(gt_labels_3d[index].new_zeros(1))
                gt_num.append(1)
            else:
                valid_gt_masks.append(gt_labels_3d[index].new_ones(
                    gt_labels_3d[index].shape))
                gt_num.append(gt_labels_3d[index].shape[0])
        max_gt_num = max(gt_num)

        if pts_semantic_mask is None:
            pts_semantic_mask = [None for i in range(len(gt_labels_3d))]
            pts_instance_mask = [None for i in range(len(gt_labels_3d))]

        aggregated_points = [
            bbox_preds['aggregated_points'][i]
            for i in range(len(gt_labels_3d))
        ]

        (vote_targets, vote_target_masks, size_class_targets, size_res_targets,
         dir_class_targets, dir_res_targets, center_targets, mask_targets,
         objectness_targets, objectness_masks) = multi_apply(
             self.get_targets_single, points, gt_bboxes_3d, gt_labels_3d,
             pts_semantic_mask, pts_instance_mask, aggregated_points)

        # pad targets as original code of votenet.
        for index in range(len(gt_labels_3d)):
            pad_num = max_gt_num - gt_labels_3d[index].shape[0]
            center_targets[index] = F.pad(center_targets[index],
                                          (0, 0, 0, pad_num))
            valid_gt_masks[index] = F.pad(valid_gt_masks[index], (0, pad_num))

        vote_targets = torch.stack(vote_targets)
        vote_target_masks = torch.stack(vote_target_masks)
        center_targets = torch.stack(center_targets)
        valid_gt_masks = torch.stack(valid_gt_masks)

        objectness_targets = torch.stack(objectness_targets)
        objectness_weights = torch.stack(objectness_masks)
        objectness_weights /= (torch.sum(objectness_weights) + 1e-6)
        box_loss_weights = objectness_targets.float() / (
            torch.sum(objectness_targets).float() + 1e-6)
        valid_gt_weights = valid_gt_masks.float() / (
            torch.sum(valid_gt_masks.float()) + 1e-6)
        dir_class_targets = torch.stack(dir_class_targets)
        dir_res_targets = torch.stack(dir_res_targets)
        size_class_targets = torch.stack(size_class_targets)
        size_res_targets = torch.stack(size_res_targets)
        mask_targets = torch.stack(mask_targets)

        return (vote_targets, vote_target_masks, size_class_targets,
                size_res_targets, dir_class_targets, dir_res_targets,
                center_targets, mask_targets, valid_gt_masks,
                objectness_targets, objectness_weights, box_loss_weights,
                valid_gt_weights)

    def get_targets_single(self,
                           points,
                           gt_bboxes_3d,
                           gt_labels_3d,
                           pts_semantic_mask=None,
                           pts_instance_mask=None,
                           aggregated_points=None):
wuyuefeng's avatar
wuyuefeng committed
416
417
418
        """Generate targets of vote head for single batch.

        Args:
liyinhao's avatar
liyinhao committed
419
            points (torch.Tensor): Points of each batch.
wangtai's avatar
wangtai committed
420
421
422
423
            gt_bboxes_3d (:obj:`BaseInstance3DBoxes`): Ground truth \
                boxes of each batch.
            gt_labels_3d (torch.Tensor): Labels of each batch.
            pts_semantic_mask (None | torch.Tensor): Point-wise semantic
wuyuefeng's avatar
wuyuefeng committed
424
                label of each batch.
wangtai's avatar
wangtai committed
425
            pts_instance_mask (None | torch.Tensor): Point-wise instance
wuyuefeng's avatar
wuyuefeng committed
426
                label of each batch.
liyinhao's avatar
liyinhao committed
427
            aggregated_points (torch.Tensor): Aggregated points from
wuyuefeng's avatar
wuyuefeng committed
428
429
430
                vote aggregation layer.

        Returns:
431
            tuple[torch.Tensor]: Targets of vote head.
wuyuefeng's avatar
wuyuefeng committed
432
        """
wuyuefeng's avatar
Votenet  
wuyuefeng committed
433
434
        assert self.bbox_coder.with_rot or pts_semantic_mask is not None

wuyuefeng's avatar
wuyuefeng committed
435
436
        gt_bboxes_3d = gt_bboxes_3d.to(points.device)

wuyuefeng's avatar
Votenet  
wuyuefeng committed
437
438
439
440
441
442
443
        # generate votes target
        num_points = points.shape[0]
        if self.bbox_coder.with_rot:
            vote_targets = points.new_zeros([num_points, 3 * self.gt_per_seed])
            vote_target_masks = points.new_zeros([num_points],
                                                 dtype=torch.long)
            vote_target_idx = points.new_zeros([num_points], dtype=torch.long)
wuyuefeng's avatar
wuyuefeng committed
444
445
            box_indices_all = gt_bboxes_3d.points_in_boxes(points)
            for i in range(gt_labels_3d.shape[0]):
wuyuefeng's avatar
Votenet  
wuyuefeng committed
446
                box_indices = box_indices_all[:, i]
447
448
                indices = torch.nonzero(
                    box_indices, as_tuple=False).squeeze(-1)
wuyuefeng's avatar
Votenet  
wuyuefeng committed
449
450
451
                selected_points = points[indices]
                vote_target_masks[indices] = 1
                vote_targets_tmp = vote_targets[indices]
wuyuefeng's avatar
wuyuefeng committed
452
                votes = gt_bboxes_3d.gravity_center[i].unsqueeze(
wuyuefeng's avatar
Votenet  
wuyuefeng committed
453
454
455
456
                    0) - selected_points[:, :3]

                for j in range(self.gt_per_seed):
                    column_indices = torch.nonzero(
457
458
                        vote_target_idx[indices] == j,
                        as_tuple=False).squeeze(-1)
wuyuefeng's avatar
Votenet  
wuyuefeng committed
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
                    vote_targets_tmp[column_indices,
                                     int(j * 3):int(j * 3 +
                                                    3)] = votes[column_indices]
                    if j == 0:
                        vote_targets_tmp[column_indices] = votes[
                            column_indices].repeat(1, self.gt_per_seed)

                vote_targets[indices] = vote_targets_tmp
                vote_target_idx[indices] = torch.clamp(
                    vote_target_idx[indices] + 1, max=2)
        elif pts_semantic_mask is not None:
            vote_targets = points.new_zeros([num_points, 3])
            vote_target_masks = points.new_zeros([num_points],
                                                 dtype=torch.long)

            for i in torch.unique(pts_instance_mask):
475
476
                indices = torch.nonzero(
                    pts_instance_mask == i, as_tuple=False).squeeze(-1)
wuyuefeng's avatar
Votenet  
wuyuefeng committed
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
                if pts_semantic_mask[indices[0]] < self.num_classes:
                    selected_points = points[indices, :3]
                    center = 0.5 * (
                        selected_points.min(0)[0] + selected_points.max(0)[0])
                    vote_targets[indices, :] = center - selected_points
                    vote_target_masks[indices] = 1
            vote_targets = vote_targets.repeat((1, self.gt_per_seed))
        else:
            raise NotImplementedError

        (center_targets, size_class_targets, size_res_targets,
         dir_class_targets,
         dir_res_targets) = self.bbox_coder.encode(gt_bboxes_3d, gt_labels_3d)

        proposal_num = aggregated_points.shape[0]
        distance1, _, assignment, _ = chamfer_distance(
            aggregated_points.unsqueeze(0),
            center_targets.unsqueeze(0),
            reduction='none')
        assignment = assignment.squeeze(0)
        euclidean_distance1 = torch.sqrt(distance1.squeeze(0) + 1e-6)

        objectness_targets = points.new_zeros((proposal_num), dtype=torch.long)
        objectness_targets[
            euclidean_distance1 < self.train_cfg['pos_distance_thr']] = 1

        objectness_masks = points.new_zeros((proposal_num))
        objectness_masks[
            euclidean_distance1 < self.train_cfg['pos_distance_thr']] = 1.0
        objectness_masks[
            euclidean_distance1 > self.train_cfg['neg_distance_thr']] = 1.0

        dir_class_targets = dir_class_targets[assignment]
        dir_res_targets = dir_res_targets[assignment]
        dir_res_targets /= (np.pi / self.num_dir_bins)
        size_class_targets = size_class_targets[assignment]
        size_res_targets = size_res_targets[assignment]

wuyuefeng's avatar
wuyuefeng committed
515
        one_hot_size_targets = gt_bboxes_3d.tensor.new_zeros(
wuyuefeng's avatar
Votenet  
wuyuefeng committed
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
            (proposal_num, self.num_sizes))
        one_hot_size_targets.scatter_(1, size_class_targets.unsqueeze(-1), 1)
        one_hot_size_targets = one_hot_size_targets.unsqueeze(-1).repeat(
            1, 1, 3)
        mean_sizes = size_res_targets.new_tensor(
            self.bbox_coder.mean_sizes).unsqueeze(0)
        pos_mean_sizes = torch.sum(one_hot_size_targets * mean_sizes, 1)
        size_res_targets /= pos_mean_sizes

        mask_targets = gt_labels_3d[assignment]

        return (vote_targets, vote_target_masks, size_class_targets,
                size_res_targets,
                dir_class_targets, dir_res_targets, center_targets,
                mask_targets.long(), objectness_targets, objectness_masks)

encore-zhou's avatar
encore-zhou committed
532
533
534
535
536
537
    def get_bboxes(self,
                   points,
                   bbox_preds,
                   input_metas,
                   rescale=False,
                   use_nms=True):
wuyuefeng's avatar
wuyuefeng committed
538
539
540
        """Generate bboxes from vote head predictions.

        Args:
liyinhao's avatar
liyinhao committed
541
            points (torch.Tensor): Input points.
wuyuefeng's avatar
wuyuefeng committed
542
            bbox_preds (dict): Predictions from vote head.
wangtai's avatar
wangtai committed
543
            input_metas (list[dict]): Point cloud and image's meta info.
wuyuefeng's avatar
wuyuefeng committed
544
            rescale (bool): Whether to rescale bboxes.
encore-zhou's avatar
encore-zhou committed
545
546
            use_nms (bool): Whether to apply NMS, skip nms postprocessing
                while using vote head in rpn stage.
wuyuefeng's avatar
wuyuefeng committed
547
548

        Returns:
wangtai's avatar
wangtai committed
549
            list[tuple[torch.Tensor]]: Bounding boxes, scores and labels.
wuyuefeng's avatar
wuyuefeng committed
550
        """
wuyuefeng's avatar
Votenet  
wuyuefeng committed
551
552
553
        # decode boxes
        obj_scores = F.softmax(bbox_preds['obj_scores'], dim=-1)[..., -1]
        sem_scores = F.softmax(bbox_preds['sem_scores'], dim=-1)
wuyuefeng's avatar
wuyuefeng committed
554
        bbox3d = self.bbox_coder.decode(bbox_preds)
wuyuefeng's avatar
Votenet  
wuyuefeng committed
555

encore-zhou's avatar
encore-zhou committed
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
        if use_nms:
            batch_size = bbox3d.shape[0]
            results = list()
            for b in range(batch_size):
                bbox_selected, score_selected, labels = \
                    self.multiclass_nms_single(obj_scores[b], sem_scores[b],
                                               bbox3d[b], points[b, ..., :3],
                                               input_metas[b])
                bbox = input_metas[b]['box_type_3d'](
                    bbox_selected,
                    box_dim=bbox_selected.shape[-1],
                    with_yaw=self.bbox_coder.with_rot)
                results.append((bbox, score_selected, labels))

            return results
        else:
            return bbox3d
wuyuefeng's avatar
Votenet  
wuyuefeng committed
573

wuyuefeng's avatar
wuyuefeng committed
574
575
    def multiclass_nms_single(self, obj_scores, sem_scores, bbox, points,
                              input_meta):
wangtai's avatar
wangtai committed
576
        """Multi-class nms in single batch.
wuyuefeng's avatar
wuyuefeng committed
577
578

        Args:
wangtai's avatar
wangtai committed
579
580
581
            obj_scores (torch.Tensor): Objectness score of bounding boxes.
            sem_scores (torch.Tensor): semantic class score of bounding boxes.
            bbox (torch.Tensor): Predicted bounding boxes.
liyinhao's avatar
liyinhao committed
582
            points (torch.Tensor): Input points.
wangtai's avatar
wangtai committed
583
            input_meta (dict): Point cloud and image's meta info.
wuyuefeng's avatar
wuyuefeng committed
584
585

        Returns:
wangtai's avatar
wangtai committed
586
            tuple[torch.Tensor]: Bounding boxes, scores and labels.
wuyuefeng's avatar
wuyuefeng committed
587
        """
wuyuefeng's avatar
wuyuefeng committed
588
589
590
591
592
593
        bbox = input_meta['box_type_3d'](
            bbox,
            box_dim=bbox.shape[-1],
            with_yaw=self.bbox_coder.with_rot,
            origin=(0.5, 0.5, 0.5))
        box_indices = bbox.points_in_boxes(points)
wuyuefeng's avatar
Votenet  
wuyuefeng committed
594

wuyuefeng's avatar
wuyuefeng committed
595
        corner3d = bbox.corners
wuyuefeng's avatar
Votenet  
wuyuefeng committed
596
597
598
599
        minmax_box3d = corner3d.new(torch.Size((corner3d.shape[0], 6)))
        minmax_box3d[:, :3] = torch.min(corner3d, dim=1)[0]
        minmax_box3d[:, 3:] = torch.max(corner3d, dim=1)[0]

wuyuefeng's avatar
wuyuefeng committed
600
601
602
        nonempty_box_mask = box_indices.T.sum(1) > 5

        bbox_classes = torch.argmax(sem_scores, -1)
wuyuefeng's avatar
Votenet  
wuyuefeng committed
603
604
605
606
607
608
609
        nms_selected = aligned_3d_nms(minmax_box3d[nonempty_box_mask],
                                      obj_scores[nonempty_box_mask],
                                      bbox_classes[nonempty_box_mask],
                                      self.test_cfg.nms_thr)

        # filter empty boxes and boxes with low score
        scores_mask = (obj_scores > self.test_cfg.score_thr)
610
611
        nonempty_box_inds = torch.nonzero(
            nonempty_box_mask, as_tuple=False).flatten()
wuyuefeng's avatar
Votenet  
wuyuefeng committed
612
613
614
615
616
617
618
        nonempty_mask = torch.zeros_like(bbox_classes).scatter(
            0, nonempty_box_inds[nms_selected], 1)
        selected = (nonempty_mask.bool() & scores_mask.bool())

        if self.test_cfg.per_class_proposal:
            bbox_selected, score_selected, labels = [], [], []
            for k in range(sem_scores.shape[-1]):
wuyuefeng's avatar
wuyuefeng committed
619
                bbox_selected.append(bbox[selected].tensor)
wuyuefeng's avatar
Votenet  
wuyuefeng committed
620
621
622
623
624
625
626
627
                score_selected.append(obj_scores[selected] *
                                      sem_scores[selected][:, k])
                labels.append(
                    torch.zeros_like(bbox_classes[selected]).fill_(k))
            bbox_selected = torch.cat(bbox_selected, 0)
            score_selected = torch.cat(score_selected, 0)
            labels = torch.cat(labels, 0)
        else:
wuyuefeng's avatar
wuyuefeng committed
628
            bbox_selected = bbox[selected].tensor
wuyuefeng's avatar
Votenet  
wuyuefeng committed
629
630
631
632
            score_selected = obj_scores[selected]
            labels = bbox_classes[selected]

        return bbox_selected, score_selected, labels