update_infos_to_v2.py 46.8 KB
Newer Older
jshilong's avatar
jshilong committed
1
2
3
4
# Copyright (c) OpenMMLab. All rights reserved.
"""Convert the annotation pkl to the standard format in OpenMMLab V2.0.

Example:
5
    python tools/dataset_converters/update_infos_to_v2.py
VVsssssk's avatar
VVsssssk committed
6
        --dataset kitti
7
        --pkl-path ./data/kitti/kitti_infos_train.pkl
jshilong's avatar
jshilong committed
8
9
10
11
12
13
14
        --out-dir ./kitti_v2/
"""

import argparse
import copy
import time
from os import path as osp
15
from pathlib import Path
jshilong's avatar
jshilong committed
16

17
import mmengine
jshilong's avatar
jshilong committed
18
import numpy as np
ZCMax's avatar
ZCMax committed
19
from nuscenes.nuscenes import NuScenes
jshilong's avatar
jshilong committed
20

21
22
23
from mmdet3d.datasets.convert_utils import (convert_annos,
                                            get_kitti_style_2d_boxes,
                                            get_nuscenes_2d_boxes)
VVsssssk's avatar
VVsssssk committed
24
from mmdet3d.datasets.utils import convert_quaternion_to_matrix
zhangshilong's avatar
zhangshilong committed
25
from mmdet3d.structures import points_cam2img
VVsssssk's avatar
VVsssssk committed
26

jshilong's avatar
jshilong committed
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

def get_empty_instance():
    """Empty annotation for single instance."""
    instance = dict(
        # (list[float], required): list of 4 numbers representing
        # the bounding box of the instance, in (x1, y1, x2, y2) order.
        bbox=None,
        # (int, required): an integer in the range
        # [0, num_categories-1] representing the category label.
        bbox_label=None,
        #  (list[float], optional): list of 7 (or 9) numbers representing
        #  the 3D bounding box of the instance,
        #  in [x, y, z, w, h, l, yaw]
        #  (or [x, y, z, w, h, l, yaw, vx, vy]) order.
        bbox_3d=None,
        # (bool, optional): Whether to use the
        # 3D bounding box during training.
        bbox_3d_isvalid=None,
        # (int, optional): 3D category label
        # (typically the same as label).
        bbox_label_3d=None,
        # (float, optional): Projected center depth of the
        # 3D bounding box compared to the image plane.
        depth=None,
        #  (list[float], optional): Projected
        #  2D center of the 3D bounding box.
        center_2d=None,
        # (int, optional): Attribute labels
        # (fine-grained labels such as stopping, moving, ignore, crowd).
        attr_label=None,
        # (int, optional): The number of LiDAR
        # points in the 3D bounding box.
        num_lidar_pts=None,
        # (int, optional): The number of Radar
        # points in the 3D bounding box.
        num_radar_pts=None,
        # (int, optional): Difficulty level of
        # detecting the 3D bounding box.
        difficulty=None,
        unaligned_bbox_3d=None)
    return instance


70
def get_empty_multicamera_instances(camera_types):
ZCMax's avatar
ZCMax committed
71

72
73
74
    cam_instance = dict()
    for cam_type in camera_types:
        cam_instance[cam_type] = None
ZCMax's avatar
ZCMax committed
75
76
77
    return cam_instance


jshilong's avatar
jshilong committed
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
def get_empty_lidar_points():
    lidar_points = dict(
        # (int, optional) : Number of features for each point.
        num_pts_feats=None,
        # (str, optional): Path of LiDAR data file.
        lidar_path=None,
        # (list[list[float]], optional): Transformation matrix
        # from lidar to ego-vehicle
        # with shape [4, 4].
        # (Referenced camera coordinate system is ego in KITTI.)
        lidar2ego=None,
    )
    return lidar_points


def get_empty_radar_points():
    radar_points = dict(
        # (int, optional) : Number of features for each point.
        num_pts_feats=None,
        # (str, optional): Path of RADAR data file.
        radar_path=None,
        # Transformation matrix from lidar to
        # ego-vehicle with shape [4, 4].
        # (Referenced camera coordinate system is ego in KITTI.)
        radar2ego=None,
    )
    return radar_points


def get_empty_img_info():
    img_info = dict(
        # (str, required): the path to the image file.
        img_path=None,
        # (int) The height of the image.
        height=None,
        # (int) The width of the image.
        width=None,
        # (str, optional): Path of the depth map file
        depth_map=None,
        # (list[list[float]], optional) : Transformation
        # matrix from camera to image with
        # shape [3, 3], [3, 4] or [4, 4].
        cam2img=None,
121
122
123
        # (list[list[float]]): Transformation matrix from lidar
        # or depth to image with shape [4, 4].
        lidar2img=None,
jshilong's avatar
jshilong committed
124
125
126
127
128
129
130
        # (list[list[float]], optional) : Transformation
        # matrix from camera to ego-vehicle
        # with shape [4, 4].
        cam2ego=None)
    return img_info


131
def get_single_image_sweep(camera_types):
jshilong's avatar
jshilong committed
132
133
134
135
136
    single_image_sweep = dict(
        # (float, optional) : Timestamp of the current frame.
        timestamp=None,
        # (list[list[float]], optional) : Transformation matrix
        # from ego-vehicle to the global
137
138
139
140
141
142
        ego2global=None)
    # (dict): Information of images captured by multiple cameras
    images = dict()
    for cam_type in camera_types:
        images[cam_type] = get_empty_img_info()
    single_image_sweep['images'] = images
jshilong's avatar
jshilong committed
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
    return single_image_sweep


def get_single_lidar_sweep():
    single_lidar_sweep = dict(
        # (float, optional) : Timestamp of the current frame.
        timestamp=None,
        # (list[list[float]], optional) : Transformation matrix
        # from ego-vehicle to the global
        ego2global=None,
        # (dict): Information of images captured by multiple cameras
        lidar_points=get_empty_lidar_points())
    return single_lidar_sweep


VVsssssk's avatar
VVsssssk committed
158
159
def get_empty_standard_data_info(
        camera_types=['CAM0', 'CAM1', 'CAM2', 'CAM3', 'CAM4']):
jshilong's avatar
jshilong committed
160
161
162

    data_info = dict(
        # (str): Sample id of the frame.
163
        sample_idx=None,
jshilong's avatar
jshilong committed
164
165
        # (str, optional): '000010'
        token=None,
166
        **get_single_image_sweep(camera_types),
jshilong's avatar
jshilong committed
167
168
169
170
171
172
173
174
        # (dict, optional): dict contains information
        # of LiDAR point cloud frame.
        lidar_points=get_empty_lidar_points(),
        # (dict, optional) Each dict contains
        # information of Radar point cloud frame.
        radar_points=get_empty_radar_points(),
        # (list[dict], optional): Image sweeps data.
        image_sweeps=[],
VVsssssk's avatar
VVsssssk committed
175
        lidar_sweeps=[],
jshilong's avatar
jshilong committed
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
        instances=[],
        # (list[dict], optional): Required by object
        # detection, instance  to be ignored during training.
        instances_ignore=[],
        # (str, optional): Path of semantic labels for each point.
        pts_semantic_mask_path=None,
        # (str, optional): Path of instance labels for each point.
        pts_instance_mask_path=None)
    return data_info


def clear_instance_unused_keys(instance):
    keys = list(instance.keys())
    for k in keys:
        if instance[k] is None:
            del instance[k]
    return instance


def clear_data_info_unused_keys(data_info):
    keys = list(data_info.keys())
    empty_flag = True
    for key in keys:
        # we allow no annotations in datainfo
200
        if key in ['instances', 'cam_sync_instances', 'cam_instances']:
jshilong's avatar
jshilong committed
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
            empty_flag = False
            continue
        if isinstance(data_info[key], list):
            if len(data_info[key]) == 0:
                del data_info[key]
            else:
                empty_flag = False
        elif data_info[key] is None:
            del data_info[key]
        elif isinstance(data_info[key], dict):
            _, sub_empty_flag = clear_data_info_unused_keys(data_info[key])
            if sub_empty_flag is False:
                empty_flag = False
            else:
                # sub field is empty
                del data_info[key]
        else:
            empty_flag = False

    return data_info, empty_flag


223
def generate_nuscenes_camera_instances(info, nusc):
ZCMax's avatar
ZCMax committed
224
225
226
227
228
229
230
231
232
233
234

    # get bbox annotations for camera
    camera_types = [
        'CAM_FRONT',
        'CAM_FRONT_RIGHT',
        'CAM_FRONT_LEFT',
        'CAM_BACK',
        'CAM_BACK_LEFT',
        'CAM_BACK_RIGHT',
    ]

235
    empty_multicamera_instance = get_empty_multicamera_instances(camera_types)
ZCMax's avatar
ZCMax committed
236
237
238
239

    for cam in camera_types:
        cam_info = info['cams'][cam]
        # list[dict]
240
        ann_infos = get_nuscenes_2d_boxes(
ZCMax's avatar
ZCMax committed
241
242
243
244
245
246
247
248
            nusc,
            cam_info['sample_data_token'],
            visibilities=['', '1', '2', '3', '4'])
        empty_multicamera_instance[cam] = ann_infos

    return empty_multicamera_instance


VVsssssk's avatar
VVsssssk committed
249
def update_nuscenes_infos(pkl_path, out_dir):
250
251
252
253
254
255
256
257
    camera_types = [
        'CAM_FRONT',
        'CAM_FRONT_RIGHT',
        'CAM_FRONT_LEFT',
        'CAM_BACK',
        'CAM_BACK_LEFT',
        'CAM_BACK_RIGHT',
    ]
VVsssssk's avatar
VVsssssk committed
258
259
260
261
262
    print(f'{pkl_path} will be modified.')
    if out_dir in pkl_path:
        print(f'Warning, you may overwriting '
              f'the original data {pkl_path}.')
    print(f'Reading from input file: {pkl_path}.')
263
    data_list = mmengine.load(pkl_path)
VVsssssk's avatar
VVsssssk committed
264
    METAINFO = {
265
        'classes':
VVsssssk's avatar
VVsssssk committed
266
267
268
        ('car', 'truck', 'trailer', 'bus', 'construction_vehicle', 'bicycle',
         'motorcycle', 'pedestrian', 'traffic_cone', 'barrier'),
    }
ZCMax's avatar
ZCMax committed
269
270
271
272
273
    nusc = NuScenes(
        version=data_list['metadata']['version'],
        dataroot='./data/nuscenes',
        verbose=True)

VVsssssk's avatar
VVsssssk committed
274
275
276
    print('Start updating:')
    converted_list = []
    for i, ori_info_dict in enumerate(
277
            mmengine.track_iter_progress(data_list['infos'])):
278
279
        temp_data_info = get_empty_standard_data_info(
            camera_types=camera_types)
VVsssssk's avatar
VVsssssk committed
280
281
282
283
284
        temp_data_info['sample_idx'] = i
        temp_data_info['token'] = ori_info_dict['token']
        temp_data_info['ego2global'] = convert_quaternion_to_matrix(
            ori_info_dict['ego2global_rotation'],
            ori_info_dict['ego2global_translation'])
285
286
        temp_data_info['lidar_points']['num_pts_feats'] = ori_info_dict.get(
            'num_features', 5)
287
288
        temp_data_info['lidar_points']['lidar_path'] = Path(
            ori_info_dict['lidar_path']).name
VVsssssk's avatar
VVsssssk committed
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
        temp_data_info['lidar_points'][
            'lidar2ego'] = convert_quaternion_to_matrix(
                ori_info_dict['lidar2ego_rotation'],
                ori_info_dict['lidar2ego_translation'])
        # bc-breaking: Timestamp has divided 1e6 in pkl infos.
        temp_data_info['timestamp'] = ori_info_dict['timestamp'] / 1e6
        for ori_sweep in ori_info_dict['sweeps']:
            temp_lidar_sweep = get_single_lidar_sweep()
            temp_lidar_sweep['lidar_points'][
                'lidar2ego'] = convert_quaternion_to_matrix(
                    ori_sweep['sensor2ego_rotation'],
                    ori_sweep['sensor2ego_translation'])
            temp_lidar_sweep['ego2global'] = convert_quaternion_to_matrix(
                ori_sweep['ego2global_rotation'],
                ori_sweep['ego2global_translation'])
            lidar2sensor = np.eye(4)
            lidar2sensor[:3, :3] = ori_sweep['sensor2lidar_rotation'].T
            lidar2sensor[:3, 3] = -ori_sweep['sensor2lidar_translation']
            temp_lidar_sweep['lidar_points'][
                'lidar2sensor'] = lidar2sensor.astype(np.float32).tolist()
            temp_lidar_sweep['timestamp'] = ori_sweep['timestamp'] / 1e6
            temp_lidar_sweep['lidar_points']['lidar_path'] = ori_sweep[
                'data_path']
            temp_lidar_sweep['sample_data_token'] = ori_sweep[
                'sample_data_token']
            temp_data_info['lidar_sweeps'].append(temp_lidar_sweep)
        temp_data_info['images'] = {}
        for cam in ori_info_dict['cams']:
            empty_img_info = get_empty_img_info()
318
319
            empty_img_info['img_path'] = Path(
                ori_info_dict['cams'][cam]['data_path']).name
VVsssssk's avatar
VVsssssk committed
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
            empty_img_info['cam2img'] = ori_info_dict['cams'][cam][
                'cam_intrinsic'].tolist()
            empty_img_info['sample_data_token'] = ori_info_dict['cams'][cam][
                'sample_data_token']
            # bc-breaking: Timestamp has divided 1e6 in pkl infos.
            empty_img_info[
                'timestamp'] = ori_info_dict['cams'][cam]['timestamp'] / 1e6
            empty_img_info['cam2ego'] = convert_quaternion_to_matrix(
                ori_info_dict['cams'][cam]['sensor2ego_rotation'],
                ori_info_dict['cams'][cam]['sensor2ego_translation'])
            lidar2sensor = np.eye(4)
            lidar2sensor[:3, :3] = ori_info_dict['cams'][cam][
                'sensor2lidar_rotation'].T
            lidar2sensor[:3, 3] = -ori_info_dict['cams'][cam][
                'sensor2lidar_translation']
            empty_img_info['lidar2cam'] = lidar2sensor.astype(
                np.float32).tolist()
            temp_data_info['images'][cam] = empty_img_info
        num_instances = ori_info_dict['gt_boxes'].shape[0]
        ignore_class_name = set()
        for i in range(num_instances):
            empty_instance = get_empty_instance()
            empty_instance['bbox_3d'] = ori_info_dict['gt_boxes'][
                i, :].tolist()
344
345
            if ori_info_dict['gt_names'][i] in METAINFO['classes']:
                empty_instance['bbox_label'] = METAINFO['classes'].index(
VVsssssk's avatar
VVsssssk committed
346
347
348
349
350
351
352
353
354
355
356
357
358
                    ori_info_dict['gt_names'][i])
            else:
                ignore_class_name.add(ori_info_dict['gt_names'][i])
                empty_instance['bbox_label'] = -1
            empty_instance['bbox_label_3d'] = copy.deepcopy(
                empty_instance['bbox_label'])
            empty_instance['velocity'] = ori_info_dict['gt_velocity'][
                i, :].tolist()
            empty_instance['num_lidar_pts'] = ori_info_dict['num_lidar_pts'][i]
            empty_instance['num_radar_pts'] = ori_info_dict['num_radar_pts'][i]
            empty_instance['bbox_3d_isvalid'] = ori_info_dict['valid_flag'][i]
            empty_instance = clear_instance_unused_keys(empty_instance)
            temp_data_info['instances'].append(empty_instance)
359
        temp_data_info['cam_instances'] = generate_nuscenes_camera_instances(
ZCMax's avatar
ZCMax committed
360
            ori_info_dict, nusc)
VVsssssk's avatar
VVsssssk committed
361
362
        temp_data_info, _ = clear_data_info_unused_keys(temp_data_info)
        converted_list.append(temp_data_info)
363
    pkl_name = Path(pkl_path).name
VVsssssk's avatar
VVsssssk committed
364
365
366
    out_path = osp.join(out_dir, pkl_name)
    print(f'Writing to output file: {out_path}.')
    print(f'ignore classes: {ignore_class_name}')
367
368

    metainfo = dict()
Xiangxu-0103's avatar
Xiangxu-0103 committed
369
    metainfo['categories'] = {k: i for i, k in enumerate(METAINFO['classes'])}
370
371
372
373
374
375
376
    if ignore_class_name:
        for ignore_class in ignore_class_name:
            metainfo['categories'][ignore_class] = -1
    metainfo['dataset'] = 'nuscenes'
    metainfo['version'] = data_list['metadata']['version']
    metainfo['info_version'] = '1.1'
    converted_data_info = dict(metainfo=metainfo, data_list=converted_list)
VVsssssk's avatar
VVsssssk committed
377

378
    mmengine.dump(converted_data_info, out_path, 'pkl')
VVsssssk's avatar
VVsssssk committed
379
380


jshilong's avatar
jshilong committed
381
382
383
384
385
386
387
388
389
def update_kitti_infos(pkl_path, out_dir):
    print(f'{pkl_path} will be modified.')
    if out_dir in pkl_path:
        print(f'Warning, you may overwriting '
              f'the original data {pkl_path}.')
        time.sleep(5)
    # TODO update to full label
    # TODO discuss how to process 'Van', 'DontCare'
    METAINFO = {
390
        'classes': ('Pedestrian', 'Cyclist', 'Car', 'Van', 'Truck',
VVsssssk's avatar
VVsssssk committed
391
                    'Person_sitting', 'Tram', 'Misc'),
jshilong's avatar
jshilong committed
392
393
    }
    print(f'Reading from input file: {pkl_path}.')
394
    data_list = mmengine.load(pkl_path)
jshilong's avatar
jshilong committed
395
396
    print('Start updating:')
    converted_list = []
397
    for ori_info_dict in mmengine.track_iter_progress(data_list):
jshilong's avatar
jshilong committed
398
399
400
401
402
        temp_data_info = get_empty_standard_data_info()

        if 'plane' in ori_info_dict:
            temp_data_info['plane'] = ori_info_dict['plane']

403
        temp_data_info['sample_idx'] = ori_info_dict['image']['image_idx']
jshilong's avatar
jshilong committed
404
405
406
407
408
409
410
411
412
413

        temp_data_info['images']['CAM0']['cam2img'] = ori_info_dict['calib'][
            'P0'].tolist()
        temp_data_info['images']['CAM1']['cam2img'] = ori_info_dict['calib'][
            'P1'].tolist()
        temp_data_info['images']['CAM2']['cam2img'] = ori_info_dict['calib'][
            'P2'].tolist()
        temp_data_info['images']['CAM3']['cam2img'] = ori_info_dict['calib'][
            'P3'].tolist()

414
415
        temp_data_info['images']['CAM2']['img_path'] = Path(
            ori_info_dict['image']['image_path']).name
jshilong's avatar
jshilong committed
416
417
418
419
420
        h, w = ori_info_dict['image']['image_shape']
        temp_data_info['images']['CAM2']['height'] = h
        temp_data_info['images']['CAM2']['width'] = w
        temp_data_info['lidar_points']['num_pts_feats'] = ori_info_dict[
            'point_cloud']['num_features']
421
422
        temp_data_info['lidar_points']['lidar_path'] = Path(
            ori_info_dict['point_cloud']['velodyne_path']).name
jshilong's avatar
jshilong committed
423
424
425
426
427

        rect = ori_info_dict['calib']['R0_rect'].astype(np.float32)
        Trv2c = ori_info_dict['calib']['Tr_velo_to_cam'].astype(np.float32)
        lidar2cam = rect @ Trv2c
        temp_data_info['images']['CAM2']['lidar2cam'] = lidar2cam.tolist()
jshilong's avatar
jshilong committed
428
429
430
431
432
433
434
435
436
        temp_data_info['images']['CAM0']['lidar2img'] = (
            ori_info_dict['calib']['P0'] @ lidar2cam).tolist()
        temp_data_info['images']['CAM1']['lidar2img'] = (
            ori_info_dict['calib']['P1'] @ lidar2cam).tolist()
        temp_data_info['images']['CAM2']['lidar2img'] = (
            ori_info_dict['calib']['P2'] @ lidar2cam).tolist()
        temp_data_info['images']['CAM3']['lidar2img'] = (
            ori_info_dict['calib']['P3'] @ lidar2cam).tolist()

jshilong's avatar
jshilong committed
437
438
439
440
441
442
443
444
445
446
        temp_data_info['lidar_points']['Tr_velo_to_cam'] = Trv2c.tolist()

        # for potential usage
        temp_data_info['images']['R0_rect'] = ori_info_dict['calib'][
            'R0_rect'].astype(np.float32).tolist()
        temp_data_info['lidar_points']['Tr_imu_to_velo'] = ori_info_dict[
            'calib']['Tr_imu_to_velo'].astype(np.float32).tolist()

        anns = ori_info_dict['annos']
        num_instances = len(anns['name'])
ZCMax's avatar
ZCMax committed
447
        cam2img = ori_info_dict['calib']['P2']
jshilong's avatar
jshilong committed
448
449
450
451
452
453
454

        ignore_class_name = set()
        instance_list = []
        for instance_id in range(num_instances):
            empty_instance = get_empty_instance()
            empty_instance['bbox'] = anns['bbox'][instance_id].tolist()

455
456
            if anns['name'][instance_id] in METAINFO['classes']:
                empty_instance['bbox_label'] = METAINFO['classes'].index(
jshilong's avatar
jshilong committed
457
458
459
460
461
462
463
464
465
466
                    anns['name'][instance_id])
            else:
                ignore_class_name.add(anns['name'][instance_id])
                empty_instance['bbox_label'] = -1

            empty_instance['bbox'] = anns['bbox'][instance_id].tolist()

            loc = anns['location'][instance_id]
            dims = anns['dimensions'][instance_id]
            rots = anns['rotation_y'][:, None][instance_id]
ZCMax's avatar
ZCMax committed
467
468
469
470
471
472
473
474
475
476
477

            dst = np.array([0.5, 0.5, 0.5])
            src = np.array([0.5, 1.0, 0.5])

            center_3d = loc + dims * (dst - src)
            center_2d = points_cam2img(
                center_3d.reshape([1, 3]), cam2img, with_depth=True)
            center_2d = center_2d.squeeze().tolist()
            empty_instance['center_2d'] = center_2d[:2]
            empty_instance['depth'] = center_2d[2]

478
            gt_bboxes_3d = np.concatenate([loc, dims, rots]).tolist()
jshilong's avatar
jshilong committed
479
480
481
482
            empty_instance['bbox_3d'] = gt_bboxes_3d
            empty_instance['bbox_label_3d'] = copy.deepcopy(
                empty_instance['bbox_label'])
            empty_instance['bbox'] = anns['bbox'][instance_id].tolist()
483
484
            empty_instance['truncated'] = anns['truncated'][
                instance_id].tolist()
jshilong's avatar
jshilong committed
485
486
487
488
489
490
491
492
493
494
495
496
497
            empty_instance['occluded'] = anns['occluded'][instance_id].tolist()
            empty_instance['alpha'] = anns['alpha'][instance_id].tolist()
            empty_instance['score'] = anns['score'][instance_id].tolist()
            empty_instance['index'] = anns['index'][instance_id].tolist()
            empty_instance['group_id'] = anns['group_ids'][instance_id].tolist(
            )
            empty_instance['difficulty'] = anns['difficulty'][
                instance_id].tolist()
            empty_instance['num_lidar_pts'] = anns['num_points_in_gt'][
                instance_id].tolist()
            empty_instance = clear_instance_unused_keys(empty_instance)
            instance_list.append(empty_instance)
        temp_data_info['instances'] = instance_list
498
499
        cam_instances = generate_kitti_camera_instances(ori_info_dict)
        temp_data_info['cam_instances'] = cam_instances
jshilong's avatar
jshilong committed
500
501
        temp_data_info, _ = clear_data_info_unused_keys(temp_data_info)
        converted_list.append(temp_data_info)
502
    pkl_name = Path(pkl_path).name
jshilong's avatar
jshilong committed
503
504
505
    out_path = osp.join(out_dir, pkl_name)
    print(f'Writing to output file: {out_path}.')
    print(f'ignore classes: {ignore_class_name}')
506
507
508

    # dataset metainfo
    metainfo = dict()
Xiangxu-0103's avatar
Xiangxu-0103 committed
509
    metainfo['categories'] = {k: i for i, k in enumerate(METAINFO['classes'])}
510
511
512
513
514
515
    if ignore_class_name:
        for ignore_class in ignore_class_name:
            metainfo['categories'][ignore_class] = -1
    metainfo['dataset'] = 'kitti'
    metainfo['info_version'] = '1.1'
    converted_data_info = dict(metainfo=metainfo, data_list=converted_list)
jshilong's avatar
jshilong committed
516

517
    mmengine.dump(converted_data_info, out_path, 'pkl')
jshilong's avatar
jshilong committed
518
519


ZCMax's avatar
ZCMax committed
520
521
522
523
524
525
def update_s3dis_infos(pkl_path, out_dir):
    print(f'{pkl_path} will be modified.')
    if out_dir in pkl_path:
        print(f'Warning, you may overwriting '
              f'the original data {pkl_path}.')
        time.sleep(5)
526
    METAINFO = {'classes': ('table', 'chair', 'sofa', 'bookcase', 'board')}
ZCMax's avatar
ZCMax committed
527
    print(f'Reading from input file: {pkl_path}.')
528
    data_list = mmengine.load(pkl_path)
ZCMax's avatar
ZCMax committed
529
530
    print('Start updating:')
    converted_list = []
531
    for i, ori_info_dict in enumerate(mmengine.track_iter_progress(data_list)):
ZCMax's avatar
ZCMax committed
532
        temp_data_info = get_empty_standard_data_info()
533
        temp_data_info['sample_idx'] = i
ZCMax's avatar
ZCMax committed
534
535
        temp_data_info['lidar_points']['num_pts_feats'] = ori_info_dict[
            'point_cloud']['num_features']
536
537
538
539
540
541
        temp_data_info['lidar_points']['lidar_path'] = Path(
            ori_info_dict['pts_path']).name
        temp_data_info['pts_semantic_mask_path'] = Path(
            ori_info_dict['pts_semantic_mask_path']).name
        temp_data_info['pts_instance_mask_path'] = Path(
            ori_info_dict['pts_instance_mask_path']).name
ZCMax's avatar
ZCMax committed
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557

        # TODO support camera
        # np.linalg.inv(info['axis_align_matrix'] @ extrinsic): depth2cam
        anns = ori_info_dict.get('annos', None)
        ignore_class_name = set()
        if anns is not None:
            if anns['gt_num'] == 0:
                instance_list = []
            else:
                num_instances = len(anns['class'])
                instance_list = []
                for instance_id in range(num_instances):
                    empty_instance = get_empty_instance()
                    empty_instance['bbox_3d'] = anns['gt_boxes_upright_depth'][
                        instance_id].tolist()

558
                    if anns['class'][instance_id] < len(METAINFO['classes']):
ZCMax's avatar
ZCMax committed
559
560
561
562
                        empty_instance['bbox_label_3d'] = anns['class'][
                            instance_id]
                    else:
                        ignore_class_name.add(
563
                            METAINFO['classes'][anns['class'][instance_id]])
ZCMax's avatar
ZCMax committed
564
565
566
567
568
569
570
                        empty_instance['bbox_label_3d'] = -1

                    empty_instance = clear_instance_unused_keys(empty_instance)
                    instance_list.append(empty_instance)
            temp_data_info['instances'] = instance_list
        temp_data_info, _ = clear_data_info_unused_keys(temp_data_info)
        converted_list.append(temp_data_info)
571
    pkl_name = Path(pkl_path).name
ZCMax's avatar
ZCMax committed
572
573
574
    out_path = osp.join(out_dir, pkl_name)
    print(f'Writing to output file: {out_path}.')
    print(f'ignore classes: {ignore_class_name}')
575
576
577

    # dataset metainfo
    metainfo = dict()
Xiangxu-0103's avatar
Xiangxu-0103 committed
578
    metainfo['categories'] = {k: i for i, k in enumerate(METAINFO['classes'])}
579
580
581
582
583
584
585
    if ignore_class_name:
        for ignore_class in ignore_class_name:
            metainfo['categories'][ignore_class] = -1
    metainfo['dataset'] = 's3dis'
    metainfo['info_version'] = '1.1'

    converted_data_info = dict(metainfo=metainfo, data_list=converted_list)
ZCMax's avatar
ZCMax committed
586

587
    mmengine.dump(converted_data_info, out_path, 'pkl')
ZCMax's avatar
ZCMax committed
588
589


jshilong's avatar
jshilong committed
590
591
592
593
594
595
596
def update_scannet_infos(pkl_path, out_dir):
    print(f'{pkl_path} will be modified.')
    if out_dir in pkl_path:
        print(f'Warning, you may overwriting '
              f'the original data {pkl_path}.')
        time.sleep(5)
    METAINFO = {
597
        'classes':
jshilong's avatar
jshilong committed
598
599
600
601
602
        ('cabinet', 'bed', 'chair', 'sofa', 'table', 'door', 'window',
         'bookshelf', 'picture', 'counter', 'desk', 'curtain', 'refrigerator',
         'showercurtrain', 'toilet', 'sink', 'bathtub', 'garbagebin')
    }
    print(f'Reading from input file: {pkl_path}.')
603
    data_list = mmengine.load(pkl_path)
jshilong's avatar
jshilong committed
604
605
    print('Start updating:')
    converted_list = []
606
    for ori_info_dict in mmengine.track_iter_progress(data_list):
jshilong's avatar
jshilong committed
607
608
609
        temp_data_info = get_empty_standard_data_info()
        temp_data_info['lidar_points']['num_pts_feats'] = ori_info_dict[
            'point_cloud']['num_features']
610
611
612
613
614
615
        temp_data_info['lidar_points']['lidar_path'] = Path(
            ori_info_dict['pts_path']).name
        temp_data_info['pts_semantic_mask_path'] = Path(
            ori_info_dict['pts_semantic_mask_path']).name
        temp_data_info['pts_instance_mask_path'] = Path(
            ori_info_dict['pts_instance_mask_path']).name
jshilong's avatar
jshilong committed
616
617
618
619
620
621

        # TODO support camera
        # np.linalg.inv(info['axis_align_matrix'] @ extrinsic): depth2cam
        anns = ori_info_dict['annos']
        temp_data_info['axis_align_matrix'] = anns['axis_align_matrix'].tolist(
        )
622
623
624
625
626
627
628
629
630
631
632
        if anns['gt_num'] == 0:
            instance_list = []
        else:
            num_instances = len(anns['name'])
            ignore_class_name = set()
            instance_list = []
            for instance_id in range(num_instances):
                empty_instance = get_empty_instance()
                empty_instance['bbox_3d'] = anns['gt_boxes_upright_depth'][
                    instance_id].tolist()

633
                if anns['name'][instance_id] in METAINFO['classes']:
634
                    empty_instance['bbox_label_3d'] = METAINFO[
635
                        'classes'].index(anns['name'][instance_id])
636
637
638
639
640
641
                else:
                    ignore_class_name.add(anns['name'][instance_id])
                    empty_instance['bbox_label_3d'] = -1

                empty_instance = clear_instance_unused_keys(empty_instance)
                instance_list.append(empty_instance)
jshilong's avatar
jshilong committed
642
643
644
        temp_data_info['instances'] = instance_list
        temp_data_info, _ = clear_data_info_unused_keys(temp_data_info)
        converted_list.append(temp_data_info)
645
    pkl_name = Path(pkl_path).name
jshilong's avatar
jshilong committed
646
647
648
    out_path = osp.join(out_dir, pkl_name)
    print(f'Writing to output file: {out_path}.')
    print(f'ignore classes: {ignore_class_name}')
649
650
651

    # dataset metainfo
    metainfo = dict()
Xiangxu-0103's avatar
Xiangxu-0103 committed
652
    metainfo['categories'] = {k: i for i, k in enumerate(METAINFO['classes'])}
653
654
655
656
657
658
659
    if ignore_class_name:
        for ignore_class in ignore_class_name:
            metainfo['categories'][ignore_class] = -1
    metainfo['dataset'] = 'scannet'
    metainfo['info_version'] = '1.1'

    converted_data_info = dict(metainfo=metainfo, data_list=converted_list)
jshilong's avatar
jshilong committed
660

661
    mmengine.dump(converted_data_info, out_path, 'pkl')
jshilong's avatar
jshilong committed
662
663
664
665
666
667
668
669
670


def update_sunrgbd_infos(pkl_path, out_dir):
    print(f'{pkl_path} will be modified.')
    if out_dir in pkl_path:
        print(f'Warning, you may overwriting '
              f'the original data {pkl_path}.')
        time.sleep(5)
    METAINFO = {
671
        'classes': ('bed', 'table', 'sofa', 'chair', 'toilet', 'desk',
jshilong's avatar
jshilong committed
672
673
674
                    'dresser', 'night_stand', 'bookshelf', 'bathtub')
    }
    print(f'Reading from input file: {pkl_path}.')
675
    data_list = mmengine.load(pkl_path)
jshilong's avatar
jshilong committed
676
677
    print('Start updating:')
    converted_list = []
678
    for ori_info_dict in mmengine.track_iter_progress(data_list):
jshilong's avatar
jshilong committed
679
680
681
        temp_data_info = get_empty_standard_data_info()
        temp_data_info['lidar_points']['num_pts_feats'] = ori_info_dict[
            'point_cloud']['num_features']
682
683
        temp_data_info['lidar_points']['lidar_path'] = Path(
            ori_info_dict['pts_path']).name
jshilong's avatar
jshilong committed
684
685
686
687
688
689
690
        calib = ori_info_dict['calib']
        rt_mat = calib['Rt']
        # follow Coord3DMode.convert_point
        rt_mat = np.array([[1, 0, 0], [0, 0, -1], [0, 1, 0]
                           ]) @ rt_mat.transpose(1, 0)
        depth2img = calib['K'] @ rt_mat
        temp_data_info['images']['CAM0']['depth2img'] = depth2img.tolist()
691
692
        temp_data_info['images']['CAM0']['img_path'] = Path(
            ori_info_dict['image']['image_path']).name
jshilong's avatar
jshilong committed
693
694
695
696
697
        h, w = ori_info_dict['image']['image_shape']
        temp_data_info['images']['CAM0']['height'] = h
        temp_data_info['images']['CAM0']['width'] = w

        anns = ori_info_dict['annos']
zhangshilong's avatar
zhangshilong committed
698
699
700
701
702
703
704
705
706
707
708
        if anns['gt_num'] == 0:
            instance_list = []
        else:
            num_instances = len(anns['name'])
            ignore_class_name = set()
            instance_list = []
            for instance_id in range(num_instances):
                empty_instance = get_empty_instance()
                empty_instance['bbox_3d'] = anns['gt_boxes_upright_depth'][
                    instance_id].tolist()
                empty_instance['bbox'] = anns['bbox'][instance_id].tolist()
709
                if anns['name'][instance_id] in METAINFO['classes']:
zhangshilong's avatar
zhangshilong committed
710
                    empty_instance['bbox_label_3d'] = METAINFO[
711
                        'classes'].index(anns['name'][instance_id])
zhangshilong's avatar
zhangshilong committed
712
713
714
715
716
717
718
719
                    empty_instance['bbox_label'] = empty_instance[
                        'bbox_label_3d']
                else:
                    ignore_class_name.add(anns['name'][instance_id])
                    empty_instance['bbox_label_3d'] = -1
                    empty_instance['bbox_label'] = -1
                empty_instance = clear_instance_unused_keys(empty_instance)
                instance_list.append(empty_instance)
jshilong's avatar
jshilong committed
720
721
722
        temp_data_info['instances'] = instance_list
        temp_data_info, _ = clear_data_info_unused_keys(temp_data_info)
        converted_list.append(temp_data_info)
723
    pkl_name = Path(pkl_path).name
jshilong's avatar
jshilong committed
724
725
726
    out_path = osp.join(out_dir, pkl_name)
    print(f'Writing to output file: {out_path}.')
    print(f'ignore classes: {ignore_class_name}')
727
728
729

    # dataset metainfo
    metainfo = dict()
Xiangxu-0103's avatar
Xiangxu-0103 committed
730
    metainfo['categories'] = {k: i for i, k in enumerate(METAINFO['classes'])}
731
732
733
734
735
736
737
    if ignore_class_name:
        for ignore_class in ignore_class_name:
            metainfo['categories'][ignore_class] = -1
    metainfo['dataset'] = 'sunrgbd'
    metainfo['info_version'] = '1.1'

    converted_data_info = dict(metainfo=metainfo, data_list=converted_list)
jshilong's avatar
jshilong committed
738

739
    mmengine.dump(converted_data_info, out_path, 'pkl')
jshilong's avatar
jshilong committed
740
741


VVsssssk's avatar
VVsssssk committed
742
743
744
745
746
747
def update_lyft_infos(pkl_path, out_dir):
    print(f'{pkl_path} will be modified.')
    if out_dir in pkl_path:
        print(f'Warning, you may overwriting '
              f'the original data {pkl_path}.')
    print(f'Reading from input file: {pkl_path}.')
748
    data_list = mmengine.load(pkl_path)
VVsssssk's avatar
VVsssssk committed
749
    METAINFO = {
750
        'classes':
VVsssssk's avatar
VVsssssk committed
751
752
753
754
755
756
        ('car', 'truck', 'bus', 'emergency_vehicle', 'other_vehicle',
         'motorcycle', 'bicycle', 'pedestrian', 'animal'),
    }
    print('Start updating:')
    converted_list = []
    for i, ori_info_dict in enumerate(
757
            mmengine.track_iter_progress(data_list['infos'])):
VVsssssk's avatar
VVsssssk committed
758
759
760
761
762
763
        temp_data_info = get_empty_standard_data_info()
        temp_data_info['sample_idx'] = i
        temp_data_info['token'] = ori_info_dict['token']
        temp_data_info['ego2global'] = convert_quaternion_to_matrix(
            ori_info_dict['ego2global_rotation'],
            ori_info_dict['ego2global_translation'])
764
765
        temp_data_info['lidar_points']['num_pts_feats'] = ori_info_dict.get(
            'num_features', 5)
766
767
        temp_data_info['lidar_points']['lidar_path'] = Path(
            ori_info_dict['lidar_path']).name
VVsssssk's avatar
VVsssssk committed
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
        temp_data_info['lidar_points'][
            'lidar2ego'] = convert_quaternion_to_matrix(
                ori_info_dict['lidar2ego_rotation'],
                ori_info_dict['lidar2ego_translation'])
        # bc-breaking: Timestamp has divided 1e6 in pkl infos.
        temp_data_info['timestamp'] = ori_info_dict['timestamp'] / 1e6
        for ori_sweep in ori_info_dict['sweeps']:
            temp_lidar_sweep = get_single_lidar_sweep()
            temp_lidar_sweep['lidar_points'][
                'lidar2ego'] = convert_quaternion_to_matrix(
                    ori_sweep['sensor2ego_rotation'],
                    ori_sweep['sensor2ego_translation'])
            temp_lidar_sweep['ego2global'] = convert_quaternion_to_matrix(
                ori_sweep['ego2global_rotation'],
                ori_sweep['ego2global_translation'])
            lidar2sensor = np.eye(4)
            lidar2sensor[:3, :3] = ori_sweep['sensor2lidar_rotation'].T
            lidar2sensor[:3, 3] = -ori_sweep['sensor2lidar_translation']
            temp_lidar_sweep['lidar_points'][
                'lidar2sensor'] = lidar2sensor.astype(np.float32).tolist()
            # bc-breaking: Timestamp has divided 1e6 in pkl infos.
            temp_lidar_sweep['timestamp'] = ori_sweep['timestamp'] / 1e6
            temp_lidar_sweep['lidar_points']['lidar_path'] = ori_sweep[
                'data_path']
            temp_lidar_sweep['sample_data_token'] = ori_sweep[
                'sample_data_token']
            temp_data_info['lidar_sweeps'].append(temp_lidar_sweep)
        temp_data_info['images'] = {}
        for cam in ori_info_dict['cams']:
            empty_img_info = get_empty_img_info()
798
799
            empty_img_info['img_path'] = Path(
                ori_info_dict['cams'][cam]['data_path']).name
VVsssssk's avatar
VVsssssk committed
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
            empty_img_info['cam2img'] = ori_info_dict['cams'][cam][
                'cam_intrinsic'].tolist()
            empty_img_info['sample_data_token'] = ori_info_dict['cams'][cam][
                'sample_data_token']
            empty_img_info[
                'timestamp'] = ori_info_dict['cams'][cam]['timestamp'] / 1e6
            empty_img_info['cam2ego'] = convert_quaternion_to_matrix(
                ori_info_dict['cams'][cam]['sensor2ego_rotation'],
                ori_info_dict['cams'][cam]['sensor2ego_translation'])
            lidar2sensor = np.eye(4)
            lidar2sensor[:3, :3] = ori_info_dict['cams'][cam][
                'sensor2lidar_rotation'].T
            lidar2sensor[:3, 3] = -ori_info_dict['cams'][cam][
                'sensor2lidar_translation']
            empty_img_info['lidar2cam'] = lidar2sensor.astype(
                np.float32).tolist()
            temp_data_info['images'][cam] = empty_img_info
        num_instances = ori_info_dict['gt_boxes'].shape[0]
        ignore_class_name = set()
        for i in range(num_instances):
            empty_instance = get_empty_instance()
            empty_instance['bbox_3d'] = ori_info_dict['gt_boxes'][
                i, :].tolist()
823
824
            if ori_info_dict['gt_names'][i] in METAINFO['classes']:
                empty_instance['bbox_label'] = METAINFO['classes'].index(
VVsssssk's avatar
VVsssssk committed
825
826
827
828
829
830
831
832
833
834
                    ori_info_dict['gt_names'][i])
            else:
                ignore_class_name.add(ori_info_dict['gt_names'][i])
                empty_instance['bbox_label'] = -1
            empty_instance['bbox_label_3d'] = copy.deepcopy(
                empty_instance['bbox_label'])
            empty_instance = clear_instance_unused_keys(empty_instance)
            temp_data_info['instances'].append(empty_instance)
        temp_data_info, _ = clear_data_info_unused_keys(temp_data_info)
        converted_list.append(temp_data_info)
835
    pkl_name = Path(pkl_path).name
VVsssssk's avatar
VVsssssk committed
836
837
838
    out_path = osp.join(out_dir, pkl_name)
    print(f'Writing to output file: {out_path}.')
    print(f'ignore classes: {ignore_class_name}')
839
840

    metainfo = dict()
Xiangxu-0103's avatar
Xiangxu-0103 committed
841
    metainfo['categories'] = {k: i for i, k in enumerate(METAINFO['classes'])}
842
843
844
845
846
847
848
    if ignore_class_name:
        for ignore_class in ignore_class_name:
            metainfo['categories'][ignore_class] = -1
    metainfo['dataset'] = 'lyft'
    metainfo['version'] = data_list['metadata']['version']
    metainfo['info_version'] = '1.1'
    converted_data_info = dict(metainfo=metainfo, data_list=converted_list)
VVsssssk's avatar
VVsssssk committed
849

850
    mmengine.dump(converted_data_info, out_path, 'pkl')
VVsssssk's avatar
VVsssssk committed
851
852


853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
def update_waymo_infos(pkl_path, out_dir):
    # the input pkl is based on the
    # pkl generated in the waymo cam only challenage.
    camera_types = [
        'CAM_FRONT',
        'CAM_FRONT_RIGHT',
        'CAM_FRONT_LEFT',
        'CAM_SIDE_RIGHT',
        'CAM_SIDE_LEFT',
    ]
    print(f'{pkl_path} will be modified.')
    if out_dir in pkl_path:
        print(f'Warning, you may overwriting '
              f'the original data {pkl_path}.')
        time.sleep(5)
    # TODO update to full label
    # TODO discuss how to process 'Van', 'DontCare'
    METAINFO = {
871
        'classes': ('Car', 'Pedestrian', 'Cyclist', 'Sign'),
872
873
    }
    print(f'Reading from input file: {pkl_path}.')
874
    data_list = mmengine.load(pkl_path)
875
876
    print('Start updating:')
    converted_list = []
877
    for ori_info_dict in mmengine.track_iter_progress(data_list):
878
879
880
881
        temp_data_info = get_empty_standard_data_info(camera_types)

        if 'plane' in ori_info_dict:
            temp_data_info['plane'] = ori_info_dict['plane']
882
        temp_data_info['sample_idx'] = ori_info_dict['image']['image_idx']
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901

        # calib matrix
        for cam_idx, cam_key in enumerate(camera_types):
            temp_data_info['images'][cam_key]['cam2img'] =\
                 ori_info_dict['calib'][f'P{cam_idx}'].tolist()

        for cam_idx, cam_key in enumerate(camera_types):
            rect = ori_info_dict['calib']['R0_rect'].astype(np.float32)
            velo_to_cam = 'Tr_velo_to_cam'
            if cam_idx != 0:
                velo_to_cam += str(cam_idx)
            Trv2c = ori_info_dict['calib'][velo_to_cam].astype(np.float32)

            lidar2cam = rect @ Trv2c
            temp_data_info['images'][cam_key]['lidar2cam'] = lidar2cam.tolist()
            temp_data_info['images'][cam_key]['lidar2img'] = (
                ori_info_dict['calib'][f'P{cam_idx}'] @ lidar2cam).tolist()

        # image path
902
        base_img_path = Path(ori_info_dict['image']['image_path']).name
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

        for cam_idx, cam_key in enumerate(camera_types):
            temp_data_info['images'][cam_key]['timestamp'] = ori_info_dict[
                'timestamp']
            temp_data_info['images'][cam_key]['img_path'] = base_img_path

        h, w = ori_info_dict['image']['image_shape']

        # for potential usage
        temp_data_info['images'][camera_types[0]]['height'] = h
        temp_data_info['images'][camera_types[0]]['width'] = w
        temp_data_info['lidar_points']['num_pts_feats'] = ori_info_dict[
            'point_cloud']['num_features']
        temp_data_info['lidar_points']['timestamp'] = ori_info_dict[
            'timestamp']
918
919
        temp_data_info['lidar_points']['lidar_path'] = Path(
            ori_info_dict['point_cloud']['velodyne_path']).name
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938

        # TODO discuss the usage of Tr_velo_to_cam in lidar
        Trv2c = ori_info_dict['calib']['Tr_velo_to_cam'].astype(np.float32)

        temp_data_info['lidar_points']['Tr_velo_to_cam'] = Trv2c.tolist()

        # for potential usage
        # temp_data_info['images']['R0_rect'] = ori_info_dict['calib'][
        #     'R0_rect'].astype(np.float32).tolist()

        # for the sweeps part:
        temp_data_info['timestamp'] = ori_info_dict['timestamp']
        temp_data_info['ego2global'] = ori_info_dict['pose']

        for ori_sweep in ori_info_dict['sweeps']:
            # lidar sweeps
            lidar_sweep = get_single_lidar_sweep()
            lidar_sweep['ego2global'] = ori_sweep['pose']
            lidar_sweep['timestamp'] = ori_sweep['timestamp']
939
940
            lidar_sweep['lidar_points']['lidar_path'] = Path(
                ori_sweep['velodyne_path']).name
941
942
943
944
            # image sweeps
            image_sweep = get_single_image_sweep(camera_types)
            image_sweep['ego2global'] = ori_sweep['pose']
            image_sweep['timestamp'] = ori_sweep['timestamp']
945
            img_path = Path(ori_sweep['image_path']).name
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
            for cam_idx, cam_key in enumerate(camera_types):
                image_sweep['images'][cam_key]['img_path'] = img_path

            temp_data_info['lidar_sweeps'].append(lidar_sweep)
            temp_data_info['image_sweeps'].append(image_sweep)

        anns = ori_info_dict['annos']
        num_instances = len(anns['name'])

        ignore_class_name = set()
        instance_list = []
        for instance_id in range(num_instances):
            empty_instance = get_empty_instance()
            empty_instance['bbox'] = anns['bbox'][instance_id].tolist()

961
962
            if anns['name'][instance_id] in METAINFO['classes']:
                empty_instance['bbox_label'] = METAINFO['classes'].index(
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
                    anns['name'][instance_id])
            else:
                ignore_class_name.add(anns['name'][instance_id])
                empty_instance['bbox_label'] = -1

            empty_instance['bbox'] = anns['bbox'][instance_id].tolist()

            loc = anns['location'][instance_id]
            dims = anns['dimensions'][instance_id]
            rots = anns['rotation_y'][:, None][instance_id]
            gt_bboxes_3d = np.concatenate([loc, dims,
                                           rots]).astype(np.float32).tolist()
            empty_instance['bbox_3d'] = gt_bboxes_3d
            empty_instance['bbox_label_3d'] = copy.deepcopy(
                empty_instance['bbox_label'])
            empty_instance['bbox'] = anns['bbox'][instance_id].tolist()
            empty_instance['truncated'] = int(
                anns['truncated'][instance_id].tolist())
            empty_instance['occluded'] = anns['occluded'][instance_id].tolist()
            empty_instance['alpha'] = anns['alpha'][instance_id].tolist()
            empty_instance['index'] = anns['index'][instance_id].tolist()
            empty_instance['group_id'] = anns['group_ids'][instance_id].tolist(
            )
            empty_instance['difficulty'] = anns['difficulty'][
                instance_id].tolist()
            empty_instance['num_lidar_pts'] = anns['num_points_in_gt'][
                instance_id].tolist()
            empty_instance['camera_id'] = anns['camera_id'][
                instance_id].tolist()
            empty_instance = clear_instance_unused_keys(empty_instance)
            instance_list.append(empty_instance)
        temp_data_info['instances'] = instance_list

        # waymo provide the labels that sync with cam
        anns = ori_info_dict['cam_sync_annos']
        num_instances = len(anns['name'])
        ignore_class_name = set()
        instance_list = []
        for instance_id in range(num_instances):
            empty_instance = get_empty_instance()
            empty_instance['bbox'] = anns['bbox'][instance_id].tolist()

1005
1006
            if anns['name'][instance_id] in METAINFO['classes']:
                empty_instance['bbox_label'] = METAINFO['classes'].index(
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
                    anns['name'][instance_id])
            else:
                ignore_class_name.add(anns['name'][instance_id])
                empty_instance['bbox_label'] = -1

            empty_instance['bbox'] = anns['bbox'][instance_id].tolist()

            loc = anns['location'][instance_id]
            dims = anns['dimensions'][instance_id]
            rots = anns['rotation_y'][:, None][instance_id]
            gt_bboxes_3d = np.concatenate([loc, dims,
                                           rots]).astype(np.float32).tolist()
            empty_instance['bbox_3d'] = gt_bboxes_3d
            empty_instance['bbox_label_3d'] = copy.deepcopy(
                empty_instance['bbox_label'])
            empty_instance['bbox'] = anns['bbox'][instance_id].tolist()
            empty_instance['truncated'] = int(
                anns['truncated'][instance_id].tolist())
            empty_instance['occluded'] = anns['occluded'][instance_id].tolist()
            empty_instance['alpha'] = anns['alpha'][instance_id].tolist()
            empty_instance['index'] = anns['index'][instance_id].tolist()
            empty_instance['group_id'] = anns['group_ids'][instance_id].tolist(
            )
            empty_instance['camera_id'] = anns['camera_id'][
                instance_id].tolist()
            empty_instance = clear_instance_unused_keys(empty_instance)
            instance_list.append(empty_instance)
        temp_data_info['cam_sync_instances'] = instance_list

        cam_instances = generate_waymo_camera_instances(
            ori_info_dict, camera_types)
        temp_data_info['cam_instances'] = cam_instances

        temp_data_info, _ = clear_data_info_unused_keys(temp_data_info)
        converted_list.append(temp_data_info)
1042
    pkl_name = Path(pkl_path).name
1043
1044
1045
    out_path = osp.join(out_dir, pkl_name)
    print(f'Writing to output file: {out_path}.')
    print(f'ignore classes: {ignore_class_name}')
1046
1047
1048

    # dataset metainfo
    metainfo = dict()
Xiangxu-0103's avatar
Xiangxu-0103 committed
1049
    metainfo['categories'] = {k: i for i, k in enumerate(METAINFO['classes'])}
1050
1051
1052
1053
1054
1055
1056
1057
    if ignore_class_name:
        for ignore_class in ignore_class_name:
            metainfo['categories'][ignore_class] = -1
    metainfo['dataset'] = 'waymo'
    metainfo['version'] = '1.2'
    metainfo['info_version'] = '1.1'

    converted_data_info = dict(metainfo=metainfo, data_list=converted_list)
1058

1059
    mmengine.dump(converted_data_info, out_path, 'pkl')
1060
1061


1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
def generate_kitti_camera_instances(ori_info_dict):

    cam_key = 'CAM2'
    empty_camera_instances = get_empty_multicamera_instances([cam_key])
    annos = copy.deepcopy(ori_info_dict['annos'])
    ann_infos = get_kitti_style_2d_boxes(
        ori_info_dict, occluded=[0, 1, 2, 3], annos=annos)
    empty_camera_instances[cam_key] = ann_infos

    return empty_camera_instances


1074
1075
1076
1077
1078
1079
1080
1081
1082
def generate_waymo_camera_instances(ori_info_dict, cam_keys):

    empty_multicamera_instances = get_empty_multicamera_instances(cam_keys)

    for cam_idx, cam_key in enumerate(cam_keys):
        annos = copy.deepcopy(ori_info_dict['cam_sync_annos'])
        if cam_idx != 0:
            annos = convert_annos(ori_info_dict, cam_idx)

1083
1084
        ann_infos = get_kitti_style_2d_boxes(
            ori_info_dict, cam_idx, occluded=[0], annos=annos, dataset='waymo')
1085
1086
1087
1088
1089

        empty_multicamera_instances[cam_key] = ann_infos
    return empty_multicamera_instances


jshilong's avatar
jshilong committed
1090
1091
1092
1093
1094
1095
def parse_args():
    parser = argparse.ArgumentParser(description='Arg parser for data coords '
                                     'update due to coords sys refactor.')
    parser.add_argument(
        '--dataset', type=str, default='kitti', help='name of dataset')
    parser.add_argument(
1096
        '--pkl-path',
jshilong's avatar
jshilong committed
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
        type=str,
        default='./data/kitti/kitti_infos_train.pkl ',
        help='specify the root dir of dataset')
    parser.add_argument(
        '--out-dir',
        type=str,
        default='converted_annotations',
        required=False,
        help='output direction of info pkl')
    args = parser.parse_args()
    return args


VVsssssk's avatar
VVsssssk committed
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
def update_pkl_infos(dataset, out_dir, pkl_path):
    if dataset.lower() == 'kitti':
        update_kitti_infos(pkl_path=pkl_path, out_dir=out_dir)
    elif dataset.lower() == 'waymo':
        update_waymo_infos(pkl_path=pkl_path, out_dir=out_dir)
    elif dataset.lower() == 'scannet':
        update_scannet_infos(pkl_path=pkl_path, out_dir=out_dir)
    elif dataset.lower() == 'sunrgbd':
        update_sunrgbd_infos(pkl_path=pkl_path, out_dir=out_dir)
    elif dataset.lower() == 'lyft':
        update_lyft_infos(pkl_path=pkl_path, out_dir=out_dir)
    elif dataset.lower() == 'nuscenes':
        update_nuscenes_infos(pkl_path=pkl_path, out_dir=out_dir)
    elif dataset.lower() == 's3dis':
        update_s3dis_infos(pkl_path=pkl_path, out_dir=out_dir)
jshilong's avatar
jshilong committed
1125
    else:
VVsssssk's avatar
VVsssssk committed
1126
        raise NotImplementedError(f'Do not support convert {dataset} to v2.')
jshilong's avatar
jshilong committed
1127
1128
1129


if __name__ == '__main__':
VVsssssk's avatar
VVsssssk committed
1130
1131
1132
1133
    args = parse_args()
    if args.out_dir is None:
        args.out_dir = args.root_dir
    update_pkl_infos(
1134
        dataset=args.dataset, out_dir=args.out_dir, pkl_path=args.pkl_path)