sunrgbd_dataset.py 10.7 KB
Newer Older
liyinhao's avatar
liyinhao committed
1
import numpy as np
2
from collections import OrderedDict
zhangwenwei's avatar
zhangwenwei committed
3
from os import path as osp
liyinhao's avatar
liyinhao committed
4

5
from mmdet3d.core import show_multi_modality_result, show_result
wuyuefeng's avatar
wuyuefeng committed
6
from mmdet3d.core.bbox import DepthInstance3DBoxes
7
from mmdet.core import eval_map
liyinhao's avatar
liyinhao committed
8
from mmdet.datasets import DATASETS
zhangwenwei's avatar
zhangwenwei committed
9
from .custom_3d import Custom3DDataset
10
from .pipelines import Compose
liyinhao's avatar
liyinhao committed
11
12
13


@DATASETS.register_module()
zhangwenwei's avatar
zhangwenwei committed
14
class SUNRGBDDataset(Custom3DDataset):
zhangwenwei's avatar
zhangwenwei committed
15
    r"""SUNRGBD Dataset.
liyinhao's avatar
liyinhao committed
16

wangtai's avatar
wangtai committed
17
18
    This class serves as the API for experiments on the SUNRGBD Dataset.

zhangwenwei's avatar
zhangwenwei committed
19
20
    See the `download page <http://rgbd.cs.princeton.edu/challenge.html>`_
    for data downloading.
wangtai's avatar
wangtai committed
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

    Args:
        data_root (str): Path of dataset root.
        ann_file (str): Path of annotation file.
        pipeline (list[dict], optional): Pipeline used for data processing.
            Defaults to None.
        classes (tuple[str], optional): Classes used in the dataset.
            Defaults to None.
        modality (dict, optional): Modality to specify the sensor data used
            as input. Defaults to None.
        box_type_3d (str, optional): Type of 3D box of this dataset.
            Based on the `box_type_3d`, the dataset will encapsulate the box
            to its original format then converted them to `box_type_3d`.
            Defaults to 'Depth' in this dataset. Available options includes

wangtai's avatar
wangtai committed
36
37
38
            - 'LiDAR': Box in LiDAR coordinates.
            - 'Depth': Box in depth coordinates, usually for indoor dataset.
            - 'Camera': Box in camera coordinates.
wangtai's avatar
wangtai committed
39
40
41
42
43
        filter_empty_gt (bool, optional): Whether to filter empty GT.
            Defaults to True.
        test_mode (bool, optional): Whether the dataset is in test mode.
            Defaults to False.
    """
liyinhao's avatar
liyinhao committed
44
45
46
47
    CLASSES = ('bed', 'table', 'sofa', 'chair', 'toilet', 'desk', 'dresser',
               'night_stand', 'bookshelf', 'bathtub')

    def __init__(self,
zhangwenwei's avatar
zhangwenwei committed
48
                 data_root,
liyinhao's avatar
liyinhao committed
49
50
                 ann_file,
                 pipeline=None,
liyinhao's avatar
liyinhao committed
51
                 classes=None,
52
                 modality=dict(use_camera=True, use_lidar=True),
53
                 box_type_3d='Depth',
wuyuefeng's avatar
Votenet  
wuyuefeng committed
54
                 filter_empty_gt=True,
zhangwenwei's avatar
zhangwenwei committed
55
                 test_mode=False):
56
57
58
59
60
61
62
63
64
        super().__init__(
            data_root=data_root,
            ann_file=ann_file,
            pipeline=pipeline,
            classes=classes,
            modality=modality,
            box_type_3d=box_type_3d,
            filter_empty_gt=filter_empty_gt,
            test_mode=test_mode)
65
66
        assert 'use_camera' in self.modality and \
            'use_lidar' in self.modality
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
        assert self.modality['use_camera'] or self.modality['use_lidar']

    def get_data_info(self, index):
        """Get data info according to the given index.

        Args:
            index (int): Index of the sample data to get.

        Returns:
            dict: Data information that will be passed to the data \
                preprocessing pipelines. It includes the following keys:

                - sample_idx (str): Sample index.
                - pts_filename (str, optional): Filename of point clouds.
                - file_name (str, optional): Filename of point clouds.
                - img_prefix (str | None, optional): Prefix of image files.
                - img_info (dict, optional): Image info.
                - calib (dict, optional): Camera calibration info.
                - ann_info (dict): Annotation info.
        """
        info = self.data_infos[index]
        sample_idx = info['point_cloud']['lidar_idx']
        assert info['point_cloud']['lidar_idx'] == info['image']['image_idx']
        input_dict = dict(sample_idx=sample_idx)

        if self.modality['use_lidar']:
            pts_filename = osp.join(self.data_root, info['pts_path'])
            input_dict['pts_filename'] = pts_filename
            input_dict['file_name'] = pts_filename

        if self.modality['use_camera']:
98
99
100
            img_filename = osp.join(
                osp.join(self.data_root, 'sunrgbd_trainval'),
                info['image']['image_path'])
101
102
103
            input_dict['img_prefix'] = None
            input_dict['img_info'] = dict(filename=img_filename)
            calib = info['calib']
104
105
106
107
108
109
            rt_mat = calib['Rt']
            # follow Coord3DMode.convert_point
            rt_mat = np.array([[1, 0, 0], [0, 0, -1], [0, 1, 0]
                               ]) @ rt_mat.transpose(1, 0)
            depth2img = calib['K'] @ rt_mat
            input_dict['depth2img'] = depth2img
110
111
112
113
114
115
116

        if not self.test_mode:
            annos = self.get_ann_info(index)
            input_dict['ann_info'] = annos
            if self.filter_empty_gt and len(annos['gt_bboxes_3d']) == 0:
                return None
        return input_dict
liyinhao's avatar
liyinhao committed
117

liyinhao's avatar
liyinhao committed
118
    def get_ann_info(self, index):
119
120
121
122
123
124
        """Get annotation info according to the given index.

        Args:
            index (int): Index of the annotation data to get.

        Returns:
zhangwenwei's avatar
zhangwenwei committed
125
            dict: annotation information consists of the following keys:
126

zhangwenwei's avatar
zhangwenwei committed
127
                - gt_bboxes_3d (:obj:`DepthInstance3DBoxes`): \
128
                    3D ground truth bboxes
wangtai's avatar
wangtai committed
129
130
131
                - gt_labels_3d (np.ndarray): Labels of ground truths.
                - pts_instance_mask_path (str): Path of instance masks.
                - pts_semantic_mask_path (str): Path of semantic masks.
132
        """
liyinhao's avatar
liyinhao committed
133
        # Use index to get the annos, thus the evalhook could also use this api
liyinhao's avatar
liyinhao committed
134
        info = self.data_infos[index]
liyinhao's avatar
liyinhao committed
135
        if info['annos']['gt_num'] != 0:
liyinhao's avatar
liyinhao committed
136
137
138
            gt_bboxes_3d = info['annos']['gt_boxes_upright_depth'].astype(
                np.float32)  # k, 6
            gt_labels_3d = info['annos']['class'].astype(np.long)
liyinhao's avatar
liyinhao committed
139
        else:
liyinhao's avatar
liyinhao committed
140
            gt_bboxes_3d = np.zeros((0, 7), dtype=np.float32)
liyinhao's avatar
liyinhao committed
141
            gt_labels_3d = np.zeros((0, ), dtype=np.long)
liyinhao's avatar
liyinhao committed
142

wuyuefeng's avatar
wuyuefeng committed
143
144
145
146
        # to target box structure
        gt_bboxes_3d = DepthInstance3DBoxes(
            gt_bboxes_3d, origin=(0.5, 0.5, 0.5)).convert_to(self.box_mode_3d)

liyinhao's avatar
liyinhao committed
147
        anns_results = dict(
liyinhao's avatar
liyinhao committed
148
            gt_bboxes_3d=gt_bboxes_3d, gt_labels_3d=gt_labels_3d)
149
150
151
152
153
154
155
156
157

        if self.modality['use_camera']:
            if info['annos']['gt_num'] != 0:
                gt_bboxes_2d = info['annos']['bbox'].astype(np.float32)
            else:
                gt_bboxes_2d = np.zeros((0, 4), dtype=np.float32)
            anns_results['bboxes'] = gt_bboxes_2d
            anns_results['labels'] = gt_labels_3d

liyinhao's avatar
liyinhao committed
158
        return anns_results
liyinhao's avatar
liyinhao committed
159

160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
    def _build_default_pipeline(self):
        """Build the default pipeline for this dataset."""
        pipeline = [
            dict(
                type='LoadPointsFromFile',
                coord_type='DEPTH',
                shift_height=False,
                load_dim=6,
                use_dim=[0, 1, 2]),
            dict(
                type='DefaultFormatBundle3D',
                class_names=self.CLASSES,
                with_label=False),
            dict(type='Collect3D', keys=['points'])
        ]
        if self.modality['use_camera']:
            pipeline.insert(0, dict(type='LoadImageFromFile'))
        return Compose(pipeline)

    def show(self, results, out_dir, show=True, pipeline=None):
180
181
182
183
184
        """Results visualization.

        Args:
            results (list[dict]): List of bounding boxes results.
            out_dir (str): Output directory of visualization result.
185
            show (bool): Visualize the results online.
186
187
            pipeline (list[dict], optional): raw data loading for showing.
                Default: None.
188
        """
liyinhao's avatar
liyinhao committed
189
        assert out_dir is not None, 'Expect out_dir, got none.'
190
        pipeline = self._get_pipeline(pipeline)
liyinhao's avatar
liyinhao committed
191
192
193
194
        for i, result in enumerate(results):
            data_info = self.data_infos[i]
            pts_path = data_info['pts_path']
            file_name = osp.split(pts_path)[-1].split('.')[0]
195
196
            points, img_metas, img = self._extract_data(
                i, pipeline, ['points', 'img_metas', 'img'])
197
198
            # scale colors to [0, 255]
            points = points.numpy()
liyinhao's avatar
liyinhao committed
199
            points[:, 3:] *= 255
200
201

            gt_bboxes = self.get_ann_info(i)['gt_bboxes_3d'].tensor.numpy()
liyinhao's avatar
liyinhao committed
202
            pred_bboxes = result['boxes_3d'].tensor.numpy()
203
204
205
206
            show_result(points, gt_bboxes.copy(), pred_bboxes.copy(), out_dir,
                        file_name, show)

            # multi-modality visualization
207
            if self.modality['use_camera']:
208
209
210
                img = img.numpy()
                # need to transpose channel to first dim
                img = img.transpose(1, 2, 0)
211
212
213
214
215
216
217
218
                pred_bboxes = DepthInstance3DBoxes(
                    pred_bboxes, origin=(0.5, 0.5, 0))
                gt_bboxes = DepthInstance3DBoxes(
                    gt_bboxes, origin=(0.5, 0.5, 0))
                show_multi_modality_result(
                    img,
                    gt_bboxes,
                    pred_bboxes,
219
                    None,
220
221
                    out_dir,
                    file_name,
222
                    box_mode='depth',
223
                    img_metas=img_metas,
224
                    show=show)
225
226
227
228
229
230
231
232

    def evaluate(self,
                 results,
                 metric=None,
                 iou_thr=(0.25, 0.5),
                 iou_thr_2d=(0.5, ),
                 logger=None,
                 show=False,
233
234
235
236
237
                 out_dir=None,
                 pipeline=None):
        """Evaluate.

        Evaluation in indoor protocol.
238

239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
        Args:
            results (list[dict]): List of results.
            metric (str | list[str]): Metrics to be evaluated.
            iou_thr (list[float]): AP IoU thresholds.
            iou_thr_2d (list[float]): AP IoU thresholds for 2d evaluation.
            show (bool): Whether to visualize.
                Default: False.
            out_dir (str): Path to save the visualization results.
                Default: None.
            pipeline (list[dict], optional): raw data loading for showing.
                Default: None.

        Returns:
            dict: Evaluation results.
        """
254
255
256
        # evaluate 3D detection performance
        if isinstance(results[0], dict):
            return super().evaluate(results, metric, iou_thr, logger, show,
257
                                    out_dir, pipeline)
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
        # evaluate 2D detection performance
        else:
            eval_results = OrderedDict()
            annotations = [self.get_ann_info(i) for i in range(len(self))]
            iou_thr_2d = (iou_thr_2d) if isinstance(iou_thr_2d,
                                                    float) else iou_thr_2d
            for iou_thr_2d_single in iou_thr_2d:
                mean_ap, _ = eval_map(
                    results,
                    annotations,
                    scale_ranges=None,
                    iou_thr=iou_thr_2d_single,
                    dataset=self.CLASSES,
                    logger=logger)
                eval_results['mAP_' + str(iou_thr_2d_single)] = mean_ap
            return eval_results