test_s3dis_dataset.py 7.68 KB
Newer Older
ZCMax's avatar
ZCMax committed
1
2
3
4
5
# Copyright (c) OpenMMLab. All rights reserved.
import unittest

import numpy as np
import torch
6
from mmengine.testing import assert_allclose
ZCMax's avatar
ZCMax committed
7

8
9
from mmdet3d.datasets import S3DISDataset, S3DISSegDataset
from mmdet3d.structures import DepthInstance3DBoxes
ZCMax's avatar
ZCMax committed
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
from mmdet3d.utils import register_all_modules


def _generate_s3dis_seg_dataset_config():
    data_root = './tests/data/s3dis/'
    ann_file = 's3dis_infos.pkl'
    classes = ('ceiling', 'floor', 'wall', 'beam', 'column', 'window', 'door',
               'table', 'chair', 'sofa', 'bookcase', 'board', 'clutter')
    palette = [[0, 255, 0], [0, 0, 255], [0, 255, 255], [255, 255, 0],
               [255, 0, 255], [100, 100, 255], [200, 200, 100],
               [170, 120, 200], [255, 0, 0], [200, 100, 100], [10, 200, 100],
               [200, 200, 200], [50, 50, 50]]
    scene_idxs = [0 for _ in range(20)]
    modality = dict(use_lidar=True, use_camera=False)
    pipeline = [
        dict(
            type='LoadPointsFromFile',
            coord_type='DEPTH',
            shift_height=False,
            use_color=True,
            load_dim=6,
            use_dim=[0, 1, 2, 3, 4, 5]),
        dict(
            type='LoadAnnotations3D',
            with_bbox_3d=False,
            with_label_3d=False,
            with_mask_3d=False,
            with_seg_3d=True),
38
        dict(type='PointSegClassMapping'),
ZCMax's avatar
ZCMax committed
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
        dict(
            type='IndoorPatchPointSample',
            num_points=5,
            block_size=1.0,
            ignore_index=len(classes),
            use_normalized_coord=True,
            enlarge_size=0.2,
            min_unique_num=None),
        dict(type='NormalizePointsColor', color_mean=None),
        dict(type='Pack3DDetInputs', keys=['points', 'pts_semantic_mask'])
    ]

    data_prefix = dict(
        pts='points',
        pts_instance_mask='instance_mask',
        pts_semantic_mask='semantic_mask')

    return (data_root, ann_file, classes, palette, scene_idxs, data_prefix,
            pipeline, modality)


60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
def _generate_s3dis_dataset_config():
    data_root = 'tests/data/s3dis'
    ann_file = 's3dis_infos.pkl'
    classes = ('table', 'chair', 'sofa', 'bookcase', 'board')
    modality = dict(use_lidar=True, use_camera=False)
    pipeline = [
        dict(
            type='LoadPointsFromFile',
            coord_type='DEPTH',
            shift_height=False,
            use_color=True,
            load_dim=6,
            use_dim=[0, 1, 2, 3, 4, 5]),
        dict(
            type='LoadAnnotations3D',
            with_bbox_3d=True,
            with_label_3d=True,
            with_mask_3d=True,
            with_seg_3d=True),
        dict(type='PointSegClassMapping'),
        dict(type='PointSample', num_points=5),
        dict(
            type='RandomFlip3D',
            sync_2d=False,
            flip_ratio_bev_horizontal=1.0,
            flip_ratio_bev_vertical=1.0),
        dict(
            type='GlobalRotScaleTrans',
            rot_range=[-0.087266, 0.087266],
            scale_ratio_range=[1.0, 1.0]),
        dict(type='NormalizePointsColor', color_mean=None),
        dict(
            type='Pack3DDetInputs',
            keys=[
                'points', 'pts_semantic_mask', 'gt_bboxes_3d', 'gt_labels_3d',
                'pts_instance_mask'
            ])
    ]
    data_prefix = dict(
        pts='points',
        pts_instance_mask='instance_mask',
        pts_semantic_mask='semantic_mask')
    return data_root, ann_file, classes, data_prefix, pipeline, modality


ZCMax's avatar
ZCMax committed
105
106
class TestS3DISDataset(unittest.TestCase):

107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
    def test_s3dis(self):
        np.random.seed(0)
        data_root, ann_file, classes, data_prefix, \
            pipeline, modality = _generate_s3dis_dataset_config()
        register_all_modules()
        s3dis_dataset = S3DISDataset(
            data_root,
            ann_file,
            data_prefix=data_prefix,
            pipeline=pipeline,
            metainfo=dict(classes=classes),
            modality=modality)

        s3dis_dataset.prepare_data(0)
        input_dict = s3dis_dataset.get_data_info(0)
        s3dis_dataset[0]
        # assert the path should contains data_prefix and data_root
        self.assertIn(data_prefix['pts'],
                      input_dict['lidar_points']['lidar_path'])
        self.assertIn(data_root, input_dict['lidar_points']['lidar_path'])

        ann_info = s3dis_dataset.parse_ann_info(input_dict)

        # assert the keys in ann_info and the type
        except_label = np.array([1, 1, 3, 1, 2, 0, 0, 0, 3])

        self.assertEqual(ann_info['gt_labels_3d'].dtype, np.int64)
        assert_allclose(ann_info['gt_labels_3d'], except_label)
        self.assertIsInstance(ann_info['gt_bboxes_3d'], DepthInstance3DBoxes)
        assert len(ann_info['gt_bboxes_3d']) == 9
        assert torch.allclose(ann_info['gt_bboxes_3d'].tensor.sum(),
                              torch.tensor([63.0455]))

        no_class_s3dis_dataset = S3DISDataset(
            data_root, ann_file, metainfo=dict(classes=['table']))

        input_dict = no_class_s3dis_dataset.get_data_info(0)
        ann_info = no_class_s3dis_dataset.parse_ann_info(input_dict)

        # assert the keys in ann_info and the type
        self.assertIn('gt_labels_3d', ann_info)
        # assert mapping to -1 or 1
        assert (ann_info['gt_labels_3d'] <= 0).all()
        self.assertEqual(ann_info['gt_labels_3d'].dtype, np.int64)
        # all instance have been filtered by classes
        self.assertEqual(len(ann_info['gt_labels_3d']), 9)
        self.assertEqual(len(no_class_s3dis_dataset.metainfo['classes']), 1)

ZCMax's avatar
ZCMax committed
155
156
157
158
159
    def test_s3dis_seg(self):
        data_root, ann_file, classes, palette, scene_idxs, data_prefix, \
            pipeline, modality, = _generate_s3dis_seg_dataset_config()

        register_all_modules()
160
161
        np.random.seed(0)

ZCMax's avatar
ZCMax committed
162
163
164
        s3dis_seg_dataset = S3DISSegDataset(
            data_root,
            ann_file,
165
            metainfo=dict(classes=classes, palette=palette),
ZCMax's avatar
ZCMax committed
166
167
168
169
170
171
172
173
            data_prefix=data_prefix,
            pipeline=pipeline,
            modality=modality,
            scene_idxs=scene_idxs)

        input_dict = s3dis_seg_dataset.prepare_data(0)

        points = input_dict['inputs']['points']
174
        data_sample = input_dict['data_samples']
ZCMax's avatar
ZCMax committed
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
        pts_semantic_mask = data_sample.gt_pts_seg.pts_semantic_mask

        expected_points = torch.tensor([[
            0.0000, 0.0000, 3.1720, 0.4706, 0.4431, 0.3725, 0.4624, 0.7502,
            0.9543
        ],
                                        [
                                            0.2880, -0.5900, 0.0650, 0.3451,
                                            0.3373, 0.3490, 0.5119, 0.5518,
                                            0.0196
                                        ],
                                        [
                                            0.1570, 0.6000, 3.1700, 0.4941,
                                            0.4667, 0.3569, 0.4893, 0.9519,
                                            0.9537
                                        ],
                                        [
                                            -0.1320, 0.3950, 0.2720, 0.3216,
                                            0.2863, 0.2275, 0.4397, 0.8830,
                                            0.0818
                                        ],
                                        [
                                            -0.4860, -0.0640, 3.1710, 0.3843,
                                            0.3725, 0.3059, 0.3789, 0.7286,
                                            0.9540
                                        ]])

        expected_pts_semantic_mask = np.array([0, 1, 0, 8, 0])

        assert torch.allclose(points, expected_points, 1e-2)
        self.assertTrue(
            (pts_semantic_mask.numpy() == expected_pts_semantic_mask).all())