test_s3dis_dataset.py 4.12 KB
Newer Older
ZCMax's avatar
ZCMax committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
# Copyright (c) OpenMMLab. All rights reserved.
import unittest

import numpy as np
import torch

from mmdet3d.datasets import S3DISSegDataset
from mmdet3d.utils import register_all_modules


def _generate_s3dis_seg_dataset_config():
    data_root = './tests/data/s3dis/'
    ann_file = 's3dis_infos.pkl'
    classes = ('ceiling', 'floor', 'wall', 'beam', 'column', 'window', 'door',
               'table', 'chair', 'sofa', 'bookcase', 'board', 'clutter')
    palette = [[0, 255, 0], [0, 0, 255], [0, 255, 255], [255, 255, 0],
               [255, 0, 255], [100, 100, 255], [200, 200, 100],
               [170, 120, 200], [255, 0, 0], [200, 100, 100], [10, 200, 100],
               [200, 200, 200], [50, 50, 50]]
    scene_idxs = [0 for _ in range(20)]
    modality = dict(use_lidar=True, use_camera=False)
    pipeline = [
        dict(
            type='LoadPointsFromFile',
            coord_type='DEPTH',
            shift_height=False,
            use_color=True,
            load_dim=6,
            use_dim=[0, 1, 2, 3, 4, 5]),
        dict(
            type='LoadAnnotations3D',
            with_bbox_3d=False,
            with_label_3d=False,
            with_mask_3d=False,
            with_seg_3d=True),
36
        dict(type='PointSegClassMapping'),
ZCMax's avatar
ZCMax committed
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
        dict(
            type='IndoorPatchPointSample',
            num_points=5,
            block_size=1.0,
            ignore_index=len(classes),
            use_normalized_coord=True,
            enlarge_size=0.2,
            min_unique_num=None),
        dict(type='NormalizePointsColor', color_mean=None),
        dict(type='Pack3DDetInputs', keys=['points', 'pts_semantic_mask'])
    ]

    data_prefix = dict(
        pts='points',
        pts_instance_mask='instance_mask',
        pts_semantic_mask='semantic_mask')

    return (data_root, ann_file, classes, palette, scene_idxs, data_prefix,
            pipeline, modality)


class TestS3DISDataset(unittest.TestCase):

    def test_s3dis_seg(self):
        data_root, ann_file, classes, palette, scene_idxs, data_prefix, \
            pipeline, modality, = _generate_s3dis_seg_dataset_config()

        register_all_modules()
65
66
        np.random.seed(0)

ZCMax's avatar
ZCMax committed
67
68
69
70
71
72
73
74
75
76
77
78
        s3dis_seg_dataset = S3DISSegDataset(
            data_root,
            ann_file,
            metainfo=dict(CLASSES=classes, PALETTE=palette),
            data_prefix=data_prefix,
            pipeline=pipeline,
            modality=modality,
            scene_idxs=scene_idxs)

        input_dict = s3dis_seg_dataset.prepare_data(0)

        points = input_dict['inputs']['points']
79
        data_sample = input_dict['data_samples']
ZCMax's avatar
ZCMax committed
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
        pts_semantic_mask = data_sample.gt_pts_seg.pts_semantic_mask

        expected_points = torch.tensor([[
            0.0000, 0.0000, 3.1720, 0.4706, 0.4431, 0.3725, 0.4624, 0.7502,
            0.9543
        ],
                                        [
                                            0.2880, -0.5900, 0.0650, 0.3451,
                                            0.3373, 0.3490, 0.5119, 0.5518,
                                            0.0196
                                        ],
                                        [
                                            0.1570, 0.6000, 3.1700, 0.4941,
                                            0.4667, 0.3569, 0.4893, 0.9519,
                                            0.9537
                                        ],
                                        [
                                            -0.1320, 0.3950, 0.2720, 0.3216,
                                            0.2863, 0.2275, 0.4397, 0.8830,
                                            0.0818
                                        ],
                                        [
                                            -0.4860, -0.0640, 3.1710, 0.3843,
                                            0.3725, 0.3059, 0.3789, 0.7286,
                                            0.9540
                                        ]])

        expected_pts_semantic_mask = np.array([0, 1, 0, 8, 0])

        assert torch.allclose(points, expected_points, 1e-2)
        self.assertTrue(
            (pts_semantic_mask.numpy() == expected_pts_semantic_mask).all())