scannet_dataset.py 17.5 KB
Newer Older
1
import numpy as np
2
import tempfile
3
import warnings
zhangwenwei's avatar
zhangwenwei committed
4
from os import path as osp
5

6
from mmdet3d.core import show_result, show_seg_result
wuyuefeng's avatar
wuyuefeng committed
7
from mmdet3d.core.bbox import DepthInstance3DBoxes
8
from mmdet.datasets import DATASETS
9
from mmseg.datasets import DATASETS as SEG_DATASETS
zhangwenwei's avatar
zhangwenwei committed
10
from .custom_3d import Custom3DDataset
11
from .custom_3d_seg import Custom3DSegDataset
12
from .pipelines import Compose
13
14
15


@DATASETS.register_module()
zhangwenwei's avatar
zhangwenwei committed
16
class ScanNetDataset(Custom3DDataset):
17
    r"""ScanNet Dataset for Detection Task.
18

wangtai's avatar
wangtai committed
19
20
    This class serves as the API for experiments on the ScanNet Dataset.

zhangwenwei's avatar
zhangwenwei committed
21
22
    Please refer to the `github repo <https://github.com/ScanNet/ScanNet>`_
    for data downloading.
wangtai's avatar
wangtai committed
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

    Args:
        data_root (str): Path of dataset root.
        ann_file (str): Path of annotation file.
        pipeline (list[dict], optional): Pipeline used for data processing.
            Defaults to None.
        classes (tuple[str], optional): Classes used in the dataset.
            Defaults to None.
        modality (dict, optional): Modality to specify the sensor data used
            as input. Defaults to None.
        box_type_3d (str, optional): Type of 3D box of this dataset.
            Based on the `box_type_3d`, the dataset will encapsulate the box
            to its original format then converted them to `box_type_3d`.
            Defaults to 'Depth' in this dataset. Available options includes

wangtai's avatar
wangtai committed
38
39
40
            - 'LiDAR': Box in LiDAR coordinates.
            - 'Depth': Box in depth coordinates, usually for indoor dataset.
            - 'Camera': Box in camera coordinates.
wangtai's avatar
wangtai committed
41
42
43
44
45
        filter_empty_gt (bool, optional): Whether to filter empty GT.
            Defaults to True.
        test_mode (bool, optional): Whether the dataset is in test mode.
            Defaults to False.
    """
46
47
48
49
50
51
    CLASSES = ('cabinet', 'bed', 'chair', 'sofa', 'table', 'door', 'window',
               'bookshelf', 'picture', 'counter', 'desk', 'curtain',
               'refrigerator', 'showercurtrain', 'toilet', 'sink', 'bathtub',
               'garbagebin')

    def __init__(self,
zhangwenwei's avatar
zhangwenwei committed
52
                 data_root,
53
54
                 ann_file,
                 pipeline=None,
liyinhao's avatar
liyinhao committed
55
                 classes=None,
56
                 modality=dict(use_camera=False, use_depth=True),
57
                 box_type_3d='Depth',
wuyuefeng's avatar
Votenet  
wuyuefeng committed
58
                 filter_empty_gt=True,
zhangwenwei's avatar
zhangwenwei committed
59
                 test_mode=False):
60
61
62
63
64
65
66
67
68
        super().__init__(
            data_root=data_root,
            ann_file=ann_file,
            pipeline=pipeline,
            classes=classes,
            modality=modality,
            box_type_3d=box_type_3d,
            filter_empty_gt=filter_empty_gt,
            test_mode=test_mode)
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
        assert 'use_camera' in self.modality and \
               'use_depth' in self.modality
        assert self.modality['use_camera'] or self.modality['use_depth']

    def get_data_info(self, index):
        """Get data info according to the given index.

        Args:
            index (int): Index of the sample data to get.

        Returns:
            dict: Data information that will be passed to the data \
                preprocessing pipelines. It includes the following keys:

                - sample_idx (str): Sample index.
                - pts_filename (str): Filename of point clouds.
                - file_name (str): Filename of point clouds.
                - img_prefix (str | None, optional): Prefix of image files.
                - img_info (dict, optional): Image info.
                - ann_info (dict): Annotation info.
        """
        info = self.data_infos[index]
        sample_idx = info['point_cloud']['lidar_idx']
        pts_filename = osp.join(self.data_root, info['pts_path'])
        input_dict = dict(sample_idx=sample_idx)

        if self.modality['use_depth']:
            input_dict['pts_filename'] = pts_filename
            input_dict['file_name'] = pts_filename

        if self.modality['use_camera']:
            img_info = []
            for img_path in info['img_paths']:
                img_info.append(
                    dict(filename=osp.join(self.data_root, img_path)))
            intrinsic = info['intrinsics']
            axis_align_matrix = self._get_axis_align_matrix(info)
            depth2img = []
            for extrinsic in info['extrinsics']:
                depth2img.append(
                    intrinsic @ np.linalg.inv(axis_align_matrix @ extrinsic))

            input_dict['img_prefix'] = None
            input_dict['img_info'] = img_info
            input_dict['depth2img'] = depth2img

        if not self.test_mode:
            annos = self.get_ann_info(index)
            input_dict['ann_info'] = annos
            if self.filter_empty_gt and ~(annos['gt_labels_3d'] != -1).any():
                return None
        return input_dict
121

liyinhao's avatar
liyinhao committed
122
    def get_ann_info(self, index):
123
124
125
126
127
128
        """Get annotation info according to the given index.

        Args:
            index (int): Index of the annotation data to get.

        Returns:
zhangwenwei's avatar
zhangwenwei committed
129
            dict: annotation information consists of the following keys:
130

zhangwenwei's avatar
zhangwenwei committed
131
                - gt_bboxes_3d (:obj:`DepthInstance3DBoxes`): \
132
                    3D ground truth bboxes
wangtai's avatar
wangtai committed
133
134
135
                - gt_labels_3d (np.ndarray): Labels of ground truths.
                - pts_instance_mask_path (str): Path of instance masks.
                - pts_semantic_mask_path (str): Path of semantic masks.
136
137
                - axis_align_matrix (np.ndarray): Transformation matrix for \
                    global scene alignment.
138
        """
139
        # Use index to get the annos, thus the evalhook could also use this api
liyinhao's avatar
liyinhao committed
140
        info = self.data_infos[index]
141
        if info['annos']['gt_num'] != 0:
liyinhao's avatar
liyinhao committed
142
143
144
            gt_bboxes_3d = info['annos']['gt_boxes_upright_depth'].astype(
                np.float32)  # k, 6
            gt_labels_3d = info['annos']['class'].astype(np.long)
145
        else:
liyinhao's avatar
liyinhao committed
146
            gt_bboxes_3d = np.zeros((0, 6), dtype=np.float32)
liyinhao's avatar
liyinhao committed
147
            gt_labels_3d = np.zeros((0, ), dtype=np.long)
wuyuefeng's avatar
wuyuefeng committed
148
149
150
151
152
153
154
155

        # to target box structure
        gt_bboxes_3d = DepthInstance3DBoxes(
            gt_bboxes_3d,
            box_dim=gt_bboxes_3d.shape[-1],
            with_yaw=False,
            origin=(0.5, 0.5, 0.5)).convert_to(self.box_mode_3d)

zhangwenwei's avatar
zhangwenwei committed
156
        pts_instance_mask_path = osp.join(self.data_root,
liyinhao's avatar
liyinhao committed
157
                                          info['pts_instance_mask_path'])
zhangwenwei's avatar
zhangwenwei committed
158
        pts_semantic_mask_path = osp.join(self.data_root,
liyinhao's avatar
liyinhao committed
159
                                          info['pts_semantic_mask_path'])
160

161
162
        axis_align_matrix = self._get_axis_align_matrix(info)

163
164
        anns_results = dict(
            gt_bboxes_3d=gt_bboxes_3d,
zhangwenwei's avatar
zhangwenwei committed
165
            gt_labels_3d=gt_labels_3d,
166
            pts_instance_mask_path=pts_instance_mask_path,
167
168
            pts_semantic_mask_path=pts_semantic_mask_path,
            axis_align_matrix=axis_align_matrix)
169
        return anns_results
liyinhao's avatar
liyinhao committed
170

171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
    def prepare_test_data(self, index):
        """Prepare data for testing.

        We should take axis_align_matrix from self.data_infos since we need \
            to align point clouds.

        Args:
            index (int): Index for accessing the target data.

        Returns:
            dict: Testing data dict of the corresponding index.
        """
        input_dict = self.get_data_info(index)
        # take the axis_align_matrix from data_infos
        input_dict['ann_info'] = dict(
            axis_align_matrix=self._get_axis_align_matrix(
                self.data_infos[index]))
        self.pre_pipeline(input_dict)
        example = self.pipeline(input_dict)
        return example

    @staticmethod
    def _get_axis_align_matrix(info):
        """Get axis_align_matrix from info. If not exist, return identity mat.

        Args:
            info (dict): one data info term.

        Returns:
            np.ndarray: 4x4 transformation matrix.
        """
        if 'axis_align_matrix' in info['annos'].keys():
            return info['annos']['axis_align_matrix'].astype(np.float32)
        else:
            warnings.warn(
                'axis_align_matrix is not found in ScanNet data info, please '
                'use new pre-process scripts to re-generate ScanNet data')
            return np.eye(4).astype(np.float32)

210
211
212
213
214
215
216
217
218
    def _build_default_pipeline(self):
        """Build the default pipeline for this dataset."""
        pipeline = [
            dict(
                type='LoadPointsFromFile',
                coord_type='DEPTH',
                shift_height=False,
                load_dim=6,
                use_dim=[0, 1, 2]),
219
            dict(type='GlobalAlignment', rotation_axis=2),
220
221
222
223
224
225
226
227
228
            dict(
                type='DefaultFormatBundle3D',
                class_names=self.CLASSES,
                with_label=False),
            dict(type='Collect3D', keys=['points'])
        ]
        return Compose(pipeline)

    def show(self, results, out_dir, show=True, pipeline=None):
229
230
231
232
233
        """Results visualization.

        Args:
            results (list[dict]): List of bounding boxes results.
            out_dir (str): Output directory of visualization result.
234
            show (bool): Visualize the results online.
235
236
            pipeline (list[dict], optional): raw data loading for showing.
                Default: None.
237
        """
liyinhao's avatar
liyinhao committed
238
        assert out_dir is not None, 'Expect out_dir, got none.'
239
        pipeline = self._get_pipeline(pipeline)
liyinhao's avatar
liyinhao committed
240
241
242
243
        for i, result in enumerate(results):
            data_info = self.data_infos[i]
            pts_path = data_info['pts_path']
            file_name = osp.split(pts_path)[-1].split('.')[0]
244
            points = self._extract_data(i, pipeline, 'points').numpy()
245
            gt_bboxes = self.get_ann_info(i)['gt_bboxes_3d'].tensor.numpy()
liyinhao's avatar
liyinhao committed
246
            pred_bboxes = result['boxes_3d'].tensor.numpy()
247
248
            show_result(points, gt_bboxes, pred_bboxes, out_dir, file_name,
                        show)
249
250
251


@DATASETS.register_module()
252
@SEG_DATASETS.register_module()
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
class ScanNetSegDataset(Custom3DSegDataset):
    r"""ScanNet Dataset for Semantic Segmentation Task.

    This class serves as the API for experiments on the ScanNet Dataset.

    Please refer to the `github repo <https://github.com/ScanNet/ScanNet>`_
    for data downloading.

    Args:
        data_root (str): Path of dataset root.
        ann_file (str): Path of annotation file.
        pipeline (list[dict], optional): Pipeline used for data processing.
            Defaults to None.
        classes (tuple[str], optional): Classes used in the dataset.
            Defaults to None.
        palette (list[list[int]], optional): The palette of segmentation map.
            Defaults to None.
        modality (dict, optional): Modality to specify the sensor data used
            as input. Defaults to None.
        test_mode (bool, optional): Whether the dataset is in test mode.
            Defaults to False.
        ignore_index (int, optional): The label index to be ignored, e.g. \
            unannotated points. If None is given, set to len(self.CLASSES).
            Defaults to None.
        scene_idxs (np.ndarray | str, optional): Precomputed index to load
            data. For scenes with many points, we may sample it several times.
            Defaults to None.
    """
    CLASSES = ('wall', 'floor', 'cabinet', 'bed', 'chair', 'sofa', 'table',
               'door', 'window', 'bookshelf', 'picture', 'counter', 'desk',
               'curtain', 'refrigerator', 'showercurtrain', 'toilet', 'sink',
               'bathtub', 'otherfurniture')

    VALID_CLASS_IDS = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 24, 28,
                       33, 34, 36, 39)

    ALL_CLASS_IDS = tuple(range(41))

    PALETTE = [
        [174, 199, 232],
        [152, 223, 138],
        [31, 119, 180],
        [255, 187, 120],
        [188, 189, 34],
        [140, 86, 75],
        [255, 152, 150],
        [214, 39, 40],
        [197, 176, 213],
        [148, 103, 189],
        [196, 156, 148],
        [23, 190, 207],
        [247, 182, 210],
        [219, 219, 141],
        [255, 127, 14],
        [158, 218, 229],
        [44, 160, 44],
        [112, 128, 144],
        [227, 119, 194],
        [82, 84, 163],
    ]

    def __init__(self,
                 data_root,
                 ann_file,
                 pipeline=None,
                 classes=None,
                 palette=None,
                 modality=None,
                 test_mode=False,
                 ignore_index=None,
323
                 scene_idxs=None):
324
325
326
327
328
329
330
331
332
333

        super().__init__(
            data_root=data_root,
            ann_file=ann_file,
            pipeline=pipeline,
            classes=classes,
            palette=palette,
            modality=modality,
            test_mode=test_mode,
            ignore_index=ignore_index,
334
            scene_idxs=scene_idxs)
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355

    def get_ann_info(self, index):
        """Get annotation info according to the given index.

        Args:
            index (int): Index of the annotation data to get.

        Returns:
            dict: annotation information consists of the following keys:

                - pts_semantic_mask_path (str): Path of semantic masks.
        """
        # Use index to get the annos, thus the evalhook could also use this api
        info = self.data_infos[index]

        pts_semantic_mask_path = osp.join(self.data_root,
                                          info['pts_semantic_mask_path'])

        anns_results = dict(pts_semantic_mask_path=pts_semantic_mask_path)
        return anns_results

356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
    def _build_default_pipeline(self):
        """Build the default pipeline for this dataset."""
        pipeline = [
            dict(
                type='LoadPointsFromFile',
                coord_type='DEPTH',
                shift_height=False,
                use_color=True,
                load_dim=6,
                use_dim=[0, 1, 2, 3, 4, 5]),
            dict(
                type='LoadAnnotations3D',
                with_bbox_3d=False,
                with_label_3d=False,
                with_mask_3d=False,
                with_seg_3d=True),
            dict(
                type='PointSegClassMapping',
374
375
                valid_cat_ids=self.VALID_CLASS_IDS,
                max_cat_id=np.max(self.ALL_CLASS_IDS)),
376
377
378
379
380
381
382
383
384
            dict(
                type='DefaultFormatBundle3D',
                with_label=False,
                class_names=self.CLASSES),
            dict(type='Collect3D', keys=['points', 'pts_semantic_mask'])
        ]
        return Compose(pipeline)

    def show(self, results, out_dir, show=True, pipeline=None):
385
386
387
388
389
390
        """Results visualization.

        Args:
            results (list[dict]): List of bounding boxes results.
            out_dir (str): Output directory of visualization result.
            show (bool): Visualize the results online.
391
392
            pipeline (list[dict], optional): raw data loading for showing.
                Default: None.
393
394
        """
        assert out_dir is not None, 'Expect out_dir, got none.'
395
        pipeline = self._get_pipeline(pipeline)
396
397
398
399
        for i, result in enumerate(results):
            data_info = self.data_infos[i]
            pts_path = data_info['pts_path']
            file_name = osp.split(pts_path)[-1].split('.')[0]
400
401
402
            points, gt_sem_mask = self._extract_data(
                i, pipeline, ['points', 'pts_semantic_mask'], load_annos=True)
            points = points.numpy()
403
404
405
406
407
            pred_sem_mask = result['semantic_mask'].numpy()
            show_seg_result(points, gt_sem_mask,
                            pred_sem_mask, out_dir, file_name,
                            np.array(self.PALETTE), self.ignore_index, show)

408
409
    def get_scene_idxs(self, scene_idxs):
        """Compute scene_idxs for data sampling.
410

411
        We sample more times for scenes with more points.
412
413
414
415
416
417
        """
        # when testing, we load one whole scene every time
        if not self.test_mode and scene_idxs is None:
            raise NotImplementedError(
                'please provide re-sampled scene indexes for training')

418
        return super().get_scene_idxs(scene_idxs)
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460

    def format_results(self, results, txtfile_prefix=None):
        r"""Format the results to txt file. Refer to `ScanNet documentation
        <http://kaldir.vc.in.tum.de/scannet_benchmark/documentation>`_.

        Args:
            outputs (list[dict]): Testing results of the dataset.
            txtfile_prefix (str | None): The prefix of saved files. It includes
                the file path and the prefix of filename, e.g., "a/b/prefix".
                If not specified, a temp file will be created. Default: None.

        Returns:
            tuple: (outputs, tmp_dir), outputs is the detection results,
                tmp_dir is the temporal directory created for saving submission
                files when ``submission_prefix`` is not specified.
        """
        import mmcv

        if txtfile_prefix is None:
            tmp_dir = tempfile.TemporaryDirectory()
            txtfile_prefix = osp.join(tmp_dir.name, 'results')
        else:
            tmp_dir = None
        mmcv.mkdir_or_exist(txtfile_prefix)

        # need to map network output to original label idx
        pred2label = np.zeros(len(self.VALID_CLASS_IDS)).astype(np.int)
        for original_label, output_idx in self.label_map.items():
            if output_idx != self.ignore_index:
                pred2label[output_idx] = original_label

        outputs = []
        for i, result in enumerate(results):
            info = self.data_infos[i]
            sample_idx = info['point_cloud']['lidar_idx']
            pred_sem_mask = result['semantic_mask'].numpy().astype(np.int)
            pred_label = pred2label[pred_sem_mask]
            curr_file = f'{txtfile_prefix}/{sample_idx}.txt'
            np.savetxt(curr_file, pred_label, fmt='%d')
            outputs.append(dict(seg_mask=pred_label))

        return outputs, tmp_dir