waymo_metric.py 30.4 KB
Newer Older
1
2
3
4
5
# Copyright (c) OpenMMLab. All rights reserved.
import tempfile
from os import path as osp
from typing import Dict, List, Optional, Union

6
import mmengine
7
8
import numpy as np
import torch
9
10
from mmengine import Config, load
from mmengine.logging import MMLogger, print_log
11
12
13

from mmdet3d.models.layers import box3d_multiclass_nms
from mmdet3d.registry import METRICS
14
15
16
from mmdet3d.structures import (Box3DMode, CameraInstance3DBoxes,
                                LiDARInstance3DBoxes, bbox3d2result,
                                points_cam2img, xywhr2xyxyr)
17
18
19
20
21
22
23
24
25
26
27
28
29
30
from .kitti_metric import KittiMetric


@METRICS.register_module()
class WaymoMetric(KittiMetric):
    """Waymo evaluation metric.

    Args:
        ann_file (str): The path of the annotation file in kitti format.
        waymo_bin_file (str): The path of the annotation file in waymo format.
        data_root (str): Path of dataset root.
                         Used for storing waymo evaluation programs.
        split (str): The split of the evaluation set.
        metric (str | list[str]): Metrics to be evaluated.
31
            Default to 'mAP'.
32
33
34
35
36
37
38
        pcd_limit_range (list): The range of point cloud used to
            filter invalid predicted boxes.
            Default to [0, -40, -3, 70.4, 40, 0.0].
        prefix (str, optional): The prefix that will be added in the metric
            names to disambiguate homonymous metrics of different evaluators.
            If prefix is not provided in the argument, self.default_prefix
            will be used instead. Defaults to None.
39
40
41
        convert_kitti_format (bool, optional): Whether convert the reuslts to
            kitti format. Now, in order to be compatible with camera-based
            methods, defaults to True.
42
43
44
45
46
47
        pklfile_prefix (str, optional): The prefix of pkl files, including
            the file path and the prefix of filename, e.g., "a/b/prefix".
            If not specified, a temp file will be created. Default: None.
        submission_prefix (str, optional): The prefix of submission data.
            If not specified, the submission data will not be generated.
            Default: None.
48
49
50
51
52
53
54
55
56
        load_type (str, optional): Type of loading mode during training.

            - 'frame_based': Load all of the instances in the frame.
            - 'mv_image_based': Load all of the instances in the frame and need
                to convert to the FOV-based data type to support image-based
                detector.
            - 'fov_image_base': Only load the instances inside the default cam,
                and need to convert to the FOV-based data type to support
                image-based detector.
57
58
59
60
61
62
63
64
65
66
        default_cam_key (str, optional): The default camera for lidar to
            camear conversion. By default, KITTI: CAM2, Waymo: CAM_FRONT
        use_pred_sample_idx (bool, optional): In formating results, use the
            sample index from the prediction or from the load annoataitons.
            By default, KITTI: True, Waymo: False, Waymo has a conversion
            process, which needs to use the sample id from load annotation.
        collect_device (str): Device name used for collecting results
            from different ranks during distributed training. Must be 'cpu' or
            'gpu'. Defaults to 'cpu'.
        file_client_args (dict): file client for reading gt in waymo format.
67
68
69
70
71
            Defaults to ``dict(backend='disk')``.
        idx2metainfo (Optional[str], optional): The file path of the metainfo
            in waymmo. It stores the mapping from sample_idx to metainfo.
            The metainfo must contain the keys: 'idx2contextname' and
            'idx2timestamp'. Defaults to None.
72
    """
73
    num_cams = 5
74
75
76
77
78
79

    def __init__(self,
                 ann_file: str,
                 waymo_bin_file: str,
                 data_root: str,
                 split: str = 'training',
80
                 metric: Union[str, List[str]] = 'mAP',
81
                 pcd_limit_range: List[float] = [-85, -85, -5, 85, 85, 5],
82
                 convert_kitti_format: bool = True,
83
84
85
                 prefix: Optional[str] = None,
                 pklfile_prefix: str = None,
                 submission_prefix: str = None,
86
                 load_type: str = 'frame_based',
87
88
89
                 default_cam_key: str = 'CAM_FRONT',
                 use_pred_sample_idx: bool = False,
                 collect_device: str = 'cpu',
90
91
                 file_client_args: dict = dict(backend='disk'),
                 idx2metainfo: Optional[str] = None):
92
93
94
        self.waymo_bin_file = waymo_bin_file
        self.data_root = data_root
        self.split = split
95
        self.load_type = load_type
96
        self.use_pred_sample_idx = use_pred_sample_idx
97
98
99
100
101
102
103
        self.convert_kitti_format = convert_kitti_format

        if idx2metainfo is not None:
            self.idx2metainfo = mmengine.load(idx2metainfo)
        else:
            self.idx2metainfo = None

104
105
106
107
108
109
110
111
        super().__init__(
            ann_file=ann_file,
            metric=metric,
            pcd_limit_range=pcd_limit_range,
            prefix=prefix,
            pklfile_prefix=pklfile_prefix,
            submission_prefix=submission_prefix,
            default_cam_key=default_cam_key,
112
113
            collect_device=collect_device,
            file_client_args=file_client_args)
114
115
116
117
118
119
        self.default_prefix = 'Waymo metric'

    def compute_metrics(self, results: list) -> Dict[str, float]:
        """Compute the metrics from processed results.

        Args:
120
            results (list): The processed results of the whole dataset.
121
122
123
124
125
126

        Returns:
            Dict[str, float]: The computed metrics. The keys are the names of
            the metrics, and the values are corresponding results.
        """
        logger: MMLogger = MMLogger.get_current_instance()
127
        self.classes = self.dataset_meta['classes']
128
129

        # load annotations
130
        self.data_infos = load(self.ann_file)['data_list']
131
132
        assert len(results) == len(self.data_infos), \
            'invalid list length of network outputs'
133
        # different from kitti, waymo do not need to convert the ann file
134
135
        # handle the mv_image_based load_mode
        if self.load_type == 'mv_image_based':
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
            new_data_infos = []
            for info in self.data_infos:
                height = info['images'][self.default_cam_key]['height']
                width = info['images'][self.default_cam_key]['width']
                for (cam_key, img_info) in info['images'].items():
                    camera_info = dict()
                    camera_info['images'] = dict()
                    camera_info['images'][cam_key] = img_info
                    # TODO remove the check by updating the data info;
                    if 'height' not in img_info:
                        img_info['height'] = height
                        img_info['width'] = width
                    if 'cam_instances' in info \
                            and cam_key in info['cam_instances']:
                        camera_info['instances'] = info['cam_instances'][
                            cam_key]
                    else:
                        camera_info['instances'] = []
                    camera_info['ego2global'] = info['ego2global']
                    if 'image_sweeps' in info:
                        camera_info['image_sweeps'] = info['image_sweeps']

                    # TODO check if need to modify the sample id
                    # TODO check when will use it except for evaluation.
160
                    camera_info['sample_idx'] = info['sample_idx']
161
162
                    new_data_infos.append(camera_info)
            self.data_infos = new_data_infos
163
164
165
166
167
168
169
170
171
172
173
174
175
176

        if self.pklfile_prefix is None:
            eval_tmp_dir = tempfile.TemporaryDirectory()
            pklfile_prefix = osp.join(eval_tmp_dir.name, 'results')
        else:
            eval_tmp_dir = None
            pklfile_prefix = self.pklfile_prefix

        result_dict, tmp_dir = self.format_results(
            results,
            pklfile_prefix=pklfile_prefix,
            submission_prefix=self.submission_prefix,
            classes=self.classes)

177
178
179
180
181
        metric_dict = {}
        for metric in self.metrics:
            ap_dict = self.waymo_evaluate(
                pklfile_prefix, metric=metric, logger=logger)
            metric_dict[metric] = ap_dict
182
183
184
185
186
        if eval_tmp_dir is not None:
            eval_tmp_dir.cleanup()

        if tmp_dir is not None:
            tmp_dir.cleanup()
187
        return metric_dict
188

189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
    def waymo_evaluate(self,
                       pklfile_prefix: str,
                       metric: str = None,
                       logger: MMLogger = None) -> dict:
        """Evaluation in Waymo protocol.

        Args:
            pklfile_prefix (str): The location that stored the prediction
                results.
            metric (str): Metric to be evaluated. Defaults to None.
            logger (MMLogger, optional): Logger used for printing
                related information during evaluation. Default: None.

        Returns:
            dict[str, float]: Results of each evaluation metric.
        """

        import subprocess

        if metric == 'mAP':
            eval_str = 'mmdet3d/evaluation/functional/waymo_utils/' + \
                f'compute_detection_metrics_main {pklfile_prefix}.bin ' + \
                f'{self.waymo_bin_file}'
            print(eval_str)
213
            ret_bytes = subprocess.check_output(eval_str, shell=True)
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
            ret_texts = ret_bytes.decode('utf-8')
            print_log(ret_texts, logger=logger)

            ap_dict = {
                'Vehicle/L1 mAP': 0,
                'Vehicle/L1 mAPH': 0,
                'Vehicle/L2 mAP': 0,
                'Vehicle/L2 mAPH': 0,
                'Pedestrian/L1 mAP': 0,
                'Pedestrian/L1 mAPH': 0,
                'Pedestrian/L2 mAP': 0,
                'Pedestrian/L2 mAPH': 0,
                'Sign/L1 mAP': 0,
                'Sign/L1 mAPH': 0,
                'Sign/L2 mAP': 0,
                'Sign/L2 mAPH': 0,
                'Cyclist/L1 mAP': 0,
                'Cyclist/L1 mAPH': 0,
                'Cyclist/L2 mAP': 0,
                'Cyclist/L2 mAPH': 0,
                'Overall/L1 mAP': 0,
                'Overall/L1 mAPH': 0,
                'Overall/L2 mAP': 0,
                'Overall/L2 mAPH': 0
            }
            mAP_splits = ret_texts.split('mAP ')
            mAPH_splits = ret_texts.split('mAPH ')
            mAP_splits = ret_texts.split('mAP ')
            mAPH_splits = ret_texts.split('mAPH ')
            for idx, key in enumerate(ap_dict.keys()):
                split_idx = int(idx / 2) + 1
                if idx % 2 == 0:  # mAP
                    ap_dict[key] = float(mAP_splits[split_idx].split(']')[0])
                else:  # mAPH
                    ap_dict[key] = float(mAPH_splits[split_idx].split(']')[0])
            ap_dict['Overall/L1 mAP'] = \
                (ap_dict['Vehicle/L1 mAP'] + ap_dict['Pedestrian/L1 mAP'] +
                    ap_dict['Cyclist/L1 mAP']) / 3
            ap_dict['Overall/L1 mAPH'] = \
                (ap_dict['Vehicle/L1 mAPH'] + ap_dict['Pedestrian/L1 mAPH'] +
                    ap_dict['Cyclist/L1 mAPH']) / 3
            ap_dict['Overall/L2 mAP'] = \
                (ap_dict['Vehicle/L2 mAP'] + ap_dict['Pedestrian/L2 mAP'] +
                    ap_dict['Cyclist/L2 mAP']) / 3
            ap_dict['Overall/L2 mAPH'] = \
                (ap_dict['Vehicle/L2 mAPH'] + ap_dict['Pedestrian/L2 mAPH'] +
                    ap_dict['Cyclist/L2 mAPH']) / 3
        elif metric == 'LET_mAP':
            eval_str = 'mmdet3d/evaluation/functional/waymo_utils/' + \
                f'compute_detection_let_metrics_main {pklfile_prefix}.bin ' + \
                f'{self.waymo_bin_file}'

            print(eval_str)
            ret_bytes = subprocess.check_output(eval_str, shell=True)
            ret_texts = ret_bytes.decode('utf-8')

            print_log(ret_texts, logger=logger)
            ap_dict = {
                'Vehicle mAPL': 0,
                'Vehicle mAP': 0,
                'Vehicle mAPH': 0,
                'Pedestrian mAPL': 0,
                'Pedestrian mAP': 0,
                'Pedestrian mAPH': 0,
                'Sign mAPL': 0,
                'Sign mAP': 0,
                'Sign mAPH': 0,
                'Cyclist mAPL': 0,
                'Cyclist mAP': 0,
                'Cyclist mAPH': 0,
                'Overall mAPL': 0,
                'Overall mAP': 0,
                'Overall mAPH': 0
            }
            mAPL_splits = ret_texts.split('mAPL ')
            mAP_splits = ret_texts.split('mAP ')
            mAPH_splits = ret_texts.split('mAPH ')
            for idx, key in enumerate(ap_dict.keys()):
                split_idx = int(idx / 3) + 1
                if idx % 3 == 0:  # mAPL
                    ap_dict[key] = float(mAPL_splits[split_idx].split(']')[0])
                elif idx % 3 == 1:  # mAP
                    ap_dict[key] = float(mAP_splits[split_idx].split(']')[0])
                else:  # mAPH
                    ap_dict[key] = float(mAPH_splits[split_idx].split(']')[0])
            ap_dict['Overall mAPL'] = \
                (ap_dict['Vehicle mAPL'] + ap_dict['Pedestrian mAPL'] +
                    ap_dict['Cyclist mAPL']) / 3
            ap_dict['Overall mAP'] = \
                (ap_dict['Vehicle mAP'] + ap_dict['Pedestrian mAP'] +
                    ap_dict['Cyclist mAP']) / 3
            ap_dict['Overall mAPH'] = \
                (ap_dict['Vehicle mAPH'] + ap_dict['Pedestrian mAPH'] +
                    ap_dict['Cyclist mAPH']) / 3
308
309
310
311
312
313
314
        return ap_dict

    def format_results(self,
                       results: List[dict],
                       pklfile_prefix: str = None,
                       submission_prefix: str = None,
                       classes: List[str] = None):
315
        """Format the results to bin file.
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335

        Args:
            results (list[dict]): Testing results of the
                dataset.
            pklfile_prefix (str, optional): The prefix of pkl files. It
                includes the file path and the prefix of filename, e.g.,
                "a/b/prefix". If not specified, a temp file will be created.
                Default: None.
            submission_prefix (str, optional): The prefix of submitted files.
                It includes the file path and the prefix of filename, e.g.,
                "a/b/prefix". If not specified, a temp file will be created.
                Default: None.
            classes (list[String], optional): A list of class name. Defaults
                to None.

        Returns:
            tuple: (result_dict, tmp_dir), result_dict is a dict containing
                the formatted result, tmp_dir is the temporal directory created
                for saving json files when jsonfile_prefix is not specified.
        """
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
        waymo_save_tmp_dir = tempfile.TemporaryDirectory()
        waymo_results_save_dir = waymo_save_tmp_dir.name
        waymo_results_final_path = f'{pklfile_prefix}.bin'

        if self.convert_kitti_format:
            results_kitti_format, tmp_dir = super().format_results(
                results, pklfile_prefix, submission_prefix, classes)
            final_results = results_kitti_format['pred_instances_3d']
        else:
            final_results = results
            for i, res in enumerate(final_results):
                # Actually, `sample_idx` here is the filename without suffix.
                # It's for identitying the sample in formating.
                res['sample_idx'] = self.data_infos[i]['sample_idx']
                res['pred_instances_3d']['bboxes_3d'].limit_yaw(
                    offset=0.5, period=np.pi * 2)
352
353
354
355
356
357
358
359
360
361

        waymo_root = self.data_root
        if self.split == 'training':
            waymo_tfrecords_dir = osp.join(waymo_root, 'validation')
            prefix = '1'
        elif self.split == 'testing':
            waymo_tfrecords_dir = osp.join(waymo_root, 'testing')
            prefix = '2'
        else:
            raise ValueError('Not supported split value.')
362
363
364
365
366

        from ..functional.waymo_utils.prediction_to_waymo import \
            Prediction2Waymo
        converter = Prediction2Waymo(
            final_results,
367
368
369
370
            waymo_tfrecords_dir,
            waymo_results_save_dir,
            waymo_results_final_path,
            prefix,
371
372
373
374
            classes,
            file_client_args=self.file_client_args,
            from_kitti_format=self.convert_kitti_format,
            idx2metainfo=self.idx2metainfo)
375
376
        converter.convert()
        waymo_save_tmp_dir.cleanup()
377
378

        return final_results, waymo_save_tmp_dir
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397

    def merge_multi_view_boxes(self, box_dict_per_frame: List[dict],
                               cam0_info: dict):
        """Merge bounding boxes predicted from multi-view images.
        Args:
            box_dict_per_frame (list[dict]): The results of prediction
                for each camera.
            cam2_info (dict): store the sample id for the given frame.

        Returns:
            merged_box_dict (dict), store the merge results
        """
        box_dict = dict()
        # convert list[dict] to dict[list]
        for key in box_dict_per_frame[0].keys():
            box_dict[key] = list()
            for cam_idx in range(self.num_cams):
                box_dict[key].append(box_dict_per_frame[cam_idx][key])
        # merge each elements
398
        box_dict['sample_idx'] = cam0_info['image_id']
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
        for key in ['bbox', 'box3d_lidar', 'scores', 'label_preds']:
            box_dict[key] = np.concatenate(box_dict[key])

        # apply nms to box3d_lidar (box3d_camera are in different systems)
        # TODO: move this global setting into config
        nms_cfg = dict(
            use_rotate_nms=True,
            nms_across_levels=False,
            nms_pre=500,
            nms_thr=0.05,
            score_thr=0.001,
            min_bbox_size=0,
            max_per_frame=100)
        nms_cfg = Config(nms_cfg)
        lidar_boxes3d = LiDARInstance3DBoxes(
            torch.from_numpy(box_dict['box3d_lidar']).cuda())
        scores = torch.from_numpy(box_dict['scores']).cuda()
        labels = torch.from_numpy(box_dict['label_preds']).long().cuda()
417
        nms_scores = scores.new_zeros(scores.shape[0], len(self.classes) + 1)
418
419
420
421
422
423
424
425
426
427
        indices = labels.new_tensor(list(range(scores.shape[0])))
        nms_scores[indices, labels] = scores
        lidar_boxes3d_for_nms = xywhr2xyxyr(lidar_boxes3d.bev)
        boxes3d = lidar_boxes3d.tensor
        # generate attr scores from attr labels
        boxes3d, scores, labels = box3d_multiclass_nms(
            boxes3d, lidar_boxes3d_for_nms, nms_scores, nms_cfg.score_thr,
            nms_cfg.max_per_frame, nms_cfg)
        lidar_boxes3d = LiDARInstance3DBoxes(boxes3d)
        det = bbox3d2result(lidar_boxes3d, scores, labels)
428
        box_preds_lidar = det['bboxes_3d']
429
430
431
        scores = det['scores_3d']
        labels = det['labels_3d']
        # box_preds_camera is in the cam0 system
432
433
        lidar2cam = cam0_info['images'][self.default_cam_key]['lidar2img']
        lidar2cam = np.array(lidar2cam).astype(np.float32)
434
        box_preds_camera = box_preds_lidar.convert_to(
435
            Box3DMode.CAM, lidar2cam, correct_yaw=True)
436
437
438
439
440
441
442
        # Note: bbox is meaningless in final evaluation, set to 0
        merged_box_dict = dict(
            bbox=np.zeros([box_preds_lidar.tensor.shape[0], 4]),
            box3d_camera=box_preds_camera.tensor.numpy(),
            box3d_lidar=box_preds_lidar.tensor.numpy(),
            scores=scores.numpy(),
            label_preds=labels.numpy(),
443
            sample_idx=box_dict['sample_idx'],
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
        )
        return merged_box_dict

    def bbox2result_kitti(self,
                          net_outputs: list,
                          sample_id_list: list,
                          class_names: list,
                          pklfile_prefix: str = None,
                          submission_prefix: str = None):
        """Convert 3D detection results to kitti format for evaluation and test
        submission.

        Args:
            net_outputs (list[dict]): List of array storing the
                inferenced bounding boxes and scores.
            sample_id_list (list[int]): List of input sample id.
            class_names (list[String]): A list of class names.
            pklfile_prefix (str, optional): The prefix of pkl file.
                Defaults to None.
            submission_prefix (str, optional): The prefix of submission file.
                Defaults to None.

        Returns:
            list[dict]: A list of dictionaries with the kitti format.
        """
        if submission_prefix is not None:
470
            mmengine.mkdir_or_exist(submission_prefix)
471
472
473
474

        det_annos = []
        print('\nConverting prediction to KITTI format')
        for idx, pred_dicts in enumerate(
475
                mmengine.track_iter_progress(net_outputs)):
476
477
478
479
            annos = []
            sample_idx = sample_id_list[idx]
            info = self.data_infos[sample_idx]

480
            if self.load_type == 'mv_image_based':
481
482
                if idx % self.num_cams == 0:
                    box_dict_per_frame = []
483
484
485
486
487
488
489
490
491
492
493
494
495
496
                    cam0_key = list(info['images'].keys())[0]
                    cam0_info = info
                    # Here in mono3d, we use the 'CAM_FRONT' "the first
                    # index in the camera" as the default image shape.
                    # If you want to another camera, please modify it.
                    image_shape = (info['images'][cam0_key]['height'],
                                   info['images'][cam0_key]['width'])
                box_dict = self.convert_valid_bboxes(pred_dicts, info)
            else:
                box_dict = self.convert_valid_bboxes(pred_dicts, info)
                # Here default used 'CAM_FRONT' to compute metric.
                # If you want to use another camera, please modify it.
                image_shape = (info['images'][self.default_cam_key]['height'],
                               info['images'][self.default_cam_key]['width'])
497
            if self.load_type == 'mv_image_based':
498
499
500
                box_dict_per_frame.append(box_dict)
                if (idx + 1) % self.num_cams != 0:
                    continue
501
502
503
                box_dict = self.merge_multi_view_boxes(box_dict_per_frame,
                                                       cam0_info)

504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
            anno = {
                'name': [],
                'truncated': [],
                'occluded': [],
                'alpha': [],
                'bbox': [],
                'dimensions': [],
                'location': [],
                'rotation_y': [],
                'score': []
            }
            if len(box_dict['bbox']) > 0:
                box_2d_preds = box_dict['bbox']
                box_preds = box_dict['box3d_camera']
                scores = box_dict['scores']
                box_preds_lidar = box_dict['box3d_lidar']
                label_preds = box_dict['label_preds']

                for box, box_lidar, bbox, score, label in zip(
                        box_preds, box_preds_lidar, box_2d_preds, scores,
                        label_preds):
                    bbox[2:] = np.minimum(bbox[2:], image_shape[::-1])
                    bbox[:2] = np.maximum(bbox[:2], [0, 0])
                    anno['name'].append(class_names[int(label)])
                    anno['truncated'].append(0.0)
                    anno['occluded'].append(0)
                    anno['alpha'].append(
                        -np.arctan2(-box_lidar[1], box_lidar[0]) + box[6])
                    anno['bbox'].append(bbox)
                    anno['dimensions'].append(box[3:6])
                    anno['location'].append(box[:3])
                    anno['rotation_y'].append(box[6])
                    anno['score'].append(score)

                anno = {k: np.stack(v) for k, v in anno.items()}
                annos.append(anno)
            else:
                anno = {
                    'name': np.array([]),
                    'truncated': np.array([]),
                    'occluded': np.array([]),
                    'alpha': np.array([]),
                    'bbox': np.zeros([0, 4]),
                    'dimensions': np.zeros([0, 3]),
                    'location': np.zeros([0, 3]),
                    'rotation_y': np.array([]),
                    'score': np.array([]),
                }
                annos.append(anno)

            if submission_prefix is not None:
                curr_file = f'{submission_prefix}/{sample_idx:06d}.txt'
                with open(curr_file, 'w') as f:
                    bbox = anno['bbox']
                    loc = anno['location']
                    dims = anno['dimensions']  # lhw -> hwl

                    for idx in range(len(bbox)):
                        print(
                            '{} -1 -1 {:.4f} {:.4f} {:.4f} {:.4f} '
                            '{:.4f} {:.4f} {:.4f} '
                            '{:.4f} {:.4f} {:.4f} {:.4f} {:.4f} {:.4f}'.format(
                                anno['name'][idx], anno['alpha'][idx],
                                bbox[idx][0], bbox[idx][1], bbox[idx][2],
                                bbox[idx][3], dims[idx][1], dims[idx][2],
                                dims[idx][0], loc[idx][0], loc[idx][1],
                                loc[idx][2], anno['rotation_y'][idx],
                                anno['score'][idx]),
                            file=f)
            if self.use_pred_sample_idx:
                save_sample_idx = sample_idx
            else:
                # use the sample idx in the info file
                # In waymo validation sample_idx in prediction is 000xxx
                # but in info file it is 1000xxx
                save_sample_idx = box_dict['sample_idx']
580
            annos[-1]['sample_idx'] = np.array(
581
582
583
584
585
586
587
588
589
                [save_sample_idx] * len(annos[-1]['score']), dtype=np.int64)

            det_annos += annos

        if pklfile_prefix is not None:
            if not pklfile_prefix.endswith(('.pkl', '.pickle')):
                out = f'{pklfile_prefix}.pkl'
            else:
                out = pklfile_prefix
590
            mmengine.dump(det_annos, out)
591
592
593
            print(f'Result is saved to {out}.')

        return det_annos
594
595
596

    def convert_valid_bboxes(self, box_dict: dict, info: dict):
        """Convert the predicted boxes into valid ones. Should handle the
597
        load_model (frame_based, mv_image_based, fov_image_based), separately.
598
599
600
601

        Args:
            box_dict (dict): Box dictionaries to be converted.

602
                - bboxes_3d (:obj:`LiDARInstance3DBoxes`): 3D bounding boxes.
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
                - scores_3d (torch.Tensor): Scores of boxes.
                - labels_3d (torch.Tensor): Class labels of boxes.
            info (dict): Data info.

        Returns:
            dict: Valid predicted boxes.

                - bbox (np.ndarray): 2D bounding boxes.
                - box3d_camera (np.ndarray): 3D bounding boxes in
                    camera coordinate.
                - box3d_lidar (np.ndarray): 3D bounding boxes in
                    LiDAR coordinate.
                - scores (np.ndarray): Scores of boxes.
                - label_preds (np.ndarray): Class label predictions.
                - sample_idx (int): Sample index.
        """
        # TODO: refactor this function
        box_preds = box_dict['bboxes_3d']
        scores = box_dict['scores_3d']
        labels = box_dict['labels_3d']
623
        sample_idx = info['sample_idx']
624
625
626
627
628
629
630
631
632
633
        box_preds.limit_yaw(offset=0.5, period=np.pi * 2)

        if len(box_preds) == 0:
            return dict(
                bbox=np.zeros([0, 4]),
                box3d_camera=np.zeros([0, 7]),
                box3d_lidar=np.zeros([0, 7]),
                scores=np.zeros([0]),
                label_preds=np.zeros([0, 4]),
                sample_idx=sample_idx)
634
        # Here default used 'CAM_FRONT' to compute metric. If you want to
635
        # use another camera, please modify it.
636
        if self.load_type in ['frame_based', 'fov_image_based']:
637
            cam_key = self.default_cam_key
638
        elif self.load_type == 'mv_image_based':
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
            cam_key = list(info['images'].keys())[0]
        else:
            raise NotImplementedError

        lidar2cam = np.array(info['images'][cam_key]['lidar2cam']).astype(
            np.float32)
        P2 = np.array(info['images'][cam_key]['cam2img']).astype(np.float32)
        img_shape = (info['images'][cam_key]['height'],
                     info['images'][cam_key]['width'])
        P2 = box_preds.tensor.new_tensor(P2)

        if isinstance(box_preds, LiDARInstance3DBoxes):
            box_preds_camera = box_preds.convert_to(Box3DMode.CAM, lidar2cam)
            box_preds_lidar = box_preds
        elif isinstance(box_preds, CameraInstance3DBoxes):
            box_preds_camera = box_preds
            box_preds_lidar = box_preds.convert_to(Box3DMode.LIDAR,
                                                   np.linalg.inv(lidar2cam))

        box_corners = box_preds_camera.corners
        box_corners_in_image = points_cam2img(box_corners, P2)
        # box_corners_in_image: [N, 8, 2]
        minxy = torch.min(box_corners_in_image, dim=1)[0]
        maxxy = torch.max(box_corners_in_image, dim=1)[0]
        box_2d_preds = torch.cat([minxy, maxxy], dim=1)
        # Post-processing
        # check box_preds_camera
        image_shape = box_preds.tensor.new_tensor(img_shape)
        valid_cam_inds = ((box_2d_preds[:, 0] < image_shape[1]) &
                          (box_2d_preds[:, 1] < image_shape[0]) &
                          (box_2d_preds[:, 2] > 0) & (box_2d_preds[:, 3] > 0))
        # check box_preds_lidar
671
        if self.load_type in ['frame_based']:
672
673
674
675
            limit_range = box_preds.tensor.new_tensor(self.pcd_limit_range)
            valid_pcd_inds = ((box_preds_lidar.center > limit_range[:3]) &
                              (box_preds_lidar.center < limit_range[3:]))
            valid_inds = valid_pcd_inds.all(-1)
676
        if self.load_type in ['mv_image_based', 'fov_image_based']:
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
            valid_inds = valid_cam_inds

        if valid_inds.sum() > 0:
            return dict(
                bbox=box_2d_preds[valid_inds, :].numpy(),
                pred_box_type_3d=type(box_preds),
                box3d_camera=box_preds_camera[valid_inds].tensor.numpy(),
                box3d_lidar=box_preds_lidar[valid_inds].tensor.numpy(),
                scores=scores[valid_inds].numpy(),
                label_preds=labels[valid_inds].numpy(),
                sample_idx=sample_idx)
        else:
            return dict(
                bbox=np.zeros([0, 4]),
                pred_box_type_3d=type(box_preds),
                box3d_camera=np.zeros([0, 7]),
                box3d_lidar=np.zeros([0, 7]),
                scores=np.zeros([0]),
                label_preds=np.zeros([0]),
                sample_idx=sample_idx)