vote_head.py 35.4 KB
Newer Older
dingchang's avatar
dingchang committed
1
# Copyright (c) OpenMMLab. All rights reserved.
jshilong's avatar
jshilong committed
2
from typing import Dict, List, Optional, Tuple, Union
jshilong's avatar
jshilong committed
3

wuyuefeng's avatar
Votenet  
wuyuefeng committed
4
5
import numpy as np
import torch
6
from mmcv.ops import furthest_point_sample
7
from mmdet.models.utils import multi_apply
8
from mmengine import ConfigDict
9
from mmengine.model import BaseModule
10
from mmengine.structures import InstanceData
jshilong's avatar
jshilong committed
11
from torch import Tensor
zhangwenwei's avatar
zhangwenwei committed
12
from torch.nn import functional as F
wuyuefeng's avatar
Votenet  
wuyuefeng committed
13

zhangshilong's avatar
zhangshilong committed
14
from mmdet3d.models.layers import VoteModule, aligned_3d_nms, build_sa_module
wuyuefeng's avatar
Votenet  
wuyuefeng committed
15
from mmdet3d.models.losses import chamfer_distance
jshilong's avatar
jshilong committed
16
from mmdet3d.registry import MODELS, TASK_UTILS
zhangshilong's avatar
zhangshilong committed
17
from mmdet3d.structures import Det3DDataSample
18
from .base_conv_bbox_head import BaseConvBboxHead
wuyuefeng's avatar
Votenet  
wuyuefeng committed
19
20


21
@MODELS.register_module()
22
class VoteHead(BaseModule):
zhangwenwei's avatar
zhangwenwei committed
23
    r"""Bbox head of `Votenet <https://arxiv.org/abs/1904.09664>`_.
wuyuefeng's avatar
Votenet  
wuyuefeng committed
24
25
26

    Args:
        num_classes (int): The number of class.
jshilong's avatar
jshilong committed
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
        bbox_coder (ConfigDict, dict): Bbox coder for encoding and
            decoding boxes. Defaults to None.
        train_cfg (dict, optional): Config for training. Defaults to None.
        test_cfg (dict, optional): Config for testing. Defaults to None.
        vote_module_cfg (dict, optional): Config of VoteModule for
            point-wise votes. Defaults to None.
        vote_aggregation_cfg (dict, optional): Config of vote
            aggregation layer. Defaults to None.
        pred_layer_cfg (dict, optional): Config of classification
            and regression prediction layers. Defaults to None.
        objectness_loss (dict, optional): Config of objectness loss.
            Defaults to None.
        center_loss (dict, optional): Config of center loss.
            Defaults to None.
        dir_class_loss (dict, optional): Config of direction
            classification loss. Defaults to None.
        dir_res_loss (dict, optional): Config of direction
            residual regression loss. Defaults to None.
        size_class_loss (dict, optional): Config of size
            classification loss. Defaults to None.
        size_res_loss (dict, optional): Config of size
            residual regression loss. Defaults to None.
        semantic_loss (dict, optional): Config of point-wise
            semantic segmentation loss. Defaults to None.
        iou_loss (dict, optional): Config of IOU loss for
            regression. Defaults to None.
        init_cfg (dict, optional): Config of model weight
            initialization. Defaults to None.
wuyuefeng's avatar
Votenet  
wuyuefeng committed
55
56
57
    """

    def __init__(self,
jshilong's avatar
jshilong committed
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
                 num_classes: int,
                 bbox_coder: Union[ConfigDict, dict],
                 train_cfg: Optional[dict] = None,
                 test_cfg: Optional[dict] = None,
                 vote_module_cfg: Optional[dict] = None,
                 vote_aggregation_cfg: Optional[dict] = None,
                 pred_layer_cfg: Optional[dict] = None,
                 objectness_loss: Optional[dict] = None,
                 center_loss: Optional[dict] = None,
                 dir_class_loss: Optional[dict] = None,
                 dir_res_loss: Optional[dict] = None,
                 size_class_loss: Optional[dict] = None,
                 size_res_loss: Optional[dict] = None,
                 semantic_loss: Optional[dict] = None,
                 iou_loss: Optional[dict] = None,
                 init_cfg: Optional[dict] = None):
74
        super(VoteHead, self).__init__(init_cfg=init_cfg)
wuyuefeng's avatar
Votenet  
wuyuefeng committed
75
76
77
        self.num_classes = num_classes
        self.train_cfg = train_cfg
        self.test_cfg = test_cfg
jshilong's avatar
jshilong committed
78

79
        self.gt_per_seed = vote_module_cfg['gt_per_seed']
wuyuefeng's avatar
Votenet  
wuyuefeng committed
80
81
        self.num_proposal = vote_aggregation_cfg['num_point']

jshilong's avatar
jshilong committed
82
83
84
85
86
        self.loss_objectness = MODELS.build(objectness_loss)
        self.loss_center = MODELS.build(center_loss)
        self.loss_dir_res = MODELS.build(dir_res_loss)
        self.loss_dir_class = MODELS.build(dir_class_loss)
        self.loss_size_res = MODELS.build(size_res_loss)
87
        if size_class_loss is not None:
jshilong's avatar
jshilong committed
88
            self.size_class_loss = MODELS.build(size_class_loss)
89
        if semantic_loss is not None:
jshilong's avatar
jshilong committed
90
            self.semantic_loss = MODELS.build(semantic_loss)
91
        if iou_loss is not None:
jshilong's avatar
jshilong committed
92
            self.iou_loss = MODELS.build(iou_loss)
93
94
        else:
            self.iou_loss = None
wuyuefeng's avatar
Votenet  
wuyuefeng committed
95

jshilong's avatar
jshilong committed
96
        self.bbox_coder = TASK_UTILS.build(bbox_coder)
wuyuefeng's avatar
Votenet  
wuyuefeng committed
97
98
99
        self.num_sizes = self.bbox_coder.num_sizes
        self.num_dir_bins = self.bbox_coder.num_dir_bins

100
        self.vote_module = VoteModule(**vote_module_cfg)
101
        self.vote_aggregation = build_sa_module(vote_aggregation_cfg)
102
        self.fp16_enabled = False
wuyuefeng's avatar
Votenet  
wuyuefeng committed
103

104
105
106
107
108
109
        # Bbox classification and regression
        self.conv_pred = BaseConvBboxHead(
            **pred_layer_cfg,
            num_cls_out_channels=self._get_cls_out_channels(),
            num_reg_out_channels=self._get_reg_out_channels())

jshilong's avatar
jshilong committed
110
111
112
113
114
115
116
117
118
    @property
    def sample_mode(self):
        if self.training:
            sample_mode = self.train_cfg.sample_mode
        else:
            sample_mode = self.test_cfg.sample_mode
        assert sample_mode in ['vote', 'seed', 'random', 'spec']
        return sample_mode

119
120
121
122
123
124
125
    def _get_cls_out_channels(self):
        """Return the channel number of classification outputs."""
        # Class numbers (k) + objectness (2)
        return self.num_classes + 2

    def _get_reg_out_channels(self):
        """Return the channel number of regression outputs."""
wuyuefeng's avatar
Votenet  
wuyuefeng committed
126
127
128
        # Objectness scores (2), center residual (3),
        # heading class+residual (num_dir_bins*2),
        # size class+residual(num_sizes*4)
129
        return 3 + self.num_dir_bins * 2 + self.num_sizes * 4
wuyuefeng's avatar
Votenet  
wuyuefeng committed
130

jshilong's avatar
jshilong committed
131
    def _extract_input(self, feat_dict: dict) -> tuple:
132
133
134
135
136
137
        """Extract inputs from features dictionary.

        Args:
            feat_dict (dict): Feature dict from backbone.

        Returns:
jshilong's avatar
jshilong committed
138
139
140
141
142
            tuple[Tensor]: Arrage as following three tensor.

                - Coordinates of input points.
                - Features of input points.
                - Indices of input points.
143
        """
144
145
146
147
148
149
150
151
152
153
154
155
156

        # for imvotenet
        if 'seed_points' in feat_dict and \
           'seed_features' in feat_dict and \
           'seed_indices' in feat_dict:
            seed_points = feat_dict['seed_points']
            seed_features = feat_dict['seed_features']
            seed_indices = feat_dict['seed_indices']
        # for votenet
        else:
            seed_points = feat_dict['fp_xyz'][-1]
            seed_features = feat_dict['fp_features'][-1]
            seed_indices = feat_dict['fp_indices'][-1]
157
158

        return seed_points, seed_features, seed_indices
wuyuefeng's avatar
Votenet  
wuyuefeng committed
159

jshilong's avatar
jshilong committed
160
161
162
163
    def predict(self,
                points: List[torch.Tensor],
                feats_dict: Dict[str, torch.Tensor],
                batch_data_samples: List[Det3DDataSample],
jshilong's avatar
jshilong committed
164
                use_nms: bool = True,
jshilong's avatar
jshilong committed
165
166
167
168
169
170
171
                **kwargs) -> List[InstanceData]:
        """
        Args:
            points (list[tensor]): Point clouds of multiple samples.
            feats_dict (dict): Features from FPN or backbone..
            batch_data_samples (List[:obj:`Det3DDataSample`]): The Data
                Samples. It usually includes meta information of data.
jshilong's avatar
jshilong committed
172
173
            use_nms (bool): Whether do the nms for predictions.
                Defaults to True.
jshilong's avatar
jshilong committed
174
175
176
177
178
179
180

        Returns:
            list[:obj:`InstanceData`]: List of processed predictions. Each
            InstanceData contains 3d Bounding boxes and corresponding
            scores and labels.
        """
        preds_dict = self(feats_dict)
jshilong's avatar
jshilong committed
181
182
183
        # `preds_dict` can be used in H3DNET
        feats_dict.update(preds_dict)

jshilong's avatar
jshilong committed
184
185
186
187
188
189
190
        batch_size = len(batch_data_samples)
        batch_input_metas = []
        for batch_index in range(batch_size):
            metainfo = batch_data_samples[batch_index].metainfo
            batch_input_metas.append(metainfo)

        results_list = self.predict_by_feat(
jshilong's avatar
jshilong committed
191
            points, preds_dict, batch_input_metas, use_nms=use_nms, **kwargs)
jshilong's avatar
jshilong committed
192
193
        return results_list

jshilong's avatar
jshilong committed
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
    def loss_and_predict(self,
                         points: List[torch.Tensor],
                         feats_dict: Dict[str, torch.Tensor],
                         batch_data_samples: List[Det3DDataSample],
                         ret_target: bool = False,
                         proposal_cfg: dict = None,
                         **kwargs) -> Tuple:
        """
        Args:
            points (list[tensor]): Points cloud of multiple samples.
            feats_dict (dict): Predictions from backbone or FPN.
            batch_data_samples (list[:obj:`Det3DDataSample`]): Each item
                contains the meta information of each sample and
                corresponding annotations.
            ret_target (bool): Whether return the assigned target.
                Defaults to False.
            proposal_cfg (dict): Configure for proposal process.
                Defaults to True.

        Returns:
            tuple:  Contains loss and predictions after post-process.
        """
        preds_dict = self.forward(feats_dict)
        feats_dict.update(preds_dict)
        batch_gt_instance_3d = []
        batch_gt_instances_ignore = []
        batch_input_metas = []
        batch_pts_semantic_mask = []
        batch_pts_instance_mask = []
        for data_sample in batch_data_samples:
            batch_input_metas.append(data_sample.metainfo)
            batch_gt_instance_3d.append(data_sample.gt_instances_3d)
            batch_gt_instances_ignore.append(
                data_sample.get('ignored_instances', None))
            batch_pts_semantic_mask.append(
                data_sample.gt_pts_seg.get('pts_semantic_mask', None))
            batch_pts_instance_mask.append(
                data_sample.gt_pts_seg.get('pts_instance_mask', None))

        loss_inputs = (points, preds_dict, batch_gt_instance_3d)
        losses = self.loss_by_feat(
            *loss_inputs,
            batch_pts_semantic_mask=batch_pts_semantic_mask,
            batch_pts_instance_mask=batch_pts_instance_mask,
            batch_input_metas=batch_input_metas,
            batch_gt_instances_ignore=batch_gt_instances_ignore,
            ret_target=ret_target,
            **kwargs)

        results_list = self.predict_by_feat(
            points,
            preds_dict,
            batch_input_metas,
            use_nms=proposal_cfg.use_nms,
            **kwargs)

        return losses, results_list

    def loss(self,
             points: List[torch.Tensor],
             feats_dict: Dict[str, torch.Tensor],
             batch_data_samples: List[Det3DDataSample],
             ret_target: bool = False,
             **kwargs) -> dict:
jshilong's avatar
jshilong committed
258
259
260
261
262
263
264
        """
        Args:
            points (list[tensor]): Points cloud of multiple samples.
            feats_dict (dict): Predictions from backbone or FPN.
            batch_data_samples (list[:obj:`Det3DDataSample`]): Each item
                contains the meta information of each sample and
                corresponding annotations.
jshilong's avatar
jshilong committed
265
266
            ret_target (bool): Whether return the assigned target.
                Defaults to False.
jshilong's avatar
jshilong committed
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282

        Returns:
            dict:  A dictionary of loss components.
        """
        preds_dict = self.forward(feats_dict)
        batch_gt_instance_3d = []
        batch_gt_instances_ignore = []
        batch_input_metas = []
        batch_pts_semantic_mask = []
        batch_pts_instance_mask = []
        for data_sample in batch_data_samples:
            batch_input_metas.append(data_sample.metainfo)
            batch_gt_instance_3d.append(data_sample.gt_instances_3d)
            batch_gt_instances_ignore.append(
                data_sample.get('ignored_instances', None))
            batch_pts_semantic_mask.append(
jshilong's avatar
jshilong committed
283
                data_sample.gt_pts_seg.get('pts_semantic_mask', None))
jshilong's avatar
jshilong committed
284
            batch_pts_instance_mask.append(
jshilong's avatar
jshilong committed
285
                data_sample.gt_pts_seg.get('pts_instance_mask', None))
jshilong's avatar
jshilong committed
286
287
288
289
290
291
292

        loss_inputs = (points, preds_dict, batch_gt_instance_3d)
        losses = self.loss_by_feat(
            *loss_inputs,
            batch_pts_semantic_mask=batch_pts_semantic_mask,
            batch_pts_instance_mask=batch_pts_instance_mask,
            batch_input_metas=batch_input_metas,
jshilong's avatar
jshilong committed
293
294
295
            batch_gt_instances_ignore=batch_gt_instances_ignore,
            ret_target=ret_target,
            **kwargs)
jshilong's avatar
jshilong committed
296
297
298
        return losses

    def forward(self, feat_dict: dict) -> dict:
wuyuefeng's avatar
Votenet  
wuyuefeng committed
299
300
        """Forward pass.

zhangwenwei's avatar
zhangwenwei committed
301
        Note:
302
            The forward of VoteHead is divided into 4 steps:
zhangwenwei's avatar
zhangwenwei committed
303
304
305
306
307

                1. Generate vote_points from seed_points.
                2. Aggregate vote_points.
                3. Predict bbox and score.
                4. Decode predictions.
wuyuefeng's avatar
Votenet  
wuyuefeng committed
308
309

        Args:
wangtai's avatar
wangtai committed
310
            feat_dict (dict): Feature dict from backbone.
wuyuefeng's avatar
wuyuefeng committed
311
312
313

        Returns:
            dict: Predictions of vote head.
wuyuefeng's avatar
Votenet  
wuyuefeng committed
314
315
        """

316
317
        seed_points, seed_features, seed_indices = self._extract_input(
            feat_dict)
wuyuefeng's avatar
Votenet  
wuyuefeng committed
318
319

        # 1. generate vote_points from seed_points
320
321
        vote_points, vote_features, vote_offset = self.vote_module(
            seed_points, seed_features)
wuyuefeng's avatar
Votenet  
wuyuefeng committed
322
323
324
325
        results = dict(
            seed_points=seed_points,
            seed_indices=seed_indices,
            vote_points=vote_points,
326
327
            vote_features=vote_features,
            vote_offset=vote_offset)
wuyuefeng's avatar
Votenet  
wuyuefeng committed
328
329

        # 2. aggregate vote_points
jshilong's avatar
jshilong committed
330
        if self.sample_mode == 'vote':
wuyuefeng's avatar
Votenet  
wuyuefeng committed
331
            # use fps in vote_aggregation
332
333
            aggregation_inputs = dict(
                points_xyz=vote_points, features=vote_features)
jshilong's avatar
jshilong committed
334
        elif self.sample_mode == 'seed':
wuyuefeng's avatar
Votenet  
wuyuefeng committed
335
336
337
            # FPS on seed and choose the votes corresponding to the seeds
            sample_indices = furthest_point_sample(seed_points,
                                                   self.num_proposal)
338
339
340
341
            aggregation_inputs = dict(
                points_xyz=vote_points,
                features=vote_features,
                indices=sample_indices)
jshilong's avatar
jshilong committed
342
        elif self.sample_mode == 'random':
wuyuefeng's avatar
Votenet  
wuyuefeng committed
343
344
345
346
347
            # Random sampling from the votes
            batch_size, num_seed = seed_points.shape[:2]
            sample_indices = seed_points.new_tensor(
                torch.randint(0, num_seed, (batch_size, self.num_proposal)),
                dtype=torch.int32)
348
349
350
351
            aggregation_inputs = dict(
                points_xyz=vote_points,
                features=vote_features,
                indices=sample_indices)
jshilong's avatar
jshilong committed
352
        elif self.sample_mode == 'spec':
353
354
355
356
357
            # Specify the new center in vote_aggregation
            aggregation_inputs = dict(
                points_xyz=seed_points,
                features=seed_features,
                target_xyz=vote_points)
wuyuefeng's avatar
Votenet  
wuyuefeng committed
358
        else:
Wenwei Zhang's avatar
Wenwei Zhang committed
359
            raise NotImplementedError(
jshilong's avatar
jshilong committed
360
                f'Sample mode {self.sample_mode} is not supported!')
wuyuefeng's avatar
Votenet  
wuyuefeng committed
361

362
        vote_aggregation_ret = self.vote_aggregation(**aggregation_inputs)
wuyuefeng's avatar
Votenet  
wuyuefeng committed
363
        aggregated_points, features, aggregated_indices = vote_aggregation_ret
364

wuyuefeng's avatar
Votenet  
wuyuefeng committed
365
        results['aggregated_points'] = aggregated_points
encore-zhou's avatar
encore-zhou committed
366
        results['aggregated_features'] = features
wuyuefeng's avatar
Votenet  
wuyuefeng committed
367
368
369
        results['aggregated_indices'] = aggregated_indices

        # 3. predict bbox and score
370
        cls_predictions, reg_predictions = self.conv_pred(features)
wuyuefeng's avatar
Votenet  
wuyuefeng committed
371
372

        # 4. decode predictions
373
374
375
        decode_res = self.bbox_coder.split_pred(cls_predictions,
                                                reg_predictions,
                                                aggregated_points)
wuyuefeng's avatar
Votenet  
wuyuefeng committed
376
377
378
        results.update(decode_res)
        return results

jshilong's avatar
jshilong committed
379
380
381
382
383
384
385
386
387
    def loss_by_feat(
            self,
            points: List[torch.Tensor],
            bbox_preds_dict: dict,
            batch_gt_instances_3d: List[InstanceData],
            batch_pts_semantic_mask: Optional[List[torch.Tensor]] = None,
            batch_pts_instance_mask: Optional[List[torch.Tensor]] = None,
            ret_target: bool = False,
            **kwargs) -> dict:
wuyuefeng's avatar
wuyuefeng committed
388
389
390
        """Compute loss.

        Args:
liyinhao's avatar
liyinhao committed
391
            points (list[torch.Tensor]): Input points.
jshilong's avatar
jshilong committed
392
393
394
395
396
397
398
399
400
            bbox_preds_dict (dict): Predictions from forward of vote head.
            batch_gt_instances_3d (list[:obj:`InstanceData`]): Batch of
                gt_instances. It usually includes ``bboxes`` and ``labels``
                attributes.
            batch_pts_semantic_mask (list[tensor]): Semantic mask
                of points cloud. Defaults to None.
            batch_pts_semantic_mask (list[tensor]): Instance mask
                of points cloud. Defaults to None.
            batch_input_metas (list[dict]): Contain pcd and img's meta info.
jshilong's avatar
jshilong committed
401
            ret_target (bool): Return targets or not. Defaults to False.
wuyuefeng's avatar
wuyuefeng committed
402
403
404
405

        Returns:
            dict: Losses of Votenet.
        """
jshilong's avatar
jshilong committed
406
407
408
409
410

        targets = self.get_targets(points, bbox_preds_dict,
                                   batch_gt_instances_3d,
                                   batch_pts_semantic_mask,
                                   batch_pts_instance_mask)
wuyuefeng's avatar
Votenet  
wuyuefeng committed
411
        (vote_targets, vote_target_masks, size_class_targets, size_res_targets,
412
413
414
415
         dir_class_targets, dir_res_targets, center_targets,
         assigned_center_targets, mask_targets, valid_gt_masks,
         objectness_targets, objectness_weights, box_loss_weights,
         valid_gt_weights) = targets
wuyuefeng's avatar
Votenet  
wuyuefeng committed
416
417

        # calculate vote loss
jshilong's avatar
jshilong committed
418
419
420
        vote_loss = self.vote_module.get_loss(bbox_preds_dict['seed_points'],
                                              bbox_preds_dict['vote_points'],
                                              bbox_preds_dict['seed_indices'],
wuyuefeng's avatar
Votenet  
wuyuefeng committed
421
422
423
                                              vote_target_masks, vote_targets)

        # calculate objectness loss
jshilong's avatar
jshilong committed
424
425
        objectness_loss = self.loss_objectness(
            bbox_preds_dict['obj_scores'].transpose(2, 1),
wuyuefeng's avatar
Votenet  
wuyuefeng committed
426
427
428
429
            objectness_targets,
            weight=objectness_weights)

        # calculate center loss
jshilong's avatar
jshilong committed
430
431
        source2target_loss, target2source_loss = self.loss_center(
            bbox_preds_dict['center'],
wuyuefeng's avatar
Votenet  
wuyuefeng committed
432
433
434
435
436
437
            center_targets,
            src_weight=box_loss_weights,
            dst_weight=valid_gt_weights)
        center_loss = source2target_loss + target2source_loss

        # calculate direction class loss
jshilong's avatar
jshilong committed
438
439
        dir_class_loss = self.loss_dir_class(
            bbox_preds_dict['dir_class'].transpose(2, 1),
wuyuefeng's avatar
Votenet  
wuyuefeng committed
440
441
442
443
444
445
446
447
448
            dir_class_targets,
            weight=box_loss_weights)

        # calculate direction residual loss
        batch_size, proposal_num = size_class_targets.shape[:2]
        heading_label_one_hot = vote_targets.new_zeros(
            (batch_size, proposal_num, self.num_dir_bins))
        heading_label_one_hot.scatter_(2, dir_class_targets.unsqueeze(-1), 1)
        dir_res_norm = torch.sum(
jshilong's avatar
jshilong committed
449
450
            bbox_preds_dict['dir_res_norm'] * heading_label_one_hot, -1)
        dir_res_loss = self.loss_dir_res(
wuyuefeng's avatar
Votenet  
wuyuefeng committed
451
452
453
454
            dir_res_norm, dir_res_targets, weight=box_loss_weights)

        # calculate size class loss
        size_class_loss = self.size_class_loss(
jshilong's avatar
jshilong committed
455
            bbox_preds_dict['size_class'].transpose(2, 1),
wuyuefeng's avatar
Votenet  
wuyuefeng committed
456
457
458
459
460
461
462
463
            size_class_targets,
            weight=box_loss_weights)

        # calculate size residual loss
        one_hot_size_targets = vote_targets.new_zeros(
            (batch_size, proposal_num, self.num_sizes))
        one_hot_size_targets.scatter_(2, size_class_targets.unsqueeze(-1), 1)
        one_hot_size_targets_expand = one_hot_size_targets.unsqueeze(
Wenwei Zhang's avatar
Wenwei Zhang committed
464
            -1).repeat(1, 1, 1, 3).contiguous()
wuyuefeng's avatar
Votenet  
wuyuefeng committed
465
        size_residual_norm = torch.sum(
jshilong's avatar
jshilong committed
466
            bbox_preds_dict['size_res_norm'] * one_hot_size_targets_expand, 2)
wuyuefeng's avatar
Votenet  
wuyuefeng committed
467
468
        box_loss_weights_expand = box_loss_weights.unsqueeze(-1).repeat(
            1, 1, 3)
jshilong's avatar
jshilong committed
469
        size_res_loss = self.loss_size_res(
wuyuefeng's avatar
Votenet  
wuyuefeng committed
470
471
472
473
474
475
            size_residual_norm,
            size_res_targets,
            weight=box_loss_weights_expand)

        # calculate semantic loss
        semantic_loss = self.semantic_loss(
jshilong's avatar
jshilong committed
476
            bbox_preds_dict['sem_scores'].transpose(2, 1),
wuyuefeng's avatar
Votenet  
wuyuefeng committed
477
478
479
480
481
482
483
484
485
486
487
488
            mask_targets,
            weight=box_loss_weights)

        losses = dict(
            vote_loss=vote_loss,
            objectness_loss=objectness_loss,
            semantic_loss=semantic_loss,
            center_loss=center_loss,
            dir_class_loss=dir_class_loss,
            dir_res_loss=dir_res_loss,
            size_class_loss=size_class_loss,
            size_res_loss=size_res_loss)
encore-zhou's avatar
encore-zhou committed
489

490
491
        if self.iou_loss:
            corners_pred = self.bbox_coder.decode_corners(
jshilong's avatar
jshilong committed
492
                bbox_preds_dict['center'], size_residual_norm,
493
494
495
496
497
498
499
500
                one_hot_size_targets_expand)
            corners_target = self.bbox_coder.decode_corners(
                assigned_center_targets, size_res_targets,
                one_hot_size_targets_expand)
            iou_loss = self.iou_loss(
                corners_pred, corners_target, weight=box_loss_weights)
            losses['iou_loss'] = iou_loss

encore-zhou's avatar
encore-zhou committed
501
502
503
        if ret_target:
            losses['targets'] = targets

wuyuefeng's avatar
Votenet  
wuyuefeng committed
504
505
        return losses

jshilong's avatar
jshilong committed
506
507
508
509
510
511
512
513
    def get_targets(
        self,
        points,
        bbox_preds: dict = None,
        batch_gt_instances_3d: List[InstanceData] = None,
        batch_pts_semantic_mask: List[torch.Tensor] = None,
        batch_pts_instance_mask: List[torch.Tensor] = None,
    ):
wuyuefeng's avatar
wuyuefeng committed
514
        """Generate targets of vote head.
wuyuefeng's avatar
Votenet  
wuyuefeng committed
515
516

        Args:
liyinhao's avatar
liyinhao committed
517
            points (list[torch.Tensor]): Points of each batch.
wangtai's avatar
wangtai committed
518
            bbox_preds (torch.Tensor): Bounding box predictions of vote head.
jshilong's avatar
jshilong committed
519
520
521
522
            batch_gt_instances_3d (list[:obj:`InstanceData`]): Batch of
                gt_instances. It usually includes ``bboxes`` and ``labels``
                attributes.
            batch_pts_semantic_mask (list[tensor]): Semantic gt mask for
jshilong's avatar
jshilong committed
523
                point clouds. Defaults to None.
jshilong's avatar
jshilong committed
524
            batch_pts_instance_mask (list[tensor]): Instance gt mask for
jshilong's avatar
jshilong committed
525
                point clouds. Defaults to None.
wuyuefeng's avatar
Votenet  
wuyuefeng committed
526
527

        Returns:
528
            tuple[torch.Tensor]: Targets of vote head.
wuyuefeng's avatar
Votenet  
wuyuefeng committed
529
530
531
532
        """
        # find empty example
        valid_gt_masks = list()
        gt_num = list()
jshilong's avatar
jshilong committed
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
        batch_gt_labels_3d = [
            gt_instances_3d.labels_3d
            for gt_instances_3d in batch_gt_instances_3d
        ]
        batch_gt_bboxes_3d = [
            gt_instances_3d.bboxes_3d
            for gt_instances_3d in batch_gt_instances_3d
        ]
        for index in range(len(batch_gt_labels_3d)):
            if len(batch_gt_labels_3d[index]) == 0:
                fake_box = batch_gt_bboxes_3d[index].tensor.new_zeros(
                    1, batch_gt_bboxes_3d[index].tensor.shape[-1])
                batch_gt_bboxes_3d[index] = batch_gt_bboxes_3d[index].new_box(
                    fake_box)
                batch_gt_labels_3d[index] = batch_gt_labels_3d[
                    index].new_zeros(1)
                valid_gt_masks.append(batch_gt_labels_3d[index].new_zeros(1))
wuyuefeng's avatar
Votenet  
wuyuefeng committed
550
551
                gt_num.append(1)
            else:
jshilong's avatar
jshilong committed
552
553
554
                valid_gt_masks.append(batch_gt_labels_3d[index].new_ones(
                    batch_gt_labels_3d[index].shape))
                gt_num.append(batch_gt_labels_3d[index].shape[0])
wuyuefeng's avatar
Votenet  
wuyuefeng committed
555
556
557
558
        max_gt_num = max(gt_num)

        aggregated_points = [
            bbox_preds['aggregated_points'][i]
jshilong's avatar
jshilong committed
559
            for i in range(len(batch_gt_labels_3d))
wuyuefeng's avatar
Votenet  
wuyuefeng committed
560
561
562
        ]

        (vote_targets, vote_target_masks, size_class_targets, size_res_targets,
563
         dir_class_targets, dir_res_targets, center_targets,
jshilong's avatar
jshilong committed
564
565
566
567
568
         assigned_center_targets, mask_targets,
         objectness_targets, objectness_masks) = multi_apply(
             self._get_targets_single, points, batch_gt_bboxes_3d,
             batch_gt_labels_3d, batch_pts_semantic_mask,
             batch_pts_instance_mask, aggregated_points)
wuyuefeng's avatar
Votenet  
wuyuefeng committed
569
570

        # pad targets as original code of votenet.
jshilong's avatar
jshilong committed
571
572
        for index in range(len(batch_gt_labels_3d)):
            pad_num = max_gt_num - batch_gt_labels_3d[index].shape[0]
wuyuefeng's avatar
Votenet  
wuyuefeng committed
573
574
575
576
577
578
579
580
581
            center_targets[index] = F.pad(center_targets[index],
                                          (0, 0, 0, pad_num))
            valid_gt_masks[index] = F.pad(valid_gt_masks[index], (0, pad_num))

        vote_targets = torch.stack(vote_targets)
        vote_target_masks = torch.stack(vote_target_masks)
        center_targets = torch.stack(center_targets)
        valid_gt_masks = torch.stack(valid_gt_masks)

582
        assigned_center_targets = torch.stack(assigned_center_targets)
wuyuefeng's avatar
Votenet  
wuyuefeng committed
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
        objectness_targets = torch.stack(objectness_targets)
        objectness_weights = torch.stack(objectness_masks)
        objectness_weights /= (torch.sum(objectness_weights) + 1e-6)
        box_loss_weights = objectness_targets.float() / (
            torch.sum(objectness_targets).float() + 1e-6)
        valid_gt_weights = valid_gt_masks.float() / (
            torch.sum(valid_gt_masks.float()) + 1e-6)
        dir_class_targets = torch.stack(dir_class_targets)
        dir_res_targets = torch.stack(dir_res_targets)
        size_class_targets = torch.stack(size_class_targets)
        size_res_targets = torch.stack(size_res_targets)
        mask_targets = torch.stack(mask_targets)

        return (vote_targets, vote_target_masks, size_class_targets,
                size_res_targets, dir_class_targets, dir_res_targets,
598
599
600
                center_targets, assigned_center_targets, mask_targets,
                valid_gt_masks, objectness_targets, objectness_weights,
                box_loss_weights, valid_gt_weights)
wuyuefeng's avatar
Votenet  
wuyuefeng committed
601

jshilong's avatar
jshilong committed
602
603
604
605
606
607
608
    def _get_targets_single(self,
                            points,
                            gt_bboxes_3d,
                            gt_labels_3d,
                            pts_semantic_mask=None,
                            pts_instance_mask=None,
                            aggregated_points=None):
wuyuefeng's avatar
wuyuefeng committed
609
610
611
        """Generate targets of vote head for single batch.

        Args:
liyinhao's avatar
liyinhao committed
612
            points (torch.Tensor): Points of each batch.
613
            gt_bboxes_3d (:obj:`BaseInstance3DBoxes`): Ground truth
wangtai's avatar
wangtai committed
614
615
                boxes of each batch.
            gt_labels_3d (torch.Tensor): Labels of each batch.
616
            pts_semantic_mask (torch.Tensor): Point-wise semantic
wuyuefeng's avatar
wuyuefeng committed
617
                label of each batch.
618
            pts_instance_mask (torch.Tensor): Point-wise instance
wuyuefeng's avatar
wuyuefeng committed
619
                label of each batch.
liyinhao's avatar
liyinhao committed
620
            aggregated_points (torch.Tensor): Aggregated points from
wuyuefeng's avatar
wuyuefeng committed
621
622
623
                vote aggregation layer.

        Returns:
624
            tuple[torch.Tensor]: Targets of vote head.
wuyuefeng's avatar
wuyuefeng committed
625
        """
wuyuefeng's avatar
Votenet  
wuyuefeng committed
626
627
        assert self.bbox_coder.with_rot or pts_semantic_mask is not None

wuyuefeng's avatar
wuyuefeng committed
628
629
        gt_bboxes_3d = gt_bboxes_3d.to(points.device)

wuyuefeng's avatar
Votenet  
wuyuefeng committed
630
631
632
633
634
635
636
        # generate votes target
        num_points = points.shape[0]
        if self.bbox_coder.with_rot:
            vote_targets = points.new_zeros([num_points, 3 * self.gt_per_seed])
            vote_target_masks = points.new_zeros([num_points],
                                                 dtype=torch.long)
            vote_target_idx = points.new_zeros([num_points], dtype=torch.long)
637
            box_indices_all = gt_bboxes_3d.points_in_boxes_all(points)
wuyuefeng's avatar
wuyuefeng committed
638
            for i in range(gt_labels_3d.shape[0]):
wuyuefeng's avatar
Votenet  
wuyuefeng committed
639
                box_indices = box_indices_all[:, i]
640
641
                indices = torch.nonzero(
                    box_indices, as_tuple=False).squeeze(-1)
wuyuefeng's avatar
Votenet  
wuyuefeng committed
642
643
644
                selected_points = points[indices]
                vote_target_masks[indices] = 1
                vote_targets_tmp = vote_targets[indices]
wuyuefeng's avatar
wuyuefeng committed
645
                votes = gt_bboxes_3d.gravity_center[i].unsqueeze(
wuyuefeng's avatar
Votenet  
wuyuefeng committed
646
647
648
649
                    0) - selected_points[:, :3]

                for j in range(self.gt_per_seed):
                    column_indices = torch.nonzero(
650
651
                        vote_target_idx[indices] == j,
                        as_tuple=False).squeeze(-1)
wuyuefeng's avatar
Votenet  
wuyuefeng committed
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
                    vote_targets_tmp[column_indices,
                                     int(j * 3):int(j * 3 +
                                                    3)] = votes[column_indices]
                    if j == 0:
                        vote_targets_tmp[column_indices] = votes[
                            column_indices].repeat(1, self.gt_per_seed)

                vote_targets[indices] = vote_targets_tmp
                vote_target_idx[indices] = torch.clamp(
                    vote_target_idx[indices] + 1, max=2)
        elif pts_semantic_mask is not None:
            vote_targets = points.new_zeros([num_points, 3])
            vote_target_masks = points.new_zeros([num_points],
                                                 dtype=torch.long)
            for i in torch.unique(pts_instance_mask):
667
668
                indices = torch.nonzero(
                    pts_instance_mask == i, as_tuple=False).squeeze(-1)
wuyuefeng's avatar
Votenet  
wuyuefeng committed
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
                if pts_semantic_mask[indices[0]] < self.num_classes:
                    selected_points = points[indices, :3]
                    center = 0.5 * (
                        selected_points.min(0)[0] + selected_points.max(0)[0])
                    vote_targets[indices, :] = center - selected_points
                    vote_target_masks[indices] = 1
            vote_targets = vote_targets.repeat((1, self.gt_per_seed))
        else:
            raise NotImplementedError

        (center_targets, size_class_targets, size_res_targets,
         dir_class_targets,
         dir_res_targets) = self.bbox_coder.encode(gt_bboxes_3d, gt_labels_3d)

        proposal_num = aggregated_points.shape[0]
        distance1, _, assignment, _ = chamfer_distance(
            aggregated_points.unsqueeze(0),
            center_targets.unsqueeze(0),
            reduction='none')
        assignment = assignment.squeeze(0)
        euclidean_distance1 = torch.sqrt(distance1.squeeze(0) + 1e-6)

        objectness_targets = points.new_zeros((proposal_num), dtype=torch.long)
        objectness_targets[
            euclidean_distance1 < self.train_cfg['pos_distance_thr']] = 1

        objectness_masks = points.new_zeros((proposal_num))
        objectness_masks[
            euclidean_distance1 < self.train_cfg['pos_distance_thr']] = 1.0
        objectness_masks[
            euclidean_distance1 > self.train_cfg['neg_distance_thr']] = 1.0

        dir_class_targets = dir_class_targets[assignment]
        dir_res_targets = dir_res_targets[assignment]
        dir_res_targets /= (np.pi / self.num_dir_bins)
        size_class_targets = size_class_targets[assignment]
        size_res_targets = size_res_targets[assignment]

wuyuefeng's avatar
wuyuefeng committed
707
        one_hot_size_targets = gt_bboxes_3d.tensor.new_zeros(
wuyuefeng's avatar
Votenet  
wuyuefeng committed
708
709
710
711
712
713
714
715
716
717
            (proposal_num, self.num_sizes))
        one_hot_size_targets.scatter_(1, size_class_targets.unsqueeze(-1), 1)
        one_hot_size_targets = one_hot_size_targets.unsqueeze(-1).repeat(
            1, 1, 3)
        mean_sizes = size_res_targets.new_tensor(
            self.bbox_coder.mean_sizes).unsqueeze(0)
        pos_mean_sizes = torch.sum(one_hot_size_targets * mean_sizes, 1)
        size_res_targets /= pos_mean_sizes

        mask_targets = gt_labels_3d[assignment]
718
        assigned_center_targets = center_targets[assignment]
wuyuefeng's avatar
Votenet  
wuyuefeng committed
719
720

        return (vote_targets, vote_target_masks, size_class_targets,
721
722
                size_res_targets, dir_class_targets,
                dir_res_targets, center_targets, assigned_center_targets,
wuyuefeng's avatar
Votenet  
wuyuefeng committed
723
724
                mask_targets.long(), objectness_targets, objectness_masks)

jshilong's avatar
jshilong committed
725
726
727
728
729
730
    def predict_by_feat(self,
                        points: List[torch.Tensor],
                        bbox_preds_dict: dict,
                        batch_input_metas: List[dict],
                        use_nms: bool = True,
                        **kwargs) -> List[InstanceData]:
wuyuefeng's avatar
wuyuefeng committed
731
732
733
        """Generate bboxes from vote head predictions.

        Args:
jshilong's avatar
jshilong committed
734
735
736
737
            points (List[torch.Tensor]): Input points of multiple samples.
            bbox_preds_dict (dict): Predictions from vote head.
            batch_input_metas (list[dict]): Each item
                contains the meta information of each sample.
encore-zhou's avatar
encore-zhou committed
738
739
            use_nms (bool): Whether to apply NMS, skip nms postprocessing
                while using vote head in rpn stage.
wuyuefeng's avatar
wuyuefeng committed
740
741

        Returns:
jshilong's avatar
jshilong committed
742
743
744
745
            list[:obj:`InstanceData`] or Tensor: Return list of processed
            predictions when `use_nms` is True. Each InstanceData cantains
            3d Bounding boxes and corresponding scores and labels.
            Return raw bboxes when `use_nms` is False.
wuyuefeng's avatar
wuyuefeng committed
746
        """
wuyuefeng's avatar
Votenet  
wuyuefeng committed
747
        # decode boxes
jshilong's avatar
jshilong committed
748
749
750
751
752
753
754
        stack_points = torch.stack(points)
        obj_scores = F.softmax(bbox_preds_dict['obj_scores'], dim=-1)[..., -1]
        sem_scores = F.softmax(bbox_preds_dict['sem_scores'], dim=-1)
        bbox3d = self.bbox_coder.decode(bbox_preds_dict)

        batch_size = bbox3d.shape[0]
        results_list = list()
jshilong's avatar
jshilong committed
755
        if use_nms:
zhangshilong's avatar
zhangshilong committed
756
            for batch_index in range(batch_size):
jshilong's avatar
jshilong committed
757
                temp_results = InstanceData()
encore-zhou's avatar
encore-zhou committed
758
                bbox_selected, score_selected, labels = \
zhangshilong's avatar
zhangshilong committed
759
760
761
762
763
764
765
                    self.multiclass_nms_single(
                        obj_scores[batch_index],
                        sem_scores[batch_index],
                        bbox3d[batch_index],
                        stack_points[batch_index, ..., :3],
                        batch_input_metas[batch_index])
                bbox = batch_input_metas[batch_index]['box_type_3d'](
jshilong's avatar
jshilong committed
766
767
768
769
770
771
772
                    bbox_selected,
                    box_dim=bbox_selected.shape[-1],
                    with_yaw=self.bbox_coder.with_rot)
                temp_results.bboxes_3d = bbox
                temp_results.scores_3d = score_selected
                temp_results.labels_3d = labels
                results_list.append(temp_results)
encore-zhou's avatar
encore-zhou committed
773

jshilong's avatar
jshilong committed
774
775
776
777
            return results_list
        else:
            # TODO unify it when refactor the Augtest
            return bbox3d
wuyuefeng's avatar
Votenet  
wuyuefeng committed
778

jshilong's avatar
jshilong committed
779
780
781
    def multiclass_nms_single(self, obj_scores: Tensor, sem_scores: Tensor,
                              bbox: Tensor, points: Tensor,
                              input_meta: dict) -> Tuple:
wangtai's avatar
wangtai committed
782
        """Multi-class nms in single batch.
wuyuefeng's avatar
wuyuefeng committed
783
784

        Args:
wangtai's avatar
wangtai committed
785
786
787
            obj_scores (torch.Tensor): Objectness score of bounding boxes.
            sem_scores (torch.Tensor): semantic class score of bounding boxes.
            bbox (torch.Tensor): Predicted bounding boxes.
liyinhao's avatar
liyinhao committed
788
            points (torch.Tensor): Input points.
wangtai's avatar
wangtai committed
789
            input_meta (dict): Point cloud and image's meta info.
wuyuefeng's avatar
wuyuefeng committed
790
791

        Returns:
wangtai's avatar
wangtai committed
792
            tuple[torch.Tensor]: Bounding boxes, scores and labels.
wuyuefeng's avatar
wuyuefeng committed
793
        """
wuyuefeng's avatar
wuyuefeng committed
794
795
796
797
798
        bbox = input_meta['box_type_3d'](
            bbox,
            box_dim=bbox.shape[-1],
            with_yaw=self.bbox_coder.with_rot,
            origin=(0.5, 0.5, 0.5))
799
        box_indices = bbox.points_in_boxes_all(points)
wuyuefeng's avatar
Votenet  
wuyuefeng committed
800

wuyuefeng's avatar
wuyuefeng committed
801
        corner3d = bbox.corners
wuyuefeng's avatar
Votenet  
wuyuefeng committed
802
803
804
805
        minmax_box3d = corner3d.new(torch.Size((corner3d.shape[0], 6)))
        minmax_box3d[:, :3] = torch.min(corner3d, dim=1)[0]
        minmax_box3d[:, 3:] = torch.max(corner3d, dim=1)[0]

wuyuefeng's avatar
wuyuefeng committed
806
807
808
        nonempty_box_mask = box_indices.T.sum(1) > 5

        bbox_classes = torch.argmax(sem_scores, -1)
wuyuefeng's avatar
Votenet  
wuyuefeng committed
809
810
811
812
813
814
815
        nms_selected = aligned_3d_nms(minmax_box3d[nonempty_box_mask],
                                      obj_scores[nonempty_box_mask],
                                      bbox_classes[nonempty_box_mask],
                                      self.test_cfg.nms_thr)

        # filter empty boxes and boxes with low score
        scores_mask = (obj_scores > self.test_cfg.score_thr)
816
817
        nonempty_box_inds = torch.nonzero(
            nonempty_box_mask, as_tuple=False).flatten()
wuyuefeng's avatar
Votenet  
wuyuefeng committed
818
819
820
821
822
823
824
        nonempty_mask = torch.zeros_like(bbox_classes).scatter(
            0, nonempty_box_inds[nms_selected], 1)
        selected = (nonempty_mask.bool() & scores_mask.bool())

        if self.test_cfg.per_class_proposal:
            bbox_selected, score_selected, labels = [], [], []
            for k in range(sem_scores.shape[-1]):
wuyuefeng's avatar
wuyuefeng committed
825
                bbox_selected.append(bbox[selected].tensor)
wuyuefeng's avatar
Votenet  
wuyuefeng committed
826
827
828
829
830
831
832
833
                score_selected.append(obj_scores[selected] *
                                      sem_scores[selected][:, k])
                labels.append(
                    torch.zeros_like(bbox_classes[selected]).fill_(k))
            bbox_selected = torch.cat(bbox_selected, 0)
            score_selected = torch.cat(score_selected, 0)
            labels = torch.cat(labels, 0)
        else:
wuyuefeng's avatar
wuyuefeng committed
834
            bbox_selected = bbox[selected].tensor
wuyuefeng's avatar
Votenet  
wuyuefeng committed
835
836
837
838
            score_selected = obj_scores[selected]
            labels = bbox_classes[selected]

        return bbox_selected, score_selected, labels