vote_head.py 27.7 KB
Newer Older
dingchang's avatar
dingchang committed
1
# Copyright (c) OpenMMLab. All rights reserved.
wuyuefeng's avatar
Votenet  
wuyuefeng committed
2
3
import numpy as np
import torch
4
from mmcv.ops import furthest_point_sample
5
from mmcv.runner import BaseModule, force_fp32
zhangwenwei's avatar
zhangwenwei committed
6
from torch.nn import functional as F
wuyuefeng's avatar
Votenet  
wuyuefeng committed
7
8
9
10
11

from mmdet3d.core.post_processing import aligned_3d_nms
from mmdet3d.models.builder import build_loss
from mmdet3d.models.losses import chamfer_distance
from mmdet3d.models.model_utils import VoteModule
12
from mmdet3d.ops import build_sa_module
zhangwenwei's avatar
zhangwenwei committed
13
from mmdet.core import build_bbox_coder, multi_apply
wuyuefeng's avatar
Votenet  
wuyuefeng committed
14
from mmdet.models import HEADS
15
from .base_conv_bbox_head import BaseConvBboxHead
wuyuefeng's avatar
Votenet  
wuyuefeng committed
16
17
18


@HEADS.register_module()
19
class VoteHead(BaseModule):
zhangwenwei's avatar
zhangwenwei committed
20
    r"""Bbox head of `Votenet <https://arxiv.org/abs/1904.09664>`_.
wuyuefeng's avatar
Votenet  
wuyuefeng committed
21
22
23

    Args:
        num_classes (int): The number of class.
24
        bbox_coder (:obj:`BaseBBoxCoder`): Bbox coder for encoding and
wuyuefeng's avatar
Votenet  
wuyuefeng committed
25
26
27
            decoding boxes.
        train_cfg (dict): Config for training.
        test_cfg (dict): Config for testing.
28
        vote_module_cfg (dict): Config of VoteModule for point-wise votes.
wuyuefeng's avatar
Votenet  
wuyuefeng committed
29
        vote_aggregation_cfg (dict): Config of vote aggregation layer.
30
31
        pred_layer_cfg (dict): Config of classfication and regression
            prediction layers.
wuyuefeng's avatar
Votenet  
wuyuefeng committed
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
        conv_cfg (dict): Config of convolution in prediction layer.
        norm_cfg (dict): Config of BN in prediction layer.
        objectness_loss (dict): Config of objectness loss.
        center_loss (dict): Config of center loss.
        dir_class_loss (dict): Config of direction classification loss.
        dir_res_loss (dict): Config of direction residual regression loss.
        size_class_loss (dict): Config of size classification loss.
        size_res_loss (dict): Config of size residual regression loss.
        semantic_loss (dict): Config of point-wise semantic segmentation loss.
    """

    def __init__(self,
                 num_classes,
                 bbox_coder,
                 train_cfg=None,
                 test_cfg=None,
48
                 vote_module_cfg=None,
wuyuefeng's avatar
Votenet  
wuyuefeng committed
49
                 vote_aggregation_cfg=None,
50
                 pred_layer_cfg=None,
wuyuefeng's avatar
Votenet  
wuyuefeng committed
51
52
53
54
55
56
57
58
                 conv_cfg=dict(type='Conv1d'),
                 norm_cfg=dict(type='BN1d'),
                 objectness_loss=None,
                 center_loss=None,
                 dir_class_loss=None,
                 dir_res_loss=None,
                 size_class_loss=None,
                 size_res_loss=None,
59
                 semantic_loss=None,
60
61
62
                 iou_loss=None,
                 init_cfg=None):
        super(VoteHead, self).__init__(init_cfg=init_cfg)
wuyuefeng's avatar
Votenet  
wuyuefeng committed
63
64
65
        self.num_classes = num_classes
        self.train_cfg = train_cfg
        self.test_cfg = test_cfg
66
        self.gt_per_seed = vote_module_cfg['gt_per_seed']
wuyuefeng's avatar
Votenet  
wuyuefeng committed
67
68
69
70
71
        self.num_proposal = vote_aggregation_cfg['num_point']

        self.objectness_loss = build_loss(objectness_loss)
        self.center_loss = build_loss(center_loss)
        self.dir_res_loss = build_loss(dir_res_loss)
72
        self.dir_class_loss = build_loss(dir_class_loss)
wuyuefeng's avatar
Votenet  
wuyuefeng committed
73
        self.size_res_loss = build_loss(size_res_loss)
74
75
76
77
        if size_class_loss is not None:
            self.size_class_loss = build_loss(size_class_loss)
        if semantic_loss is not None:
            self.semantic_loss = build_loss(semantic_loss)
78
79
80
81
        if iou_loss is not None:
            self.iou_loss = build_loss(iou_loss)
        else:
            self.iou_loss = None
wuyuefeng's avatar
Votenet  
wuyuefeng committed
82
83
84
85
86

        self.bbox_coder = build_bbox_coder(bbox_coder)
        self.num_sizes = self.bbox_coder.num_sizes
        self.num_dir_bins = self.bbox_coder.num_dir_bins

87
        self.vote_module = VoteModule(**vote_module_cfg)
88
        self.vote_aggregation = build_sa_module(vote_aggregation_cfg)
89
        self.fp16_enabled = False
wuyuefeng's avatar
Votenet  
wuyuefeng committed
90

91
92
93
94
95
96
97
98
99
100
101
102
103
        # Bbox classification and regression
        self.conv_pred = BaseConvBboxHead(
            **pred_layer_cfg,
            num_cls_out_channels=self._get_cls_out_channels(),
            num_reg_out_channels=self._get_reg_out_channels())

    def _get_cls_out_channels(self):
        """Return the channel number of classification outputs."""
        # Class numbers (k) + objectness (2)
        return self.num_classes + 2

    def _get_reg_out_channels(self):
        """Return the channel number of regression outputs."""
wuyuefeng's avatar
Votenet  
wuyuefeng committed
104
105
106
        # Objectness scores (2), center residual (3),
        # heading class+residual (num_dir_bins*2),
        # size class+residual(num_sizes*4)
107
        return 3 + self.num_dir_bins * 2 + self.num_sizes * 4
wuyuefeng's avatar
Votenet  
wuyuefeng committed
108

109
110
111
112
113
114
115
116
117
118
119
    def _extract_input(self, feat_dict):
        """Extract inputs from features dictionary.

        Args:
            feat_dict (dict): Feature dict from backbone.

        Returns:
            torch.Tensor: Coordinates of input points.
            torch.Tensor: Features of input points.
            torch.Tensor: Indices of input points.
        """
120
121
122
123
124
125
126
127
128
129
130
131
132

        # for imvotenet
        if 'seed_points' in feat_dict and \
           'seed_features' in feat_dict and \
           'seed_indices' in feat_dict:
            seed_points = feat_dict['seed_points']
            seed_features = feat_dict['seed_features']
            seed_indices = feat_dict['seed_indices']
        # for votenet
        else:
            seed_points = feat_dict['fp_xyz'][-1]
            seed_features = feat_dict['fp_features'][-1]
            seed_indices = feat_dict['fp_indices'][-1]
133
134

        return seed_points, seed_features, seed_indices
wuyuefeng's avatar
Votenet  
wuyuefeng committed
135
136
137
138

    def forward(self, feat_dict, sample_mod):
        """Forward pass.

zhangwenwei's avatar
zhangwenwei committed
139
        Note:
140
            The forward of VoteHead is divided into 4 steps:
zhangwenwei's avatar
zhangwenwei committed
141
142
143
144
145

                1. Generate vote_points from seed_points.
                2. Aggregate vote_points.
                3. Predict bbox and score.
                4. Decode predictions.
wuyuefeng's avatar
Votenet  
wuyuefeng committed
146
147

        Args:
wangtai's avatar
wangtai committed
148
149
            feat_dict (dict): Feature dict from backbone.
            sample_mod (str): Sample mode for vote aggregation layer.
150
                valid modes are "vote", "seed", "random" and "spec".
wuyuefeng's avatar
wuyuefeng committed
151
152
153

        Returns:
            dict: Predictions of vote head.
wuyuefeng's avatar
Votenet  
wuyuefeng committed
154
        """
155
        assert sample_mod in ['vote', 'seed', 'random', 'spec']
wuyuefeng's avatar
Votenet  
wuyuefeng committed
156

157
158
        seed_points, seed_features, seed_indices = self._extract_input(
            feat_dict)
wuyuefeng's avatar
Votenet  
wuyuefeng committed
159
160

        # 1. generate vote_points from seed_points
161
162
        vote_points, vote_features, vote_offset = self.vote_module(
            seed_points, seed_features)
wuyuefeng's avatar
Votenet  
wuyuefeng committed
163
164
165
166
        results = dict(
            seed_points=seed_points,
            seed_indices=seed_indices,
            vote_points=vote_points,
167
168
            vote_features=vote_features,
            vote_offset=vote_offset)
wuyuefeng's avatar
Votenet  
wuyuefeng committed
169
170
171
172

        # 2. aggregate vote_points
        if sample_mod == 'vote':
            # use fps in vote_aggregation
173
174
            aggregation_inputs = dict(
                points_xyz=vote_points, features=vote_features)
wuyuefeng's avatar
Votenet  
wuyuefeng committed
175
176
177
178
        elif sample_mod == 'seed':
            # FPS on seed and choose the votes corresponding to the seeds
            sample_indices = furthest_point_sample(seed_points,
                                                   self.num_proposal)
179
180
181
182
            aggregation_inputs = dict(
                points_xyz=vote_points,
                features=vote_features,
                indices=sample_indices)
wuyuefeng's avatar
Votenet  
wuyuefeng committed
183
184
185
186
187
188
        elif sample_mod == 'random':
            # Random sampling from the votes
            batch_size, num_seed = seed_points.shape[:2]
            sample_indices = seed_points.new_tensor(
                torch.randint(0, num_seed, (batch_size, self.num_proposal)),
                dtype=torch.int32)
189
190
191
192
193
194
195
196
197
198
            aggregation_inputs = dict(
                points_xyz=vote_points,
                features=vote_features,
                indices=sample_indices)
        elif sample_mod == 'spec':
            # Specify the new center in vote_aggregation
            aggregation_inputs = dict(
                points_xyz=seed_points,
                features=seed_features,
                target_xyz=vote_points)
wuyuefeng's avatar
Votenet  
wuyuefeng committed
199
        else:
Wenwei Zhang's avatar
Wenwei Zhang committed
200
201
            raise NotImplementedError(
                f'Sample mode {sample_mod} is not supported!')
wuyuefeng's avatar
Votenet  
wuyuefeng committed
202

203
        vote_aggregation_ret = self.vote_aggregation(**aggregation_inputs)
wuyuefeng's avatar
Votenet  
wuyuefeng committed
204
        aggregated_points, features, aggregated_indices = vote_aggregation_ret
205

wuyuefeng's avatar
Votenet  
wuyuefeng committed
206
        results['aggregated_points'] = aggregated_points
encore-zhou's avatar
encore-zhou committed
207
        results['aggregated_features'] = features
wuyuefeng's avatar
Votenet  
wuyuefeng committed
208
209
210
        results['aggregated_indices'] = aggregated_indices

        # 3. predict bbox and score
211
        cls_predictions, reg_predictions = self.conv_pred(features)
wuyuefeng's avatar
Votenet  
wuyuefeng committed
212
213

        # 4. decode predictions
214
215
216
217
        decode_res = self.bbox_coder.split_pred(cls_predictions,
                                                reg_predictions,
                                                aggregated_points)

wuyuefeng's avatar
Votenet  
wuyuefeng committed
218
219
220
221
        results.update(decode_res)

        return results

222
    @force_fp32(apply_to=('bbox_preds', ))
wuyuefeng's avatar
Votenet  
wuyuefeng committed
223
224
225
226
227
228
229
    def loss(self,
             bbox_preds,
             points,
             gt_bboxes_3d,
             gt_labels_3d,
             pts_semantic_mask=None,
             pts_instance_mask=None,
zhangwenwei's avatar
zhangwenwei committed
230
             img_metas=None,
encore-zhou's avatar
encore-zhou committed
231
232
             gt_bboxes_ignore=None,
             ret_target=False):
wuyuefeng's avatar
wuyuefeng committed
233
234
235
236
        """Compute loss.

        Args:
            bbox_preds (dict): Predictions from forward of vote head.
liyinhao's avatar
liyinhao committed
237
            points (list[torch.Tensor]): Input points.
238
            gt_bboxes_3d (list[:obj:`BaseInstance3DBoxes`]): Ground truth
wangtai's avatar
wangtai committed
239
240
                bboxes of each sample.
            gt_labels_3d (list[torch.Tensor]): Labels of each sample.
241
            pts_semantic_mask (list[torch.Tensor]): Point-wise
liyinhao's avatar
liyinhao committed
242
                semantic mask.
243
            pts_instance_mask (list[torch.Tensor]): Point-wise
liyinhao's avatar
liyinhao committed
244
                instance mask.
zhangwenwei's avatar
zhangwenwei committed
245
            img_metas (list[dict]): Contain pcd and img's meta info.
246
            gt_bboxes_ignore (list[torch.Tensor]): Specify
liyinhao's avatar
liyinhao committed
247
                which bounding.
encore-zhou's avatar
encore-zhou committed
248
            ret_target (Bool): Return targets or not.
wuyuefeng's avatar
wuyuefeng committed
249
250
251
252

        Returns:
            dict: Losses of Votenet.
        """
wuyuefeng's avatar
Votenet  
wuyuefeng committed
253
254
255
256
        targets = self.get_targets(points, gt_bboxes_3d, gt_labels_3d,
                                   pts_semantic_mask, pts_instance_mask,
                                   bbox_preds)
        (vote_targets, vote_target_masks, size_class_targets, size_res_targets,
257
258
259
260
         dir_class_targets, dir_res_targets, center_targets,
         assigned_center_targets, mask_targets, valid_gt_masks,
         objectness_targets, objectness_weights, box_loss_weights,
         valid_gt_weights) = targets
wuyuefeng's avatar
Votenet  
wuyuefeng committed
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308

        # calculate vote loss
        vote_loss = self.vote_module.get_loss(bbox_preds['seed_points'],
                                              bbox_preds['vote_points'],
                                              bbox_preds['seed_indices'],
                                              vote_target_masks, vote_targets)

        # calculate objectness loss
        objectness_loss = self.objectness_loss(
            bbox_preds['obj_scores'].transpose(2, 1),
            objectness_targets,
            weight=objectness_weights)

        # calculate center loss
        source2target_loss, target2source_loss = self.center_loss(
            bbox_preds['center'],
            center_targets,
            src_weight=box_loss_weights,
            dst_weight=valid_gt_weights)
        center_loss = source2target_loss + target2source_loss

        # calculate direction class loss
        dir_class_loss = self.dir_class_loss(
            bbox_preds['dir_class'].transpose(2, 1),
            dir_class_targets,
            weight=box_loss_weights)

        # calculate direction residual loss
        batch_size, proposal_num = size_class_targets.shape[:2]
        heading_label_one_hot = vote_targets.new_zeros(
            (batch_size, proposal_num, self.num_dir_bins))
        heading_label_one_hot.scatter_(2, dir_class_targets.unsqueeze(-1), 1)
        dir_res_norm = torch.sum(
            bbox_preds['dir_res_norm'] * heading_label_one_hot, -1)
        dir_res_loss = self.dir_res_loss(
            dir_res_norm, dir_res_targets, weight=box_loss_weights)

        # calculate size class loss
        size_class_loss = self.size_class_loss(
            bbox_preds['size_class'].transpose(2, 1),
            size_class_targets,
            weight=box_loss_weights)

        # calculate size residual loss
        one_hot_size_targets = vote_targets.new_zeros(
            (batch_size, proposal_num, self.num_sizes))
        one_hot_size_targets.scatter_(2, size_class_targets.unsqueeze(-1), 1)
        one_hot_size_targets_expand = one_hot_size_targets.unsqueeze(
Wenwei Zhang's avatar
Wenwei Zhang committed
309
            -1).repeat(1, 1, 1, 3).contiguous()
wuyuefeng's avatar
Votenet  
wuyuefeng committed
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
        size_residual_norm = torch.sum(
            bbox_preds['size_res_norm'] * one_hot_size_targets_expand, 2)
        box_loss_weights_expand = box_loss_weights.unsqueeze(-1).repeat(
            1, 1, 3)
        size_res_loss = self.size_res_loss(
            size_residual_norm,
            size_res_targets,
            weight=box_loss_weights_expand)

        # calculate semantic loss
        semantic_loss = self.semantic_loss(
            bbox_preds['sem_scores'].transpose(2, 1),
            mask_targets,
            weight=box_loss_weights)

        losses = dict(
            vote_loss=vote_loss,
            objectness_loss=objectness_loss,
            semantic_loss=semantic_loss,
            center_loss=center_loss,
            dir_class_loss=dir_class_loss,
            dir_res_loss=dir_res_loss,
            size_class_loss=size_class_loss,
            size_res_loss=size_res_loss)
encore-zhou's avatar
encore-zhou committed
334

335
336
337
338
339
340
341
342
343
344
345
        if self.iou_loss:
            corners_pred = self.bbox_coder.decode_corners(
                bbox_preds['center'], size_residual_norm,
                one_hot_size_targets_expand)
            corners_target = self.bbox_coder.decode_corners(
                assigned_center_targets, size_res_targets,
                one_hot_size_targets_expand)
            iou_loss = self.iou_loss(
                corners_pred, corners_target, weight=box_loss_weights)
            losses['iou_loss'] = iou_loss

encore-zhou's avatar
encore-zhou committed
346
347
348
        if ret_target:
            losses['targets'] = targets

wuyuefeng's avatar
Votenet  
wuyuefeng committed
349
350
351
352
353
354
355
356
357
        return losses

    def get_targets(self,
                    points,
                    gt_bboxes_3d,
                    gt_labels_3d,
                    pts_semantic_mask=None,
                    pts_instance_mask=None,
                    bbox_preds=None):
wuyuefeng's avatar
wuyuefeng committed
358
        """Generate targets of vote head.
wuyuefeng's avatar
Votenet  
wuyuefeng committed
359
360

        Args:
liyinhao's avatar
liyinhao committed
361
            points (list[torch.Tensor]): Points of each batch.
362
            gt_bboxes_3d (list[:obj:`BaseInstance3DBoxes`]): Ground truth
wangtai's avatar
wangtai committed
363
364
                bboxes of each batch.
            gt_labels_3d (list[torch.Tensor]): Labels of each batch.
365
            pts_semantic_mask (list[torch.Tensor]): Point-wise semantic
wuyuefeng's avatar
Votenet  
wuyuefeng committed
366
                label of each batch.
367
            pts_instance_mask (list[torch.Tensor]): Point-wise instance
wuyuefeng's avatar
Votenet  
wuyuefeng committed
368
                label of each batch.
wangtai's avatar
wangtai committed
369
            bbox_preds (torch.Tensor): Bounding box predictions of vote head.
wuyuefeng's avatar
Votenet  
wuyuefeng committed
370
371

        Returns:
372
            tuple[torch.Tensor]: Targets of vote head.
wuyuefeng's avatar
Votenet  
wuyuefeng committed
373
374
375
376
377
378
        """
        # find empty example
        valid_gt_masks = list()
        gt_num = list()
        for index in range(len(gt_labels_3d)):
            if len(gt_labels_3d[index]) == 0:
wuyuefeng's avatar
wuyuefeng committed
379
380
381
                fake_box = gt_bboxes_3d[index].tensor.new_zeros(
                    1, gt_bboxes_3d[index].tensor.shape[-1])
                gt_bboxes_3d[index] = gt_bboxes_3d[index].new_box(fake_box)
wuyuefeng's avatar
Votenet  
wuyuefeng committed
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
                gt_labels_3d[index] = gt_labels_3d[index].new_zeros(1)
                valid_gt_masks.append(gt_labels_3d[index].new_zeros(1))
                gt_num.append(1)
            else:
                valid_gt_masks.append(gt_labels_3d[index].new_ones(
                    gt_labels_3d[index].shape))
                gt_num.append(gt_labels_3d[index].shape[0])
        max_gt_num = max(gt_num)

        if pts_semantic_mask is None:
            pts_semantic_mask = [None for i in range(len(gt_labels_3d))]
            pts_instance_mask = [None for i in range(len(gt_labels_3d))]

        aggregated_points = [
            bbox_preds['aggregated_points'][i]
            for i in range(len(gt_labels_3d))
        ]

        (vote_targets, vote_target_masks, size_class_targets, size_res_targets,
401
402
403
404
405
406
         dir_class_targets, dir_res_targets, center_targets,
         assigned_center_targets, mask_targets, objectness_targets,
         objectness_masks) = multi_apply(self.get_targets_single, points,
                                         gt_bboxes_3d, gt_labels_3d,
                                         pts_semantic_mask, pts_instance_mask,
                                         aggregated_points)
wuyuefeng's avatar
Votenet  
wuyuefeng committed
407
408
409
410
411
412
413
414
415
416
417
418
419

        # pad targets as original code of votenet.
        for index in range(len(gt_labels_3d)):
            pad_num = max_gt_num - gt_labels_3d[index].shape[0]
            center_targets[index] = F.pad(center_targets[index],
                                          (0, 0, 0, pad_num))
            valid_gt_masks[index] = F.pad(valid_gt_masks[index], (0, pad_num))

        vote_targets = torch.stack(vote_targets)
        vote_target_masks = torch.stack(vote_target_masks)
        center_targets = torch.stack(center_targets)
        valid_gt_masks = torch.stack(valid_gt_masks)

420
        assigned_center_targets = torch.stack(assigned_center_targets)
wuyuefeng's avatar
Votenet  
wuyuefeng committed
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
        objectness_targets = torch.stack(objectness_targets)
        objectness_weights = torch.stack(objectness_masks)
        objectness_weights /= (torch.sum(objectness_weights) + 1e-6)
        box_loss_weights = objectness_targets.float() / (
            torch.sum(objectness_targets).float() + 1e-6)
        valid_gt_weights = valid_gt_masks.float() / (
            torch.sum(valid_gt_masks.float()) + 1e-6)
        dir_class_targets = torch.stack(dir_class_targets)
        dir_res_targets = torch.stack(dir_res_targets)
        size_class_targets = torch.stack(size_class_targets)
        size_res_targets = torch.stack(size_res_targets)
        mask_targets = torch.stack(mask_targets)

        return (vote_targets, vote_target_masks, size_class_targets,
                size_res_targets, dir_class_targets, dir_res_targets,
436
437
438
                center_targets, assigned_center_targets, mask_targets,
                valid_gt_masks, objectness_targets, objectness_weights,
                box_loss_weights, valid_gt_weights)
wuyuefeng's avatar
Votenet  
wuyuefeng committed
439
440
441
442
443
444
445
446

    def get_targets_single(self,
                           points,
                           gt_bboxes_3d,
                           gt_labels_3d,
                           pts_semantic_mask=None,
                           pts_instance_mask=None,
                           aggregated_points=None):
wuyuefeng's avatar
wuyuefeng committed
447
448
449
        """Generate targets of vote head for single batch.

        Args:
liyinhao's avatar
liyinhao committed
450
            points (torch.Tensor): Points of each batch.
451
            gt_bboxes_3d (:obj:`BaseInstance3DBoxes`): Ground truth
wangtai's avatar
wangtai committed
452
453
                boxes of each batch.
            gt_labels_3d (torch.Tensor): Labels of each batch.
454
            pts_semantic_mask (torch.Tensor): Point-wise semantic
wuyuefeng's avatar
wuyuefeng committed
455
                label of each batch.
456
            pts_instance_mask (torch.Tensor): Point-wise instance
wuyuefeng's avatar
wuyuefeng committed
457
                label of each batch.
liyinhao's avatar
liyinhao committed
458
            aggregated_points (torch.Tensor): Aggregated points from
wuyuefeng's avatar
wuyuefeng committed
459
460
461
                vote aggregation layer.

        Returns:
462
            tuple[torch.Tensor]: Targets of vote head.
wuyuefeng's avatar
wuyuefeng committed
463
        """
wuyuefeng's avatar
Votenet  
wuyuefeng committed
464
465
        assert self.bbox_coder.with_rot or pts_semantic_mask is not None

wuyuefeng's avatar
wuyuefeng committed
466
467
        gt_bboxes_3d = gt_bboxes_3d.to(points.device)

wuyuefeng's avatar
Votenet  
wuyuefeng committed
468
469
470
471
472
473
474
        # generate votes target
        num_points = points.shape[0]
        if self.bbox_coder.with_rot:
            vote_targets = points.new_zeros([num_points, 3 * self.gt_per_seed])
            vote_target_masks = points.new_zeros([num_points],
                                                 dtype=torch.long)
            vote_target_idx = points.new_zeros([num_points], dtype=torch.long)
475
            box_indices_all = gt_bboxes_3d.points_in_boxes_all(points)
wuyuefeng's avatar
wuyuefeng committed
476
            for i in range(gt_labels_3d.shape[0]):
wuyuefeng's avatar
Votenet  
wuyuefeng committed
477
                box_indices = box_indices_all[:, i]
478
479
                indices = torch.nonzero(
                    box_indices, as_tuple=False).squeeze(-1)
wuyuefeng's avatar
Votenet  
wuyuefeng committed
480
481
482
                selected_points = points[indices]
                vote_target_masks[indices] = 1
                vote_targets_tmp = vote_targets[indices]
wuyuefeng's avatar
wuyuefeng committed
483
                votes = gt_bboxes_3d.gravity_center[i].unsqueeze(
wuyuefeng's avatar
Votenet  
wuyuefeng committed
484
485
486
487
                    0) - selected_points[:, :3]

                for j in range(self.gt_per_seed):
                    column_indices = torch.nonzero(
488
489
                        vote_target_idx[indices] == j,
                        as_tuple=False).squeeze(-1)
wuyuefeng's avatar
Votenet  
wuyuefeng committed
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
                    vote_targets_tmp[column_indices,
                                     int(j * 3):int(j * 3 +
                                                    3)] = votes[column_indices]
                    if j == 0:
                        vote_targets_tmp[column_indices] = votes[
                            column_indices].repeat(1, self.gt_per_seed)

                vote_targets[indices] = vote_targets_tmp
                vote_target_idx[indices] = torch.clamp(
                    vote_target_idx[indices] + 1, max=2)
        elif pts_semantic_mask is not None:
            vote_targets = points.new_zeros([num_points, 3])
            vote_target_masks = points.new_zeros([num_points],
                                                 dtype=torch.long)

            for i in torch.unique(pts_instance_mask):
506
507
                indices = torch.nonzero(
                    pts_instance_mask == i, as_tuple=False).squeeze(-1)
wuyuefeng's avatar
Votenet  
wuyuefeng committed
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
                if pts_semantic_mask[indices[0]] < self.num_classes:
                    selected_points = points[indices, :3]
                    center = 0.5 * (
                        selected_points.min(0)[0] + selected_points.max(0)[0])
                    vote_targets[indices, :] = center - selected_points
                    vote_target_masks[indices] = 1
            vote_targets = vote_targets.repeat((1, self.gt_per_seed))
        else:
            raise NotImplementedError

        (center_targets, size_class_targets, size_res_targets,
         dir_class_targets,
         dir_res_targets) = self.bbox_coder.encode(gt_bboxes_3d, gt_labels_3d)

        proposal_num = aggregated_points.shape[0]
        distance1, _, assignment, _ = chamfer_distance(
            aggregated_points.unsqueeze(0),
            center_targets.unsqueeze(0),
            reduction='none')
        assignment = assignment.squeeze(0)
        euclidean_distance1 = torch.sqrt(distance1.squeeze(0) + 1e-6)

        objectness_targets = points.new_zeros((proposal_num), dtype=torch.long)
        objectness_targets[
            euclidean_distance1 < self.train_cfg['pos_distance_thr']] = 1

        objectness_masks = points.new_zeros((proposal_num))
        objectness_masks[
            euclidean_distance1 < self.train_cfg['pos_distance_thr']] = 1.0
        objectness_masks[
            euclidean_distance1 > self.train_cfg['neg_distance_thr']] = 1.0

        dir_class_targets = dir_class_targets[assignment]
        dir_res_targets = dir_res_targets[assignment]
        dir_res_targets /= (np.pi / self.num_dir_bins)
        size_class_targets = size_class_targets[assignment]
        size_res_targets = size_res_targets[assignment]

wuyuefeng's avatar
wuyuefeng committed
546
        one_hot_size_targets = gt_bboxes_3d.tensor.new_zeros(
wuyuefeng's avatar
Votenet  
wuyuefeng committed
547
548
549
550
551
552
553
554
555
556
            (proposal_num, self.num_sizes))
        one_hot_size_targets.scatter_(1, size_class_targets.unsqueeze(-1), 1)
        one_hot_size_targets = one_hot_size_targets.unsqueeze(-1).repeat(
            1, 1, 3)
        mean_sizes = size_res_targets.new_tensor(
            self.bbox_coder.mean_sizes).unsqueeze(0)
        pos_mean_sizes = torch.sum(one_hot_size_targets * mean_sizes, 1)
        size_res_targets /= pos_mean_sizes

        mask_targets = gt_labels_3d[assignment]
557
        assigned_center_targets = center_targets[assignment]
wuyuefeng's avatar
Votenet  
wuyuefeng committed
558
559

        return (vote_targets, vote_target_masks, size_class_targets,
560
561
                size_res_targets, dir_class_targets,
                dir_res_targets, center_targets, assigned_center_targets,
wuyuefeng's avatar
Votenet  
wuyuefeng committed
562
563
                mask_targets.long(), objectness_targets, objectness_masks)

encore-zhou's avatar
encore-zhou committed
564
565
566
567
568
569
    def get_bboxes(self,
                   points,
                   bbox_preds,
                   input_metas,
                   rescale=False,
                   use_nms=True):
wuyuefeng's avatar
wuyuefeng committed
570
571
572
        """Generate bboxes from vote head predictions.

        Args:
liyinhao's avatar
liyinhao committed
573
            points (torch.Tensor): Input points.
wuyuefeng's avatar
wuyuefeng committed
574
            bbox_preds (dict): Predictions from vote head.
wangtai's avatar
wangtai committed
575
            input_metas (list[dict]): Point cloud and image's meta info.
wuyuefeng's avatar
wuyuefeng committed
576
            rescale (bool): Whether to rescale bboxes.
encore-zhou's avatar
encore-zhou committed
577
578
            use_nms (bool): Whether to apply NMS, skip nms postprocessing
                while using vote head in rpn stage.
wuyuefeng's avatar
wuyuefeng committed
579
580

        Returns:
wangtai's avatar
wangtai committed
581
            list[tuple[torch.Tensor]]: Bounding boxes, scores and labels.
wuyuefeng's avatar
wuyuefeng committed
582
        """
wuyuefeng's avatar
Votenet  
wuyuefeng committed
583
584
585
        # decode boxes
        obj_scores = F.softmax(bbox_preds['obj_scores'], dim=-1)[..., -1]
        sem_scores = F.softmax(bbox_preds['sem_scores'], dim=-1)
wuyuefeng's avatar
wuyuefeng committed
586
        bbox3d = self.bbox_coder.decode(bbox_preds)
wuyuefeng's avatar
Votenet  
wuyuefeng committed
587

encore-zhou's avatar
encore-zhou committed
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
        if use_nms:
            batch_size = bbox3d.shape[0]
            results = list()
            for b in range(batch_size):
                bbox_selected, score_selected, labels = \
                    self.multiclass_nms_single(obj_scores[b], sem_scores[b],
                                               bbox3d[b], points[b, ..., :3],
                                               input_metas[b])
                bbox = input_metas[b]['box_type_3d'](
                    bbox_selected,
                    box_dim=bbox_selected.shape[-1],
                    with_yaw=self.bbox_coder.with_rot)
                results.append((bbox, score_selected, labels))

            return results
        else:
            return bbox3d
wuyuefeng's avatar
Votenet  
wuyuefeng committed
605

wuyuefeng's avatar
wuyuefeng committed
606
607
    def multiclass_nms_single(self, obj_scores, sem_scores, bbox, points,
                              input_meta):
wangtai's avatar
wangtai committed
608
        """Multi-class nms in single batch.
wuyuefeng's avatar
wuyuefeng committed
609
610

        Args:
wangtai's avatar
wangtai committed
611
612
613
            obj_scores (torch.Tensor): Objectness score of bounding boxes.
            sem_scores (torch.Tensor): semantic class score of bounding boxes.
            bbox (torch.Tensor): Predicted bounding boxes.
liyinhao's avatar
liyinhao committed
614
            points (torch.Tensor): Input points.
wangtai's avatar
wangtai committed
615
            input_meta (dict): Point cloud and image's meta info.
wuyuefeng's avatar
wuyuefeng committed
616
617

        Returns:
wangtai's avatar
wangtai committed
618
            tuple[torch.Tensor]: Bounding boxes, scores and labels.
wuyuefeng's avatar
wuyuefeng committed
619
        """
wuyuefeng's avatar
wuyuefeng committed
620
621
622
623
624
        bbox = input_meta['box_type_3d'](
            bbox,
            box_dim=bbox.shape[-1],
            with_yaw=self.bbox_coder.with_rot,
            origin=(0.5, 0.5, 0.5))
625
        box_indices = bbox.points_in_boxes_all(points)
wuyuefeng's avatar
Votenet  
wuyuefeng committed
626

wuyuefeng's avatar
wuyuefeng committed
627
        corner3d = bbox.corners
wuyuefeng's avatar
Votenet  
wuyuefeng committed
628
629
630
631
        minmax_box3d = corner3d.new(torch.Size((corner3d.shape[0], 6)))
        minmax_box3d[:, :3] = torch.min(corner3d, dim=1)[0]
        minmax_box3d[:, 3:] = torch.max(corner3d, dim=1)[0]

wuyuefeng's avatar
wuyuefeng committed
632
633
634
        nonempty_box_mask = box_indices.T.sum(1) > 5

        bbox_classes = torch.argmax(sem_scores, -1)
wuyuefeng's avatar
Votenet  
wuyuefeng committed
635
636
637
638
639
640
641
        nms_selected = aligned_3d_nms(minmax_box3d[nonempty_box_mask],
                                      obj_scores[nonempty_box_mask],
                                      bbox_classes[nonempty_box_mask],
                                      self.test_cfg.nms_thr)

        # filter empty boxes and boxes with low score
        scores_mask = (obj_scores > self.test_cfg.score_thr)
642
643
        nonempty_box_inds = torch.nonzero(
            nonempty_box_mask, as_tuple=False).flatten()
wuyuefeng's avatar
Votenet  
wuyuefeng committed
644
645
646
647
648
649
650
        nonempty_mask = torch.zeros_like(bbox_classes).scatter(
            0, nonempty_box_inds[nms_selected], 1)
        selected = (nonempty_mask.bool() & scores_mask.bool())

        if self.test_cfg.per_class_proposal:
            bbox_selected, score_selected, labels = [], [], []
            for k in range(sem_scores.shape[-1]):
wuyuefeng's avatar
wuyuefeng committed
651
                bbox_selected.append(bbox[selected].tensor)
wuyuefeng's avatar
Votenet  
wuyuefeng committed
652
653
654
655
656
657
658
659
                score_selected.append(obj_scores[selected] *
                                      sem_scores[selected][:, k])
                labels.append(
                    torch.zeros_like(bbox_classes[selected]).fill_(k))
            bbox_selected = torch.cat(bbox_selected, 0)
            score_selected = torch.cat(score_selected, 0)
            labels = torch.cat(labels, 0)
        else:
wuyuefeng's avatar
wuyuefeng committed
660
            bbox_selected = bbox[selected].tensor
wuyuefeng's avatar
Votenet  
wuyuefeng committed
661
662
663
664
            score_selected = obj_scores[selected]
            labels = bbox_classes[selected]

        return bbox_selected, score_selected, labels