waymo_metric.py 18.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
# Copyright (c) OpenMMLab. All rights reserved.
import tempfile
from os import path as osp
from typing import Dict, List, Optional, Union

import mmcv
import numpy as np
import torch
from mmcv.utils import print_log
10
from mmengine import load
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
from mmengine.logging import MMLogger

from mmdet3d.models.layers import box3d_multiclass_nms
from mmdet3d.registry import METRICS
from mmdet3d.structures import (Box3DMode, LiDARInstance3DBoxes, bbox3d2result,
                                xywhr2xyxyr)
from .kitti_metric import KittiMetric


@METRICS.register_module()
class WaymoMetric(KittiMetric):
    """Waymo evaluation metric.

    Args:
        ann_file (str): The path of the annotation file in kitti format.
        waymo_bin_file (str): The path of the annotation file in waymo format.
        data_root (str): Path of dataset root.
                         Used for storing waymo evaluation programs.
        split (str): The split of the evaluation set.
        metric (str | list[str]): Metrics to be evaluated.
            Default to 'bbox'.
        pcd_limit_range (list): The range of point cloud used to
            filter invalid predicted boxes.
            Default to [0, -40, -3, 70.4, 40, 0.0].
        prefix (str, optional): The prefix that will be added in the metric
            names to disambiguate homonymous metrics of different evaluators.
            If prefix is not provided in the argument, self.default_prefix
            will be used instead. Defaults to None.
        pklfile_prefix (str, optional): The prefix of pkl files, including
            the file path and the prefix of filename, e.g., "a/b/prefix".
            If not specified, a temp file will be created. Default: None.
        submission_prefix (str, optional): The prefix of submission data.
            If not specified, the submission data will not be generated.
            Default: None.
        task: (str, optional): task for 3D detection, if cam, would filter
            the points that outside the image.
        default_cam_key (str, optional): The default camera for lidar to
            camear conversion. By default, KITTI: CAM2, Waymo: CAM_FRONT
        use_pred_sample_idx (bool, optional): In formating results, use the
            sample index from the prediction or from the load annoataitons.
            By default, KITTI: True, Waymo: False, Waymo has a conversion
            process, which needs to use the sample id from load annotation.
        collect_device (str): Device name used for collecting results
            from different ranks during distributed training. Must be 'cpu' or
            'gpu'. Defaults to 'cpu'.
        file_client_args (dict): file client for reading gt in waymo format.
    """

    def __init__(self,
                 ann_file: str,
                 waymo_bin_file: str,
                 data_root: str,
                 split: str = 'training',
                 metric: Union[str, List[str]] = 'bbox',
                 pcd_limit_range: List[float] = [-85, -85, -5, 85, 85, 5],
                 prefix: Optional[str] = None,
                 pklfile_prefix: str = None,
                 submission_prefix: str = None,
                 task='lidar',
                 default_cam_key: str = 'CAM_FRONT',
                 use_pred_sample_idx: bool = False,
                 collect_device: str = 'cpu',
                 file_client_args: dict = dict(backend='disk')):

        self.waymo_bin_file = waymo_bin_file
        self.data_root = data_root
        self.file_client_args = file_client_args
        self.split = split
        self.task = task
        self.use_pred_sample_idx = use_pred_sample_idx
        super().__init__(
            ann_file=ann_file,
            metric=metric,
            pcd_limit_range=pcd_limit_range,
            prefix=prefix,
            pklfile_prefix=pklfile_prefix,
            submission_prefix=submission_prefix,
            default_cam_key=default_cam_key,
            collect_device=collect_device)
        self.default_prefix = 'Waymo metric'

    def compute_metrics(self, results: list) -> Dict[str, float]:
        """Compute the metrics from processed results.

        Args:
            results (list): The processed results of each batch.

        Returns:
            Dict[str, float]: The computed metrics. The keys are the names of
            the metrics, and the values are corresponding results.
        """
        logger: MMLogger = MMLogger.get_current_instance()
        self.classes = self.dataset_meta['CLASSES']

        # load annotations
106
107
        self.data_infos = load(
            self.ann_file, file_client_args=self.file_client_args)['data_list']
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
        # different from kitti, waymo do not need to convert the ann file

        if self.pklfile_prefix is None:
            eval_tmp_dir = tempfile.TemporaryDirectory()
            pklfile_prefix = osp.join(eval_tmp_dir.name, 'results')
        else:
            eval_tmp_dir = None
            pklfile_prefix = self.pklfile_prefix

        # load annotations

        result_dict, tmp_dir = self.format_results(
            results,
            pklfile_prefix=pklfile_prefix,
            submission_prefix=self.submission_prefix,
            classes=self.classes)

        import subprocess
        eval_str = 'mmdet3d/evaluation/functional/waymo_utils/' + \
            f'compute_detection_metrics_main {pklfile_prefix}.bin ' + \
            f'{self.waymo_bin_file}'
        print(eval_str)
        ret_bytes = subprocess.check_output(eval_str, shell=True)
        ret_texts = ret_bytes.decode('utf-8')
        print_log(ret_texts, logger=logger)

        ap_dict = {
            'Vehicle/L1 mAP': 0,
            'Vehicle/L1 mAPH': 0,
            'Vehicle/L2 mAP': 0,
            'Vehicle/L2 mAPH': 0,
            'Pedestrian/L1 mAP': 0,
            'Pedestrian/L1 mAPH': 0,
            'Pedestrian/L2 mAP': 0,
            'Pedestrian/L2 mAPH': 0,
            'Sign/L1 mAP': 0,
            'Sign/L1 mAPH': 0,
            'Sign/L2 mAP': 0,
            'Sign/L2 mAPH': 0,
            'Cyclist/L1 mAP': 0,
            'Cyclist/L1 mAPH': 0,
            'Cyclist/L2 mAP': 0,
            'Cyclist/L2 mAPH': 0,
            'Overall/L1 mAP': 0,
            'Overall/L1 mAPH': 0,
            'Overall/L2 mAP': 0,
            'Overall/L2 mAPH': 0
        }
        mAP_splits = ret_texts.split('mAP ')
        mAPH_splits = ret_texts.split('mAPH ')
        mAP_splits = ret_texts.split('mAP ')
        mAPH_splits = ret_texts.split('mAPH ')
        for idx, key in enumerate(ap_dict.keys()):
            split_idx = int(idx / 2) + 1
            if idx % 2 == 0:  # mAP
                ap_dict[key] = float(mAP_splits[split_idx].split(']')[0])
            else:  # mAPH
                ap_dict[key] = float(mAPH_splits[split_idx].split(']')[0])
        ap_dict['Overall/L1 mAP'] = \
            (ap_dict['Vehicle/L1 mAP'] + ap_dict['Pedestrian/L1 mAP'] +
                ap_dict['Cyclist/L1 mAP']) / 3
        ap_dict['Overall/L1 mAPH'] = \
            (ap_dict['Vehicle/L1 mAPH'] + ap_dict['Pedestrian/L1 mAPH'] +
                ap_dict['Cyclist/L1 mAPH']) / 3
        ap_dict['Overall/L2 mAP'] = \
            (ap_dict['Vehicle/L2 mAP'] + ap_dict['Pedestrian/L2 mAP'] +
                ap_dict['Cyclist/L2 mAP']) / 3
        ap_dict['Overall/L2 mAPH'] = \
            (ap_dict['Vehicle/L2 mAPH'] + ap_dict['Pedestrian/L2 mAPH'] +
                ap_dict['Cyclist/L2 mAPH']) / 3
        if eval_tmp_dir is not None:
            eval_tmp_dir.cleanup()

        if tmp_dir is not None:
            tmp_dir.cleanup()

        return ap_dict

    def format_results(self,
                       results: List[dict],
                       pklfile_prefix: str = None,
                       submission_prefix: str = None,
                       classes: List[str] = None):
        """Format the results to pkl file.

        Args:
            results (list[dict]): Testing results of the
                dataset.
            pklfile_prefix (str, optional): The prefix of pkl files. It
                includes the file path and the prefix of filename, e.g.,
                "a/b/prefix". If not specified, a temp file will be created.
                Default: None.
            submission_prefix (str, optional): The prefix of submitted files.
                It includes the file path and the prefix of filename, e.g.,
                "a/b/prefix". If not specified, a temp file will be created.
                Default: None.
            classes (list[String], optional): A list of class name. Defaults
                to None.

        Returns:
            tuple: (result_dict, tmp_dir), result_dict is a dict containing
                the formatted result, tmp_dir is the temporal directory created
                for saving json files when jsonfile_prefix is not specified.
        """
        result_files, tmp_dir = super().format_results(results, pklfile_prefix,
                                                       submission_prefix,
                                                       classes)

        waymo_root = self.data_root
        if self.split == 'training':
            waymo_tfrecords_dir = osp.join(waymo_root, 'validation')
            prefix = '1'
        elif self.split == 'testing':
            waymo_tfrecords_dir = osp.join(waymo_root, 'testing')
            prefix = '2'
        else:
            raise ValueError('Not supported split value.')
        waymo_save_tmp_dir = tempfile.TemporaryDirectory()
        waymo_results_save_dir = waymo_save_tmp_dir.name
        waymo_results_final_path = f'{pklfile_prefix}.bin'
228
        from ..functional.waymo_utils.prediction_kitti_to_waymo import \
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
            KITTI2Waymo
        converter = KITTI2Waymo(
            result_files['pred_instances_3d'],
            waymo_tfrecords_dir,
            waymo_results_save_dir,
            waymo_results_final_path,
            prefix,
            file_client_args=self.file_client_args)
        converter.convert()
        waymo_save_tmp_dir.cleanup()
        return result_files, waymo_save_tmp_dir

    def merge_multi_view_boxes(self, box_dict_per_frame: List[dict],
                               cam0_info: dict):
        """Merge bounding boxes predicted from multi-view images.
        Args:
            box_dict_per_frame (list[dict]): The results of prediction
                for each camera.
            cam2_info (dict): store the sample id for the given frame.

        Returns:
            merged_box_dict (dict), store the merge results
        """
        box_dict = dict()
        # convert list[dict] to dict[list]
        for key in box_dict_per_frame[0].keys():
            box_dict[key] = list()
            for cam_idx in range(self.num_cams):
                box_dict[key].append(box_dict_per_frame[cam_idx][key])
        # merge each elements
        box_dict['sample_id'] = cam0_info['image_id']
        for key in ['bbox', 'box3d_lidar', 'scores', 'label_preds']:
            box_dict[key] = np.concatenate(box_dict[key])

        # apply nms to box3d_lidar (box3d_camera are in different systems)
        # TODO: move this global setting into config
        nms_cfg = dict(
            use_rotate_nms=True,
            nms_across_levels=False,
            nms_pre=500,
            nms_thr=0.05,
            score_thr=0.001,
            min_bbox_size=0,
            max_per_frame=100)
        from mmcv import Config
        nms_cfg = Config(nms_cfg)
        lidar_boxes3d = LiDARInstance3DBoxes(
            torch.from_numpy(box_dict['box3d_lidar']).cuda())
        scores = torch.from_numpy(box_dict['scores']).cuda()
        labels = torch.from_numpy(box_dict['label_preds']).long().cuda()
        nms_scores = scores.new_zeros(scores.shape[0], len(self.CLASSES) + 1)
        indices = labels.new_tensor(list(range(scores.shape[0])))
        nms_scores[indices, labels] = scores
        lidar_boxes3d_for_nms = xywhr2xyxyr(lidar_boxes3d.bev)
        boxes3d = lidar_boxes3d.tensor
        # generate attr scores from attr labels
        boxes3d, scores, labels = box3d_multiclass_nms(
            boxes3d, lidar_boxes3d_for_nms, nms_scores, nms_cfg.score_thr,
            nms_cfg.max_per_frame, nms_cfg)
        lidar_boxes3d = LiDARInstance3DBoxes(boxes3d)
        det = bbox3d2result(lidar_boxes3d, scores, labels)
        box_preds_lidar = det['boxes_3d']
        scores = det['scores_3d']
        labels = det['labels_3d']
        # box_preds_camera is in the cam0 system
        rect = cam0_info['calib']['R0_rect'].astype(np.float32)
        Trv2c = cam0_info['calib']['Tr_velo_to_cam'].astype(np.float32)
        box_preds_camera = box_preds_lidar.convert_to(
            Box3DMode.CAM, rect @ Trv2c, correct_yaw=True)
        # Note: bbox is meaningless in final evaluation, set to 0
        merged_box_dict = dict(
            bbox=np.zeros([box_preds_lidar.tensor.shape[0], 4]),
            box3d_camera=box_preds_camera.tensor.numpy(),
            box3d_lidar=box_preds_lidar.tensor.numpy(),
            scores=scores.numpy(),
            label_preds=labels.numpy(),
            sample_idx=box_dict['sample_idx'],
        )
        return merged_box_dict

    def bbox2result_kitti(self,
                          net_outputs: list,
                          sample_id_list: list,
                          class_names: list,
                          pklfile_prefix: str = None,
                          submission_prefix: str = None):
        """Convert 3D detection results to kitti format for evaluation and test
        submission.

        Args:
            net_outputs (list[dict]): List of array storing the
                inferenced bounding boxes and scores.
            sample_id_list (list[int]): List of input sample id.
            class_names (list[String]): A list of class names.
            pklfile_prefix (str, optional): The prefix of pkl file.
                Defaults to None.
            submission_prefix (str, optional): The prefix of submission file.
                Defaults to None.

        Returns:
            list[dict]: A list of dictionaries with the kitti format.
        """
        assert len(net_outputs) == len(self.data_infos), \
            'invalid list length of network outputs'
        if submission_prefix is not None:
            mmcv.mkdir_or_exist(submission_prefix)

        det_annos = []
        print('\nConverting prediction to KITTI format')
        for idx, pred_dicts in enumerate(
                mmcv.track_iter_progress(net_outputs)):
            annos = []
            sample_idx = sample_id_list[idx]
            info = self.data_infos[sample_idx]
            # Here default used 'CAM2' to compute metric. If you want to
            # use another camera, please modify it.
            image_shape = (info['images'][self.default_cam_key]['height'],
                           info['images'][self.default_cam_key]['width'])

            if self.task == 'mono3d':
                if idx % self.num_cams == 0:
                    box_dict_per_frame = []
                    cam0_idx = idx
            box_dict = self.convert_valid_bboxes(pred_dicts, info)

            if self.task == 'mono3d':
                box_dict_per_frame.append(box_dict)
                if (idx + 1) % self.num_cams != 0:
                    continue
                box_dict = self.merge_multi_view_boxes(
                    box_dict_per_frame, self.data_infos[cam0_idx])
            anno = {
                'name': [],
                'truncated': [],
                'occluded': [],
                'alpha': [],
                'bbox': [],
                'dimensions': [],
                'location': [],
                'rotation_y': [],
                'score': []
            }
            if len(box_dict['bbox']) > 0:
                box_2d_preds = box_dict['bbox']
                box_preds = box_dict['box3d_camera']
                scores = box_dict['scores']
                box_preds_lidar = box_dict['box3d_lidar']
                label_preds = box_dict['label_preds']

                for box, box_lidar, bbox, score, label in zip(
                        box_preds, box_preds_lidar, box_2d_preds, scores,
                        label_preds):
                    bbox[2:] = np.minimum(bbox[2:], image_shape[::-1])
                    bbox[:2] = np.maximum(bbox[:2], [0, 0])
                    anno['name'].append(class_names[int(label)])
                    anno['truncated'].append(0.0)
                    anno['occluded'].append(0)
                    anno['alpha'].append(
                        -np.arctan2(-box_lidar[1], box_lidar[0]) + box[6])
                    anno['bbox'].append(bbox)
                    anno['dimensions'].append(box[3:6])
                    anno['location'].append(box[:3])
                    anno['rotation_y'].append(box[6])
                    anno['score'].append(score)

                anno = {k: np.stack(v) for k, v in anno.items()}
                annos.append(anno)
            else:
                anno = {
                    'name': np.array([]),
                    'truncated': np.array([]),
                    'occluded': np.array([]),
                    'alpha': np.array([]),
                    'bbox': np.zeros([0, 4]),
                    'dimensions': np.zeros([0, 3]),
                    'location': np.zeros([0, 3]),
                    'rotation_y': np.array([]),
                    'score': np.array([]),
                }
                annos.append(anno)

            if submission_prefix is not None:
                curr_file = f'{submission_prefix}/{sample_idx:06d}.txt'
                with open(curr_file, 'w') as f:
                    bbox = anno['bbox']
                    loc = anno['location']
                    dims = anno['dimensions']  # lhw -> hwl

                    for idx in range(len(bbox)):
                        print(
                            '{} -1 -1 {:.4f} {:.4f} {:.4f} {:.4f} '
                            '{:.4f} {:.4f} {:.4f} '
                            '{:.4f} {:.4f} {:.4f} {:.4f} {:.4f} {:.4f}'.format(
                                anno['name'][idx], anno['alpha'][idx],
                                bbox[idx][0], bbox[idx][1], bbox[idx][2],
                                bbox[idx][3], dims[idx][1], dims[idx][2],
                                dims[idx][0], loc[idx][0], loc[idx][1],
                                loc[idx][2], anno['rotation_y'][idx],
                                anno['score'][idx]),
                            file=f)
            if self.use_pred_sample_idx:
                save_sample_idx = sample_idx
            else:
                # use the sample idx in the info file
                # In waymo validation sample_idx in prediction is 000xxx
                # but in info file it is 1000xxx
                save_sample_idx = box_dict['sample_idx']
            annos[-1]['sample_id'] = np.array(
                [save_sample_idx] * len(annos[-1]['score']), dtype=np.int64)

            det_annos += annos

        if pklfile_prefix is not None:
            if not pklfile_prefix.endswith(('.pkl', '.pickle')):
                out = f'{pklfile_prefix}.pkl'
            else:
                out = pklfile_prefix
            mmcv.dump(det_annos, out)
            print(f'Result is saved to {out}.')

        return det_annos