"vscode:/vscode.git/clone" did not exist on "a883f0790d48bad03c7c2e052c0f4e8f4c841674"
README.md 15.6 KB
Newer Older
zhangwenwei's avatar
zhangwenwei committed
1
<div align="center">
zhangwenwei's avatar
zhangwenwei committed
2
  <img src="resources/mmdet3d-logo.png" width="600"/>
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
  <div>&nbsp;</div>
  <div align="center">
    <b><font size="5">OpenMMLab website</font></b>
    <sup>
      <a href="https://openmmlab.com">
        <i><font size="4">HOT</font></i>
      </a>
    </sup>
    &nbsp;&nbsp;&nbsp;&nbsp;
    <b><font size="5">OpenMMLab platform</font></b>
    <sup>
      <a href="https://platform.openmmlab.com">
        <i><font size="4">TRY IT OUT</font></i>
      </a>
    </sup>
  </div>
  <div>&nbsp;</div>
zhangwenwei's avatar
zhangwenwei committed
20
</div>
zhangwenwei's avatar
zhangwenwei committed
21

22
[![docs](https://img.shields.io/badge/docs-latest-blue)](https://mmdetection3d.readthedocs.io/en/1.1/)
Wenwei Zhang's avatar
Wenwei Zhang committed
23
24
25
26
[![badge](https://github.com/open-mmlab/mmdetection3d/workflows/build/badge.svg)](https://github.com/open-mmlab/mmdetection3d/actions)
[![codecov](https://codecov.io/gh/open-mmlab/mmdetection3d/branch/master/graph/badge.svg)](https://codecov.io/gh/open-mmlab/mmdetection3d)
[![license](https://img.shields.io/github/license/open-mmlab/mmdetection3d.svg)](https://github.com/open-mmlab/mmdetection3d/blob/master/LICENSE)

VVsssssk's avatar
VVsssssk committed
27
**News**:
Tai-Wang's avatar
Tai-Wang committed
28

VVsssssk's avatar
VVsssssk committed
29
**v1.1.0rc0** was released in 1/9/2022:
Tai-Wang's avatar
Tai-Wang committed
30

VVsssssk's avatar
VVsssssk committed
31
32
33
- Unifies interfaces of all components based on [MMEngine](https://github.com/open-mmlab/mmengine) and [MMDet 3.x](https://github.com/open-mmlab/mmdetection/tree/3.x).
- A standard data protocol defines and unifies the common keys across different datasets.
- Faster training and testing speed with more strong baselines.
Tai-Wang's avatar
Tai-Wang committed
34

VVsssssk's avatar
VVsssssk committed
35
The compatibilities of models are broken due to the unification and simplification of coordinate systems after v1.0.0rc0. For now, most models are benchmarked with similar performance, though few models are still being benchmarked. In the following release, we will update all the model checkpoints and benchmarks. See more details in the [Changelog](docs/en/notes/changelog.md) and [Changelog-v1.0.x](docs/en/notes/changelog_v1.0.x.md).
VVsssssk's avatar
VVsssssk committed
36

zhangwenwei's avatar
zhangwenwei committed
37
Documentation: https://mmdetection3d.readthedocs.io/
zhangwenwei's avatar
zhangwenwei committed
38
39
40

## Introduction

41
42
English | [简体中文](README_zh-CN.md)

VVsssssk's avatar
VVsssssk committed
43
The master branch works with **PyTorch 1.6+**.
zhangwenwei's avatar
zhangwenwei committed
44

45
MMDetection3D is an open source object detection toolbox based on PyTorch, towards the next-generation platform for general 3D detection. It is
zhangwenwei's avatar
zhangwenwei committed
46
a part of the OpenMMLab project developed by [MMLab](http://mmlab.ie.cuhk.edu.hk/).
zhangwenwei's avatar
zhangwenwei committed
47

zhangwenwei's avatar
zhangwenwei committed
48
![demo image](resources/mmdet3d_outdoor_demo.gif)
zhangwenwei's avatar
zhangwenwei committed
49
50
51

### Major features

zhangwenwei's avatar
zhangwenwei committed
52
- **Support multi-modality/single-modality detectors out of box**
zhangwenwei's avatar
zhangwenwei committed
53

54
  It directly supports multi-modality/single-modality detectors including MVXNet, VoteNet, PointPillars, etc.
zhangwenwei's avatar
zhangwenwei committed
55

zhangwenwei's avatar
zhangwenwei committed
56
- **Support indoor/outdoor 3D detection out of box**
zhangwenwei's avatar
zhangwenwei committed
57

Wenwei Zhang's avatar
Wenwei Zhang committed
58
  It directly supports popular indoor and outdoor 3D detection datasets, including ScanNet, SUNRGB-D, Waymo, nuScenes, Lyft, and KITTI.
59
  For nuScenes dataset, we also support [nuImages dataset](https://github.com/open-mmlab/mmdetection3d/tree/1.1/configs/nuimages).
zhangwenwei's avatar
zhangwenwei committed
60

zhangwenwei's avatar
zhangwenwei committed
61
- **Natural integration with 2D detection**
62

VVsssssk's avatar
VVsssssk committed
63
  All the about **300+ models, methods of 40+ papers**, and modules supported in [MMDetection](https://github.com/open-mmlab/mmdetection/blob/3.x/docs/en/model_zoo.md) can be trained or used in this codebase.
zhangwenwei's avatar
zhangwenwei committed
64

zhangwenwei's avatar
zhangwenwei committed
65
- **High efficiency**
zhangwenwei's avatar
zhangwenwei committed
66

Wenhao Wu's avatar
Wenhao Wu committed
67
  It trains faster than other codebases. The main results are as below. Details can be found in [benchmark.md](./docs/en/benchmarks.md). We compare the number of samples trained per second (the higher, the better). The models that are not supported by other codebases are marked by `×`.
zhangwenwei's avatar
zhangwenwei committed
68

69
70
71
72
73
74
75
  |       Methods       | MMDetection3D | [OpenPCDet](https://github.com/open-mmlab/OpenPCDet) | [votenet](https://github.com/facebookresearch/votenet) | [Det3D](https://github.com/poodarchu/Det3D) |
  | :-----------------: | :-----------: | :--------------------------------------------------: | :----------------------------------------------------: | :-----------------------------------------: |
  |       VoteNet       |      358      |                          ×                           |                           77                           |                      ×                      |
  |  PointPillars-car   |      141      |                          ×                           |                           ×                            |                     140                     |
  | PointPillars-3class |      107      |                          44                          |                           ×                            |                      ×                      |
  |       SECOND        |      40       |                          30                          |                           ×                            |                      ×                      |
  |       Part-A2       |      17       |                          14                          |                           ×                            |                      ×                      |
Wenwei Zhang's avatar
Wenwei Zhang committed
76
77

Like [MMDetection](https://github.com/open-mmlab/mmdetection) and [MMCV](https://github.com/open-mmlab/mmcv), MMDetection3D can also be used as a library to support different projects on top of it.
zhangwenwei's avatar
zhangwenwei committed
78
79
80
81
82

## License

This project is released under the [Apache 2.0 license](LICENSE).

zhangwenwei's avatar
zhangwenwei committed
83
## Changelog
zhangwenwei's avatar
zhangwenwei committed
84

VVsssssk's avatar
VVsssssk committed
85
We are excited to announce the release of MMDetection3D 1.1.0rc0.
Tai-Wang's avatar
Tai-Wang committed
86

87
MMDet3D 1.1 unifies the interfaces of dataset, models, evaluation, and visualization with faster training and testing speed.
Tai-Wang's avatar
Tai-Wang committed
88

VVsssssk's avatar
VVsssssk committed
89
Please refer to [changelog.md](docs/en/notes/changelog.md) for details and release history.
zhangwenwei's avatar
zhangwenwei committed
90
91
92

## Benchmark and model zoo

Wenhao Wu's avatar
Wenhao Wu committed
93
Results and models are available in the [model zoo](docs/en/model_zoo.md).
zhangwenwei's avatar
zhangwenwei committed
94

95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
<div align="center">
  <b>Components</b>
</div>
<table align="center">
  <tbody>
    <tr align="center" valign="bottom">
      <td>
        <b>Backbones</b>
      </td>
      <td>
        <b>Heads</b>
      </td>
      <td>
        <b>Features</b>
      </td>
    </tr>
    <tr valign="top">
      <td>
      <ul>
        <li><a href="configs/pointnet2">PointNet (CVPR'2017)</a></li>
        <li><a href="configs/pointnet2">PointNet++ (NeurIPS'2017)</a></li>
        <li><a href="configs/regnet">RegNet (CVPR'2020)</a></li>
        <li><a href="configs/dgcnn">DGCNN (TOG'2019)</a></li>
        <li>DLA (CVPR'2018)</li>
      </ul>
      </td>
      <td>
      <ul>
        <li><a href="configs/free_anchor">FreeAnchor (NeurIPS'2019)</a></li>
      </ul>
      </td>
      <td>
      <ul>
        <li><a href="configs/dynamic_voxelization">Dynamic Voxelization (CoRL'2019)</a></li>
      </ul>
      </td>
    </tr>
</td>
    </tr>
  </tbody>
</table>

<div align="center">
  <b>Architectures</b>
</div>
<table align="center">
  <tbody>
    <tr align="center" valign="middle">
      <td>
        <b>3D Object Detection</b>
      </td>
      <td>
        <b>Monocular 3D Object Detection</b>
      </td>
      <td>
        <b>Multi-modal 3D Object Detection</b>
      </td>
      <td>
        <b>3D Semantic Segmentation</b>
      </td>
    </tr>
    <tr valign="top">
      <td>
        <li><b>Outdoor</b></li>
        <ul>
            <li><a href="configs/second">SECOND (Sensor'2018)</a></li>
            <li><a href="configs/pointpillars">PointPillars (CVPR'2019)</a></li>
            <li><a href="configs/ssn">SSN (ECCV'2020)</a></li>
            <li><a href="configs/3dssd">3DSSD (CVPR'2020)</a></li>
Tai-Wang's avatar
Tai-Wang committed
164
            <li><a href="configs/sassd">SA-SSD (CVPR'2020)</a></li>
ChaimZhu's avatar
ChaimZhu committed
165
            <li><a href="configs/point_rcnn">PointRCNN (CVPR'2019)</a></li>
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
            <li><a href="configs/parta2">Part-A2 (TPAMI'2020)</a></li>
            <li><a href="configs/centerpoint">CenterPoint (CVPR'2021)</a></li>
        </ul>
        <li><b>Indoor</b></li>
        <ul>
            <li><a href="configs/votenet">VoteNet (ICCV'2019)</a></li>
            <li><a href="configs/h3dnet">H3DNet (ECCV'2020)</a></li>
            <li><a href="configs/groupfree3d">Group-Free-3D (ICCV'2021)</a></li>
      </ul>
      </td>
      <td>
        <li><b>Outdoor</b></li>
        <ul>
          <li><a href="configs/imvoxelnet">ImVoxelNet (WACV'2022)</a></li>
          <li><a href="configs/smoke">SMOKE (CVPRW'2020)</a></li>
          <li><a href="configs/fcos3d">FCOS3D (ICCVW'2021)</a></li>
          <li><a href="configs/pgd">PGD (CoRL'2021)</a></li>
          <li><a href="configs/monoflex">MonoFlex (CVPR'2021)</a></li>
        </ul>
      </td>
      <td>
        <li><b>Outdoor</b></li>
        <ul>
          <li><a href="configs/mvxnet">MVXNet (ICRA'2019)</a></li>
        </ul>
        <li><b>Indoor</b></li>
        <ul>
          <li><a href="configs/imvotenet">ImVoteNet (CVPR'2020)</a></li>
        </ul>
      </td>
      <td>
        <li><b>Indoor</b></li>
        <ul>
          <li><a href="configs/pointnet2">PointNet++ (NeurIPS'2017)</a></li>
          <li><a href="configs/paconv">PAConv (CVPR'2021)</a></li>
          <li><a href="configs/dgcnn">DGCNN (TOG'2019)</a></li>
        </ul>
      </ul>
      </td>
    </tr>
</td>
    </tr>
  </tbody>
</table>
210

211
212
213
214
215
216
217
218
|               | ResNet | ResNeXt | SENet | PointNet++ | DGCNN | HRNet | RegNetX | Res2Net | DLA |
| ------------- | :----: | :-----: | :---: | :--------: | :---: | :---: | :-----: | :-----: | :-: |
| SECOND        |   ☐    |    ☐    |   ☐   |     ✗      |   ✗   |   ☐   |    ✓    |    ☐    |  ✗  |
| PointPillars  |   ☐    |    ☐    |   ☐   |     ✗      |   ✗   |   ☐   |    ✓    |    ☐    |  ✗  |
| FreeAnchor    |   ☐    |    ☐    |   ☐   |     ✗      |   ✗   |   ☐   |    ✓    |    ☐    |  ✗  |
| VoteNet       |   ✗    |    ✗    |   ✗   |     ✓      |   ✗   |   ✗   |    ✗    |    ✗    |  ✗  |
| H3DNet        |   ✗    |    ✗    |   ✗   |     ✓      |   ✗   |   ✗   |    ✗    |    ✗    |  ✗  |
| 3DSSD         |   ✗    |    ✗    |   ✗   |     ✓      |   ✗   |   ✗   |    ✗    |    ✗    |  ✗  |
Tai-Wang's avatar
Tai-Wang committed
219
220
221
| Part-A2       |   ☐    |    ☐    |   ☐   |     ✗      |   ✗   |   ☐   |    ☐    |    ☐    |  ✗  |
| MVXNet        |   ☐    |    ☐    |   ☐   |     ✗      |   ✗   |   ☐   |    ☐    |    ☐    |  ✗  |
| CenterPoint   |   ☐    |    ☐    |   ☐   |     ✗      |   ✗   |   ☐   |    ☐    |    ☐    |  ✗  |
222
223
224
225
226
227
228
229
230
231
232
| SSN           |   ☐    |    ☐    |   ☐   |     ✗      |   ✗   |   ☐   |    ✓    |    ☐    |  ✗  |
| ImVoteNet     |   ✗    |    ✗    |   ✗   |     ✓      |   ✗   |   ✗   |    ✗    |    ✗    |  ✗  |
| FCOS3D        |   ✓    |    ☐    |   ☐   |     ✗      |   ✗   |   ☐   |    ☐    |    ☐    |  ✗  |
| PointNet++    |   ✗    |    ✗    |   ✗   |     ✓      |   ✗   |   ✗   |    ✗    |    ✗    |  ✗  |
| Group-Free-3D |   ✗    |    ✗    |   ✗   |     ✓      |   ✗   |   ✗   |    ✗    |    ✗    |  ✗  |
| ImVoxelNet    |   ✓    |    ✗    |   ✗   |     ✗      |   ✗   |   ✗   |    ✗    |    ✗    |  ✗  |
| PAConv        |   ✗    |    ✗    |   ✗   |     ✓      |   ✗   |   ✗   |    ✗    |    ✗    |  ✗  |
| DGCNN         |   ✗    |    ✗    |   ✗   |     ✗      |   ✓   |   ✗   |    ✗    |    ✗    |  ✗  |
| SMOKE         |   ✗    |    ✗    |   ✗   |     ✗      |   ✗   |   ✗   |    ✗    |    ✗    |  ✓  |
| PGD           |   ✓    |    ☐    |   ☐   |     ✗      |   ✗   |   ☐   |    ☐    |    ☐    |  ✗  |
| MonoFlex      |   ✗    |    ✗    |   ✗   |     ✗      |   ✗   |   ✗   |    ✗    |    ✗    |  ✓  |
Tai-Wang's avatar
Tai-Wang committed
233
| SA-SSD        |   ☐    |    ☐    |   ☐   |     ✗      |   ✗   |   ☐   |    ☐    |    ☐    |  ✗  |
zhangwenwei's avatar
zhangwenwei committed
234

Wenhao Wu's avatar
Wenhao Wu committed
235
**Note:** All the about **300+ models, methods of 40+ papers** in 2D detection supported by [MMDetection](https://github.com/open-mmlab/mmdetection/blob/master/docs/en/model_zoo.md) can be trained or used in this codebase.
zhangwenwei's avatar
zhangwenwei committed
236
237
238

## Installation

Wenhao Wu's avatar
Wenhao Wu committed
239
Please refer to [getting_started.md](docs/en/getting_started.md) for installation.
zhangwenwei's avatar
zhangwenwei committed
240
241
242

## Get Started

VVsssssk's avatar
VVsssssk committed
243
Please see [getting_started.md](docs/en/getting_started.md) for the basic usage of MMDetection3D. We provide guidance for quick run [with existing dataset](docs/en/user_guides/1_exist_data_model.md) and [with customized dataset](docs/en/user_guides/2_new_data_model.md) for beginners. There are also tutorials for [learning configuration systems](docs/en/user_guides/config.md), [adding new dataset](docs/en/advanced_guides/customize_dataset.md), [designing data pipeline](docs/en/user_guides/data_pipeline.md), [customizing models](docs/en/advanced_guides/customize_models.md), [customizing runtime settings](docs/en/advanced_guides/customize_runtime.md) and [Waymo dataset](docs/en/advanced_guides/datasets/waymo_det.md).
VVsssssk's avatar
VVsssssk committed
244

VVsssssk's avatar
VVsssssk committed
245
Please refer to [FAQ](docs/en/notes/faq.md) for frequently asked questions. When updating the version of MMDetection3D, please also check the [compatibility doc](docs/en/notes/compatibility.md) to be aware of the BC-breaking updates introduced in each version.
246

247
248
249
250
251
252
## Citation

If you find this project useful in your research, please consider cite:

```latex
@misc{mmdet3d2020,
Ziyi Wu's avatar
Ziyi Wu committed
253
    title={{MMDetection3D: OpenMMLab} next-generation platform for general {3D} object detection},
254
255
256
257
258
259
    author={MMDetection3D Contributors},
    howpublished = {\url{https://github.com/open-mmlab/mmdetection3d}},
    year={2020}
}
```

zhangwenwei's avatar
zhangwenwei committed
260
261
## Contributing

zhangwenwei's avatar
zhangwenwei committed
262
We appreciate all contributions to improve MMDetection3D. Please refer to [CONTRIBUTING.md](.github/CONTRIBUTING.md) for the contributing guideline.
zhangwenwei's avatar
zhangwenwei committed
263
264
265

## Acknowledgement

zhangwenwei's avatar
zhangwenwei committed
266
MMDetection3D is an open source project that is contributed by researchers and engineers from various colleges and companies. We appreciate all the contributors as well as users who give valuable feedbacks.
zhangwenwei's avatar
zhangwenwei committed
267
We wish that the toolbox and benchmark could serve the growing research community by providing a flexible toolkit to reimplement existing methods and develop their own new 3D detectors.
268
269
270

## Projects in OpenMMLab

VVsssssk's avatar
VVsssssk committed
271
- [MMEngine](https://github.com/open-mmlab/mmengine): OpenMMLab foundational library for training deep learning models.
272
- [MMCV](https://github.com/open-mmlab/mmcv): OpenMMLab foundational library for computer vision.
273
- [MIM](https://github.com/open-mmlab/mim): MIM installs OpenMMLab packages.
274
275
- [MMClassification](https://github.com/open-mmlab/mmclassification): OpenMMLab image classification toolbox and benchmark.
- [MMDetection](https://github.com/open-mmlab/mmdetection): OpenMMLab detection toolbox and benchmark.
276
277
- [MMDetection3D](https://github.com/open-mmlab/mmdetection3d): OpenMMLab's next-generation platform for general 3D object detection.
- [MMRotate](https://github.com/open-mmlab/mmrotate): OpenMMLab rotated object detection toolbox and benchmark.
278
- [MMSegmentation](https://github.com/open-mmlab/mmsegmentation): OpenMMLab semantic segmentation toolbox and benchmark.
279
280
281
282
283
284
- [MMOCR](https://github.com/open-mmlab/mmocr): OpenMMLab text detection, recognition, and understanding toolbox.
- [MMPose](https://github.com/open-mmlab/mmpose): OpenMMLab pose estimation toolbox and benchmark.
- [MMHuman3D](https://github.com/open-mmlab/mmhuman3d): OpenMMLab 3D human parametric model toolbox and benchmark.
- [MMSelfSup](https://github.com/open-mmlab/mmselfsup): OpenMMLab self-supervised learning toolbox and benchmark.
- [MMRazor](https://github.com/open-mmlab/mmrazor): OpenMMLab model compression toolbox and benchmark.
- [MMFewShot](https://github.com/open-mmlab/mmfewshot): OpenMMLab fewshot learning toolbox and benchmark.
285
286
- [MMAction2](https://github.com/open-mmlab/mmaction2): OpenMMLab's next-generation action understanding toolbox and benchmark.
- [MMTracking](https://github.com/open-mmlab/mmtracking): OpenMMLab video perception toolbox and benchmark.
287
- [MMFlow](https://github.com/open-mmlab/mmflow): OpenMMLab optical flow toolbox and benchmark.
288
- [MMEditing](https://github.com/open-mmlab/mmediting): OpenMMLab image and video editing toolbox.
289
- [MMGeneration](https://github.com/open-mmlab/mmgeneration): OpenMMLab image and video generative models toolbox.
290
- [MMDeploy](https://github.com/open-mmlab/mmdeploy): OpenMMLab model deployment framework.