waymo_metric.py 28.7 KB
Newer Older
1
2
3
4
5
# Copyright (c) OpenMMLab. All rights reserved.
import tempfile
from os import path as osp
from typing import Dict, List, Optional, Union

6
import mmengine
7
8
import numpy as np
import torch
9
10
from mmengine import Config, load
from mmengine.logging import MMLogger, print_log
11
12
13

from mmdet3d.models.layers import box3d_multiclass_nms
from mmdet3d.registry import METRICS
14
15
16
from mmdet3d.structures import (Box3DMode, CameraInstance3DBoxes,
                                LiDARInstance3DBoxes, bbox3d2result,
                                points_cam2img, xywhr2xyxyr)
17
18
19
20
21
22
23
24
25
26
27
28
29
30
from .kitti_metric import KittiMetric


@METRICS.register_module()
class WaymoMetric(KittiMetric):
    """Waymo evaluation metric.

    Args:
        ann_file (str): The path of the annotation file in kitti format.
        waymo_bin_file (str): The path of the annotation file in waymo format.
        data_root (str): Path of dataset root.
                         Used for storing waymo evaluation programs.
        split (str): The split of the evaluation set.
        metric (str | list[str]): Metrics to be evaluated.
31
            Default to 'mAP'.
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
        pcd_limit_range (list): The range of point cloud used to
            filter invalid predicted boxes.
            Default to [0, -40, -3, 70.4, 40, 0.0].
        prefix (str, optional): The prefix that will be added in the metric
            names to disambiguate homonymous metrics of different evaluators.
            If prefix is not provided in the argument, self.default_prefix
            will be used instead. Defaults to None.
        pklfile_prefix (str, optional): The prefix of pkl files, including
            the file path and the prefix of filename, e.g., "a/b/prefix".
            If not specified, a temp file will be created. Default: None.
        submission_prefix (str, optional): The prefix of submission data.
            If not specified, the submission data will not be generated.
            Default: None.
        task: (str, optional): task for 3D detection, if cam, would filter
            the points that outside the image.
        default_cam_key (str, optional): The default camera for lidar to
            camear conversion. By default, KITTI: CAM2, Waymo: CAM_FRONT
        use_pred_sample_idx (bool, optional): In formating results, use the
            sample index from the prediction or from the load annoataitons.
            By default, KITTI: True, Waymo: False, Waymo has a conversion
            process, which needs to use the sample id from load annotation.
        collect_device (str): Device name used for collecting results
            from different ranks during distributed training. Must be 'cpu' or
            'gpu'. Defaults to 'cpu'.
        file_client_args (dict): file client for reading gt in waymo format.
    """
58
    num_cams = 5
59
60
61
62
63
64

    def __init__(self,
                 ann_file: str,
                 waymo_bin_file: str,
                 data_root: str,
                 split: str = 'training',
65
                 metric: Union[str, List[str]] = 'mAP',
66
67
68
69
                 pcd_limit_range: List[float] = [-85, -85, -5, 85, 85, 5],
                 prefix: Optional[str] = None,
                 pklfile_prefix: str = None,
                 submission_prefix: str = None,
70
                 task='lidar_det',
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
                 default_cam_key: str = 'CAM_FRONT',
                 use_pred_sample_idx: bool = False,
                 collect_device: str = 'cpu',
                 file_client_args: dict = dict(backend='disk')):
        self.waymo_bin_file = waymo_bin_file
        self.data_root = data_root
        self.split = split
        self.task = task
        self.use_pred_sample_idx = use_pred_sample_idx
        super().__init__(
            ann_file=ann_file,
            metric=metric,
            pcd_limit_range=pcd_limit_range,
            prefix=prefix,
            pklfile_prefix=pklfile_prefix,
            submission_prefix=submission_prefix,
            default_cam_key=default_cam_key,
88
89
            collect_device=collect_device,
            file_client_args=file_client_args)
90
91
92
93
94
95
        self.default_prefix = 'Waymo metric'

    def compute_metrics(self, results: list) -> Dict[str, float]:
        """Compute the metrics from processed results.

        Args:
96
            results (list): The processed results of the whole dataset.
97
98
99
100
101
102
103
104
105

        Returns:
            Dict[str, float]: The computed metrics. The keys are the names of
            the metrics, and the values are corresponding results.
        """
        logger: MMLogger = MMLogger.get_current_instance()
        self.classes = self.dataset_meta['CLASSES']

        # load annotations
106
        self.data_infos = load(self.ann_file)['data_list']
107
        # different from kitti, waymo do not need to convert the ann file
108
        # handle the mono3d task
109
        if self.task == 'mono_det':
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
            new_data_infos = []
            for info in self.data_infos:
                height = info['images'][self.default_cam_key]['height']
                width = info['images'][self.default_cam_key]['width']
                for (cam_key, img_info) in info['images'].items():
                    camera_info = dict()
                    camera_info['images'] = dict()
                    camera_info['images'][cam_key] = img_info
                    # TODO remove the check by updating the data info;
                    if 'height' not in img_info:
                        img_info['height'] = height
                        img_info['width'] = width
                    if 'cam_instances' in info \
                            and cam_key in info['cam_instances']:
                        camera_info['instances'] = info['cam_instances'][
                            cam_key]
                    else:
                        camera_info['instances'] = []
                    camera_info['ego2global'] = info['ego2global']
                    if 'image_sweeps' in info:
                        camera_info['image_sweeps'] = info['image_sweeps']

                    # TODO check if need to modify the sample id
                    # TODO check when will use it except for evaluation.
                    camera_info['sample_id'] = info['sample_id']
                    new_data_infos.append(camera_info)
            self.data_infos = new_data_infos
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152

        if self.pklfile_prefix is None:
            eval_tmp_dir = tempfile.TemporaryDirectory()
            pklfile_prefix = osp.join(eval_tmp_dir.name, 'results')
        else:
            eval_tmp_dir = None
            pklfile_prefix = self.pklfile_prefix

        # load annotations

        result_dict, tmp_dir = self.format_results(
            results,
            pklfile_prefix=pklfile_prefix,
            submission_prefix=self.submission_prefix,
            classes=self.classes)

153
154
155
156
157
        metric_dict = {}
        for metric in self.metrics:
            ap_dict = self.waymo_evaluate(
                pklfile_prefix, metric=metric, logger=logger)
            metric_dict[metric] = ap_dict
158
159
160
161
162
        if eval_tmp_dir is not None:
            eval_tmp_dir.cleanup()

        if tmp_dir is not None:
            tmp_dir.cleanup()
163
        return metric_dict
164

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
    def waymo_evaluate(self,
                       pklfile_prefix: str,
                       metric: str = None,
                       logger: MMLogger = None) -> dict:
        """Evaluation in Waymo protocol.

        Args:
            pklfile_prefix (str): The location that stored the prediction
                results.
            metric (str): Metric to be evaluated. Defaults to None.
            logger (MMLogger, optional): Logger used for printing
                related information during evaluation. Default: None.

        Returns:
            dict[str, float]: Results of each evaluation metric.
        """

        import subprocess

        if metric == 'mAP':
            eval_str = 'mmdet3d/evaluation/functional/waymo_utils/' + \
                f'compute_detection_metrics_main {pklfile_prefix}.bin ' + \
                f'{self.waymo_bin_file}'
            print(eval_str)
            ret_bytes = subprocess.check_output(
                'mmdet3d/evaluation/functional/waymo_utils/' +
                f'compute_detection_metrics_main {pklfile_prefix}.bin ' +
                f'{self.waymo_bin_file}',
                shell=True)
            ret_texts = ret_bytes.decode('utf-8')
            print_log(ret_texts, logger=logger)

            ap_dict = {
                'Vehicle/L1 mAP': 0,
                'Vehicle/L1 mAPH': 0,
                'Vehicle/L2 mAP': 0,
                'Vehicle/L2 mAPH': 0,
                'Pedestrian/L1 mAP': 0,
                'Pedestrian/L1 mAPH': 0,
                'Pedestrian/L2 mAP': 0,
                'Pedestrian/L2 mAPH': 0,
                'Sign/L1 mAP': 0,
                'Sign/L1 mAPH': 0,
                'Sign/L2 mAP': 0,
                'Sign/L2 mAPH': 0,
                'Cyclist/L1 mAP': 0,
                'Cyclist/L1 mAPH': 0,
                'Cyclist/L2 mAP': 0,
                'Cyclist/L2 mAPH': 0,
                'Overall/L1 mAP': 0,
                'Overall/L1 mAPH': 0,
                'Overall/L2 mAP': 0,
                'Overall/L2 mAPH': 0
            }
            mAP_splits = ret_texts.split('mAP ')
            mAPH_splits = ret_texts.split('mAPH ')
            mAP_splits = ret_texts.split('mAP ')
            mAPH_splits = ret_texts.split('mAPH ')
            for idx, key in enumerate(ap_dict.keys()):
                split_idx = int(idx / 2) + 1
                if idx % 2 == 0:  # mAP
                    ap_dict[key] = float(mAP_splits[split_idx].split(']')[0])
                else:  # mAPH
                    ap_dict[key] = float(mAPH_splits[split_idx].split(']')[0])
            ap_dict['Overall/L1 mAP'] = \
                (ap_dict['Vehicle/L1 mAP'] + ap_dict['Pedestrian/L1 mAP'] +
                    ap_dict['Cyclist/L1 mAP']) / 3
            ap_dict['Overall/L1 mAPH'] = \
                (ap_dict['Vehicle/L1 mAPH'] + ap_dict['Pedestrian/L1 mAPH'] +
                    ap_dict['Cyclist/L1 mAPH']) / 3
            ap_dict['Overall/L2 mAP'] = \
                (ap_dict['Vehicle/L2 mAP'] + ap_dict['Pedestrian/L2 mAP'] +
                    ap_dict['Cyclist/L2 mAP']) / 3
            ap_dict['Overall/L2 mAPH'] = \
                (ap_dict['Vehicle/L2 mAPH'] + ap_dict['Pedestrian/L2 mAPH'] +
                    ap_dict['Cyclist/L2 mAPH']) / 3
        elif metric == 'LET_mAP':
            eval_str = 'mmdet3d/evaluation/functional/waymo_utils/' + \
                f'compute_detection_let_metrics_main {pklfile_prefix}.bin ' + \
                f'{self.waymo_bin_file}'

            print(eval_str)
            ret_bytes = subprocess.check_output(eval_str, shell=True)
            ret_texts = ret_bytes.decode('utf-8')

            print_log(ret_texts, logger=logger)
            ap_dict = {
                'Vehicle mAPL': 0,
                'Vehicle mAP': 0,
                'Vehicle mAPH': 0,
                'Pedestrian mAPL': 0,
                'Pedestrian mAP': 0,
                'Pedestrian mAPH': 0,
                'Sign mAPL': 0,
                'Sign mAP': 0,
                'Sign mAPH': 0,
                'Cyclist mAPL': 0,
                'Cyclist mAP': 0,
                'Cyclist mAPH': 0,
                'Overall mAPL': 0,
                'Overall mAP': 0,
                'Overall mAPH': 0
            }
            mAPL_splits = ret_texts.split('mAPL ')
            mAP_splits = ret_texts.split('mAP ')
            mAPH_splits = ret_texts.split('mAPH ')
            for idx, key in enumerate(ap_dict.keys()):
                split_idx = int(idx / 3) + 1
                if idx % 3 == 0:  # mAPL
                    ap_dict[key] = float(mAPL_splits[split_idx].split(']')[0])
                elif idx % 3 == 1:  # mAP
                    ap_dict[key] = float(mAP_splits[split_idx].split(']')[0])
                else:  # mAPH
                    ap_dict[key] = float(mAPH_splits[split_idx].split(']')[0])
            ap_dict['Overall mAPL'] = \
                (ap_dict['Vehicle mAPL'] + ap_dict['Pedestrian mAPL'] +
                    ap_dict['Cyclist mAPL']) / 3
            ap_dict['Overall mAP'] = \
                (ap_dict['Vehicle mAP'] + ap_dict['Pedestrian mAP'] +
                    ap_dict['Cyclist mAP']) / 3
            ap_dict['Overall mAPH'] = \
                (ap_dict['Vehicle mAPH'] + ap_dict['Pedestrian mAPH'] +
                    ap_dict['Cyclist mAPH']) / 3
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
        return ap_dict

    def format_results(self,
                       results: List[dict],
                       pklfile_prefix: str = None,
                       submission_prefix: str = None,
                       classes: List[str] = None):
        """Format the results to pkl file.

        Args:
            results (list[dict]): Testing results of the
                dataset.
            pklfile_prefix (str, optional): The prefix of pkl files. It
                includes the file path and the prefix of filename, e.g.,
                "a/b/prefix". If not specified, a temp file will be created.
                Default: None.
            submission_prefix (str, optional): The prefix of submitted files.
                It includes the file path and the prefix of filename, e.g.,
                "a/b/prefix". If not specified, a temp file will be created.
                Default: None.
            classes (list[String], optional): A list of class name. Defaults
                to None.

        Returns:
            tuple: (result_dict, tmp_dir), result_dict is a dict containing
                the formatted result, tmp_dir is the temporal directory created
                for saving json files when jsonfile_prefix is not specified.
        """
        result_files, tmp_dir = super().format_results(results, pklfile_prefix,
                                                       submission_prefix,
                                                       classes)

        waymo_root = self.data_root
        if self.split == 'training':
            waymo_tfrecords_dir = osp.join(waymo_root, 'validation')
            prefix = '1'
        elif self.split == 'testing':
            waymo_tfrecords_dir = osp.join(waymo_root, 'testing')
            prefix = '2'
        else:
            raise ValueError('Not supported split value.')
        waymo_save_tmp_dir = tempfile.TemporaryDirectory()
        waymo_results_save_dir = waymo_save_tmp_dir.name
        waymo_results_final_path = f'{pklfile_prefix}.bin'
332
        from ..functional.waymo_utils.prediction_kitti_to_waymo import \
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
            KITTI2Waymo
        converter = KITTI2Waymo(
            result_files['pred_instances_3d'],
            waymo_tfrecords_dir,
            waymo_results_save_dir,
            waymo_results_final_path,
            prefix,
            file_client_args=self.file_client_args)
        converter.convert()
        waymo_save_tmp_dir.cleanup()
        return result_files, waymo_save_tmp_dir

    def merge_multi_view_boxes(self, box_dict_per_frame: List[dict],
                               cam0_info: dict):
        """Merge bounding boxes predicted from multi-view images.
        Args:
            box_dict_per_frame (list[dict]): The results of prediction
                for each camera.
            cam2_info (dict): store the sample id for the given frame.

        Returns:
            merged_box_dict (dict), store the merge results
        """
        box_dict = dict()
        # convert list[dict] to dict[list]
        for key in box_dict_per_frame[0].keys():
            box_dict[key] = list()
            for cam_idx in range(self.num_cams):
                box_dict[key].append(box_dict_per_frame[cam_idx][key])
        # merge each elements
363
        box_dict['sample_idx'] = cam0_info['image_id']
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
        for key in ['bbox', 'box3d_lidar', 'scores', 'label_preds']:
            box_dict[key] = np.concatenate(box_dict[key])

        # apply nms to box3d_lidar (box3d_camera are in different systems)
        # TODO: move this global setting into config
        nms_cfg = dict(
            use_rotate_nms=True,
            nms_across_levels=False,
            nms_pre=500,
            nms_thr=0.05,
            score_thr=0.001,
            min_bbox_size=0,
            max_per_frame=100)
        nms_cfg = Config(nms_cfg)
        lidar_boxes3d = LiDARInstance3DBoxes(
            torch.from_numpy(box_dict['box3d_lidar']).cuda())
        scores = torch.from_numpy(box_dict['scores']).cuda()
        labels = torch.from_numpy(box_dict['label_preds']).long().cuda()
        nms_scores = scores.new_zeros(scores.shape[0], len(self.CLASSES) + 1)
        indices = labels.new_tensor(list(range(scores.shape[0])))
        nms_scores[indices, labels] = scores
        lidar_boxes3d_for_nms = xywhr2xyxyr(lidar_boxes3d.bev)
        boxes3d = lidar_boxes3d.tensor
        # generate attr scores from attr labels
        boxes3d, scores, labels = box3d_multiclass_nms(
            boxes3d, lidar_boxes3d_for_nms, nms_scores, nms_cfg.score_thr,
            nms_cfg.max_per_frame, nms_cfg)
        lidar_boxes3d = LiDARInstance3DBoxes(boxes3d)
        det = bbox3d2result(lidar_boxes3d, scores, labels)
393
        box_preds_lidar = det['bboxes_3d']
394
395
396
        scores = det['scores_3d']
        labels = det['labels_3d']
        # box_preds_camera is in the cam0 system
397
398
        lidar2cam = cam0_info['images'][self.default_cam_key]['lidar2img']
        lidar2cam = np.array(lidar2cam).astype(np.float32)
399
        box_preds_camera = box_preds_lidar.convert_to(
400
            Box3DMode.CAM, np.linalg.inv(lidar2cam), correct_yaw=True)
401
402
403
404
405
406
407
        # Note: bbox is meaningless in final evaluation, set to 0
        merged_box_dict = dict(
            bbox=np.zeros([box_preds_lidar.tensor.shape[0], 4]),
            box3d_camera=box_preds_camera.tensor.numpy(),
            box3d_lidar=box_preds_lidar.tensor.numpy(),
            scores=scores.numpy(),
            label_preds=labels.numpy(),
408
            sample_idx=box_dict['sample_id'],
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
        )
        return merged_box_dict

    def bbox2result_kitti(self,
                          net_outputs: list,
                          sample_id_list: list,
                          class_names: list,
                          pklfile_prefix: str = None,
                          submission_prefix: str = None):
        """Convert 3D detection results to kitti format for evaluation and test
        submission.

        Args:
            net_outputs (list[dict]): List of array storing the
                inferenced bounding boxes and scores.
            sample_id_list (list[int]): List of input sample id.
            class_names (list[String]): A list of class names.
            pklfile_prefix (str, optional): The prefix of pkl file.
                Defaults to None.
            submission_prefix (str, optional): The prefix of submission file.
                Defaults to None.

        Returns:
            list[dict]: A list of dictionaries with the kitti format.
        """
        assert len(net_outputs) == len(self.data_infos), \
            'invalid list length of network outputs'
        if submission_prefix is not None:
437
            mmengine.mkdir_or_exist(submission_prefix)
438
439
440
441

        det_annos = []
        print('\nConverting prediction to KITTI format')
        for idx, pred_dicts in enumerate(
442
                mmengine.track_iter_progress(net_outputs)):
443
444
445
446
            annos = []
            sample_idx = sample_id_list[idx]
            info = self.data_infos[sample_idx]

447
            if self.task == 'mono_det':
448
449
                if idx % self.num_cams == 0:
                    box_dict_per_frame = []
450
451
452
453
454
455
456
457
458
459
460
461
462
463
                    cam0_key = list(info['images'].keys())[0]
                    cam0_info = info
                    # Here in mono3d, we use the 'CAM_FRONT' "the first
                    # index in the camera" as the default image shape.
                    # If you want to another camera, please modify it.
                    image_shape = (info['images'][cam0_key]['height'],
                                   info['images'][cam0_key]['width'])
                box_dict = self.convert_valid_bboxes(pred_dicts, info)
            else:
                box_dict = self.convert_valid_bboxes(pred_dicts, info)
                # Here default used 'CAM_FRONT' to compute metric.
                # If you want to use another camera, please modify it.
                image_shape = (info['images'][self.default_cam_key]['height'],
                               info['images'][self.default_cam_key]['width'])
464
            if self.task == 'mono_det':
465
466
467
                box_dict_per_frame.append(box_dict)
                if (idx + 1) % self.num_cams != 0:
                    continue
468
469
470
                box_dict = self.merge_multi_view_boxes(box_dict_per_frame,
                                                       cam0_info)

471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
            anno = {
                'name': [],
                'truncated': [],
                'occluded': [],
                'alpha': [],
                'bbox': [],
                'dimensions': [],
                'location': [],
                'rotation_y': [],
                'score': []
            }
            if len(box_dict['bbox']) > 0:
                box_2d_preds = box_dict['bbox']
                box_preds = box_dict['box3d_camera']
                scores = box_dict['scores']
                box_preds_lidar = box_dict['box3d_lidar']
                label_preds = box_dict['label_preds']

                for box, box_lidar, bbox, score, label in zip(
                        box_preds, box_preds_lidar, box_2d_preds, scores,
                        label_preds):
                    bbox[2:] = np.minimum(bbox[2:], image_shape[::-1])
                    bbox[:2] = np.maximum(bbox[:2], [0, 0])
                    anno['name'].append(class_names[int(label)])
                    anno['truncated'].append(0.0)
                    anno['occluded'].append(0)
                    anno['alpha'].append(
                        -np.arctan2(-box_lidar[1], box_lidar[0]) + box[6])
                    anno['bbox'].append(bbox)
                    anno['dimensions'].append(box[3:6])
                    anno['location'].append(box[:3])
                    anno['rotation_y'].append(box[6])
                    anno['score'].append(score)

                anno = {k: np.stack(v) for k, v in anno.items()}
                annos.append(anno)
            else:
                anno = {
                    'name': np.array([]),
                    'truncated': np.array([]),
                    'occluded': np.array([]),
                    'alpha': np.array([]),
                    'bbox': np.zeros([0, 4]),
                    'dimensions': np.zeros([0, 3]),
                    'location': np.zeros([0, 3]),
                    'rotation_y': np.array([]),
                    'score': np.array([]),
                }
                annos.append(anno)

            if submission_prefix is not None:
                curr_file = f'{submission_prefix}/{sample_idx:06d}.txt'
                with open(curr_file, 'w') as f:
                    bbox = anno['bbox']
                    loc = anno['location']
                    dims = anno['dimensions']  # lhw -> hwl

                    for idx in range(len(bbox)):
                        print(
                            '{} -1 -1 {:.4f} {:.4f} {:.4f} {:.4f} '
                            '{:.4f} {:.4f} {:.4f} '
                            '{:.4f} {:.4f} {:.4f} {:.4f} {:.4f} {:.4f}'.format(
                                anno['name'][idx], anno['alpha'][idx],
                                bbox[idx][0], bbox[idx][1], bbox[idx][2],
                                bbox[idx][3], dims[idx][1], dims[idx][2],
                                dims[idx][0], loc[idx][0], loc[idx][1],
                                loc[idx][2], anno['rotation_y'][idx],
                                anno['score'][idx]),
                            file=f)
            if self.use_pred_sample_idx:
                save_sample_idx = sample_idx
            else:
                # use the sample idx in the info file
                # In waymo validation sample_idx in prediction is 000xxx
                # but in info file it is 1000xxx
                save_sample_idx = box_dict['sample_idx']
            annos[-1]['sample_id'] = np.array(
                [save_sample_idx] * len(annos[-1]['score']), dtype=np.int64)

            det_annos += annos

        if pklfile_prefix is not None:
            if not pklfile_prefix.endswith(('.pkl', '.pickle')):
                out = f'{pklfile_prefix}.pkl'
            else:
                out = pklfile_prefix
557
            mmengine.dump(det_annos, out)
558
559
560
            print(f'Result is saved to {out}.')

        return det_annos
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602

    def convert_valid_bboxes(self, box_dict: dict, info: dict):
        """Convert the predicted boxes into valid ones. Should handle the
        different task mode (mono3d, mv3d, lidar), separately.

        Args:
            box_dict (dict): Box dictionaries to be converted.

                - boxes_3d (:obj:`LiDARInstance3DBoxes`): 3D bounding boxes.
                - scores_3d (torch.Tensor): Scores of boxes.
                - labels_3d (torch.Tensor): Class labels of boxes.
            info (dict): Data info.

        Returns:
            dict: Valid predicted boxes.

                - bbox (np.ndarray): 2D bounding boxes.
                - box3d_camera (np.ndarray): 3D bounding boxes in
                    camera coordinate.
                - box3d_lidar (np.ndarray): 3D bounding boxes in
                    LiDAR coordinate.
                - scores (np.ndarray): Scores of boxes.
                - label_preds (np.ndarray): Class label predictions.
                - sample_idx (int): Sample index.
        """
        # TODO: refactor this function
        box_preds = box_dict['bboxes_3d']
        scores = box_dict['scores_3d']
        labels = box_dict['labels_3d']
        sample_idx = info['sample_id']
        box_preds.limit_yaw(offset=0.5, period=np.pi * 2)

        if len(box_preds) == 0:
            return dict(
                bbox=np.zeros([0, 4]),
                box3d_camera=np.zeros([0, 7]),
                box3d_lidar=np.zeros([0, 7]),
                scores=np.zeros([0]),
                label_preds=np.zeros([0, 4]),
                sample_idx=sample_idx)
        # Here default used 'CAM2' to compute metric. If you want to
        # use another camera, please modify it.
603
        if self.task in ['mv3d_det', 'lidar_det']:
604
            cam_key = self.default_cam_key
605
        elif self.task == 'mono_det':
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
            cam_key = list(info['images'].keys())[0]
        else:
            raise NotImplementedError

        lidar2cam = np.array(info['images'][cam_key]['lidar2cam']).astype(
            np.float32)
        P2 = np.array(info['images'][cam_key]['cam2img']).astype(np.float32)
        img_shape = (info['images'][cam_key]['height'],
                     info['images'][cam_key]['width'])
        P2 = box_preds.tensor.new_tensor(P2)

        if isinstance(box_preds, LiDARInstance3DBoxes):
            box_preds_camera = box_preds.convert_to(Box3DMode.CAM, lidar2cam)
            box_preds_lidar = box_preds
        elif isinstance(box_preds, CameraInstance3DBoxes):
            box_preds_camera = box_preds
            box_preds_lidar = box_preds.convert_to(Box3DMode.LIDAR,
                                                   np.linalg.inv(lidar2cam))

        box_corners = box_preds_camera.corners
        box_corners_in_image = points_cam2img(box_corners, P2)
        # box_corners_in_image: [N, 8, 2]
        minxy = torch.min(box_corners_in_image, dim=1)[0]
        maxxy = torch.max(box_corners_in_image, dim=1)[0]
        box_2d_preds = torch.cat([minxy, maxxy], dim=1)
        # Post-processing
        # check box_preds_camera
        image_shape = box_preds.tensor.new_tensor(img_shape)
        valid_cam_inds = ((box_2d_preds[:, 0] < image_shape[1]) &
                          (box_2d_preds[:, 1] < image_shape[0]) &
                          (box_2d_preds[:, 2] > 0) & (box_2d_preds[:, 3] > 0))
        # check box_preds_lidar
638
        if self.task in ['mv3d_det', 'lidar_det']:
639
640
641
642
            limit_range = box_preds.tensor.new_tensor(self.pcd_limit_range)
            valid_pcd_inds = ((box_preds_lidar.center > limit_range[:3]) &
                              (box_preds_lidar.center < limit_range[3:]))
            valid_inds = valid_pcd_inds.all(-1)
643
        elif self.task == 'mono_det':
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
            valid_inds = valid_cam_inds

        if valid_inds.sum() > 0:
            return dict(
                bbox=box_2d_preds[valid_inds, :].numpy(),
                pred_box_type_3d=type(box_preds),
                box3d_camera=box_preds_camera[valid_inds].tensor.numpy(),
                box3d_lidar=box_preds_lidar[valid_inds].tensor.numpy(),
                scores=scores[valid_inds].numpy(),
                label_preds=labels[valid_inds].numpy(),
                sample_idx=sample_idx)
        else:
            return dict(
                bbox=np.zeros([0, 4]),
                pred_box_type_3d=type(box_preds),
                box3d_camera=np.zeros([0, 7]),
                box3d_lidar=np.zeros([0, 7]),
                scores=np.zeros([0]),
                label_preds=np.zeros([0]),
                sample_idx=sample_idx)