sunrgbd_dataset.py 9.04 KB
Newer Older
1
import mmcv
liyinhao's avatar
liyinhao committed
2
import numpy as np
3
from collections import OrderedDict
zhangwenwei's avatar
zhangwenwei committed
4
from os import path as osp
liyinhao's avatar
liyinhao committed
5

6
from mmdet3d.core import show_multi_modality_result, show_result
wuyuefeng's avatar
wuyuefeng committed
7
from mmdet3d.core.bbox import DepthInstance3DBoxes
8
from mmdet.core import eval_map
liyinhao's avatar
liyinhao committed
9
from mmdet.datasets import DATASETS
zhangwenwei's avatar
zhangwenwei committed
10
from .custom_3d import Custom3DDataset
liyinhao's avatar
liyinhao committed
11
12
13


@DATASETS.register_module()
zhangwenwei's avatar
zhangwenwei committed
14
class SUNRGBDDataset(Custom3DDataset):
zhangwenwei's avatar
zhangwenwei committed
15
    r"""SUNRGBD Dataset.
liyinhao's avatar
liyinhao committed
16

wangtai's avatar
wangtai committed
17
18
    This class serves as the API for experiments on the SUNRGBD Dataset.

zhangwenwei's avatar
zhangwenwei committed
19
20
    See the `download page <http://rgbd.cs.princeton.edu/challenge.html>`_
    for data downloading.
wangtai's avatar
wangtai committed
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

    Args:
        data_root (str): Path of dataset root.
        ann_file (str): Path of annotation file.
        pipeline (list[dict], optional): Pipeline used for data processing.
            Defaults to None.
        classes (tuple[str], optional): Classes used in the dataset.
            Defaults to None.
        modality (dict, optional): Modality to specify the sensor data used
            as input. Defaults to None.
        box_type_3d (str, optional): Type of 3D box of this dataset.
            Based on the `box_type_3d`, the dataset will encapsulate the box
            to its original format then converted them to `box_type_3d`.
            Defaults to 'Depth' in this dataset. Available options includes

wangtai's avatar
wangtai committed
36
37
38
            - 'LiDAR': Box in LiDAR coordinates.
            - 'Depth': Box in depth coordinates, usually for indoor dataset.
            - 'Camera': Box in camera coordinates.
wangtai's avatar
wangtai committed
39
40
41
42
43
        filter_empty_gt (bool, optional): Whether to filter empty GT.
            Defaults to True.
        test_mode (bool, optional): Whether the dataset is in test mode.
            Defaults to False.
    """
liyinhao's avatar
liyinhao committed
44
45
46
47
    CLASSES = ('bed', 'table', 'sofa', 'chair', 'toilet', 'desk', 'dresser',
               'night_stand', 'bookshelf', 'bathtub')

    def __init__(self,
zhangwenwei's avatar
zhangwenwei committed
48
                 data_root,
liyinhao's avatar
liyinhao committed
49
50
                 ann_file,
                 pipeline=None,
liyinhao's avatar
liyinhao committed
51
                 classes=None,
52
                 modality=dict(use_camera=True, use_lidar=True),
53
                 box_type_3d='Depth',
wuyuefeng's avatar
Votenet  
wuyuefeng committed
54
                 filter_empty_gt=True,
zhangwenwei's avatar
zhangwenwei committed
55
                 test_mode=False):
56
57
58
59
60
61
62
63
64
        super().__init__(
            data_root=data_root,
            ann_file=ann_file,
            pipeline=pipeline,
            classes=classes,
            modality=modality,
            box_type_3d=box_type_3d,
            filter_empty_gt=filter_empty_gt,
            test_mode=test_mode)
65
66
        assert 'use_camera' in self.modality and \
            'use_lidar' in self.modality
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
        assert self.modality['use_camera'] or self.modality['use_lidar']

    def get_data_info(self, index):
        """Get data info according to the given index.

        Args:
            index (int): Index of the sample data to get.

        Returns:
            dict: Data information that will be passed to the data \
                preprocessing pipelines. It includes the following keys:

                - sample_idx (str): Sample index.
                - pts_filename (str, optional): Filename of point clouds.
                - file_name (str, optional): Filename of point clouds.
                - img_prefix (str | None, optional): Prefix of image files.
                - img_info (dict, optional): Image info.
                - calib (dict, optional): Camera calibration info.
                - ann_info (dict): Annotation info.
        """
        info = self.data_infos[index]
        sample_idx = info['point_cloud']['lidar_idx']
        assert info['point_cloud']['lidar_idx'] == info['image']['image_idx']
        input_dict = dict(sample_idx=sample_idx)

        if self.modality['use_lidar']:
            pts_filename = osp.join(self.data_root, info['pts_path'])
            input_dict['pts_filename'] = pts_filename
            input_dict['file_name'] = pts_filename

        if self.modality['use_camera']:
98
99
100
            img_filename = osp.join(
                osp.join(self.data_root, 'sunrgbd_trainval'),
                info['image']['image_path'])
101
102
103
104
105
106
107
108
109
110
111
            input_dict['img_prefix'] = None
            input_dict['img_info'] = dict(filename=img_filename)
            calib = info['calib']
            input_dict['calib'] = calib

        if not self.test_mode:
            annos = self.get_ann_info(index)
            input_dict['ann_info'] = annos
            if self.filter_empty_gt and len(annos['gt_bboxes_3d']) == 0:
                return None
        return input_dict
liyinhao's avatar
liyinhao committed
112

liyinhao's avatar
liyinhao committed
113
    def get_ann_info(self, index):
114
115
116
117
118
119
        """Get annotation info according to the given index.

        Args:
            index (int): Index of the annotation data to get.

        Returns:
zhangwenwei's avatar
zhangwenwei committed
120
            dict: annotation information consists of the following keys:
121

zhangwenwei's avatar
zhangwenwei committed
122
                - gt_bboxes_3d (:obj:`DepthInstance3DBoxes`): \
123
                    3D ground truth bboxes
wangtai's avatar
wangtai committed
124
125
126
                - gt_labels_3d (np.ndarray): Labels of ground truths.
                - pts_instance_mask_path (str): Path of instance masks.
                - pts_semantic_mask_path (str): Path of semantic masks.
127
        """
liyinhao's avatar
liyinhao committed
128
        # Use index to get the annos, thus the evalhook could also use this api
liyinhao's avatar
liyinhao committed
129
        info = self.data_infos[index]
liyinhao's avatar
liyinhao committed
130
        if info['annos']['gt_num'] != 0:
liyinhao's avatar
liyinhao committed
131
132
133
            gt_bboxes_3d = info['annos']['gt_boxes_upright_depth'].astype(
                np.float32)  # k, 6
            gt_labels_3d = info['annos']['class'].astype(np.long)
liyinhao's avatar
liyinhao committed
134
        else:
liyinhao's avatar
liyinhao committed
135
            gt_bboxes_3d = np.zeros((0, 7), dtype=np.float32)
liyinhao's avatar
liyinhao committed
136
            gt_labels_3d = np.zeros((0, ), dtype=np.long)
liyinhao's avatar
liyinhao committed
137

wuyuefeng's avatar
wuyuefeng committed
138
139
140
141
        # to target box structure
        gt_bboxes_3d = DepthInstance3DBoxes(
            gt_bboxes_3d, origin=(0.5, 0.5, 0.5)).convert_to(self.box_mode_3d)

liyinhao's avatar
liyinhao committed
142
        anns_results = dict(
liyinhao's avatar
liyinhao committed
143
            gt_bboxes_3d=gt_bboxes_3d, gt_labels_3d=gt_labels_3d)
144
145
146
147
148
149
150
151
152

        if self.modality['use_camera']:
            if info['annos']['gt_num'] != 0:
                gt_bboxes_2d = info['annos']['bbox'].astype(np.float32)
            else:
                gt_bboxes_2d = np.zeros((0, 4), dtype=np.float32)
            anns_results['bboxes'] = gt_bboxes_2d
            anns_results['labels'] = gt_labels_3d

liyinhao's avatar
liyinhao committed
153
        return anns_results
liyinhao's avatar
liyinhao committed
154

155
    def show(self, results, out_dir, show=True):
156
157
158
159
160
        """Results visualization.

        Args:
            results (list[dict]): List of bounding boxes results.
            out_dir (str): Output directory of visualization result.
161
            show (bool): Visualize the results online.
162
        """
liyinhao's avatar
liyinhao committed
163
164
165
166
167
        assert out_dir is not None, 'Expect out_dir, got none.'
        for i, result in enumerate(results):
            data_info = self.data_infos[i]
            pts_path = data_info['pts_path']
            file_name = osp.split(pts_path)[-1].split('.')[0]
168
169
170
171
            if hasattr(self, 'pipeline'):
                example = self.prepare_test_data(i)
            else:
                example = None
liyinhao's avatar
liyinhao committed
172
173
174
175
            points = np.fromfile(
                osp.join(self.data_root, pts_path),
                dtype=np.float32).reshape(-1, 6)
            points[:, 3:] *= 255
176
177

            gt_bboxes = self.get_ann_info(i)['gt_bboxes_3d'].tensor.numpy()
liyinhao's avatar
liyinhao committed
178
            pred_bboxes = result['boxes_3d'].tensor.numpy()
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
            show_result(points, gt_bboxes.copy(), pred_bboxes.copy(), out_dir,
                        file_name, show)

            # multi-modality visualization
            if self.modality['use_camera'] and example is not None and \
                    'calib' in data_info.keys():
                img = mmcv.imread(example['img_metas']._data['filename'])
                pred_bboxes = DepthInstance3DBoxes(
                    pred_bboxes, origin=(0.5, 0.5, 0))
                gt_bboxes = DepthInstance3DBoxes(
                    gt_bboxes, origin=(0.5, 0.5, 0))
                show_multi_modality_result(
                    img,
                    gt_bboxes,
                    pred_bboxes,
                    example['calib'],
                    out_dir,
                    file_name,
                    depth_bbox=True,
                    img_metas=example['img_metas']._data,
                    show=show)
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229

    def evaluate(self,
                 results,
                 metric=None,
                 iou_thr=(0.25, 0.5),
                 iou_thr_2d=(0.5, ),
                 logger=None,
                 show=False,
                 out_dir=None):

        # evaluate 3D detection performance
        if isinstance(results[0], dict):
            return super().evaluate(results, metric, iou_thr, logger, show,
                                    out_dir)
        # evaluate 2D detection performance
        else:
            eval_results = OrderedDict()
            annotations = [self.get_ann_info(i) for i in range(len(self))]
            iou_thr_2d = (iou_thr_2d) if isinstance(iou_thr_2d,
                                                    float) else iou_thr_2d
            for iou_thr_2d_single in iou_thr_2d:
                mean_ap, _ = eval_map(
                    results,
                    annotations,
                    scale_ranges=None,
                    iou_thr=iou_thr_2d_single,
                    dataset=self.CLASSES,
                    logger=logger)
                eval_results['mAP_' + str(iou_thr_2d_single)] = mean_ap
            return eval_results