test_indoor_eval.py 5.08 KB
Newer Older
liyinhao's avatar
liyinhao committed
1
import numpy as np
liyinhao's avatar
liyinhao committed
2
import torch
liyinhao's avatar
liyinhao committed
3

liyinhao's avatar
liyinhao committed
4
from mmdet3d.core.evaluation.indoor_eval import average_precision, indoor_eval
liyinhao's avatar
liyinhao committed
5
6
7


def test_indoor_eval():
zhangwenwei's avatar
zhangwenwei committed
8
    from mmdet3d.core.bbox.structures import Box3DMode, DepthInstance3DBoxes
liyinhao's avatar
liyinhao committed
9
10
    det_infos = [{
        'labels_3d':
wuyuefeng's avatar
wuyuefeng committed
11
        torch.tensor([0, 1, 2, 2, 0, 3, 1, 2, 3, 2]),
liyinhao's avatar
liyinhao committed
12
        'boxes_3d':
wuyuefeng's avatar
wuyuefeng committed
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
        DepthInstance3DBoxes(
            torch.tensor([[
                -2.4089e-03, -3.3174e+00, 4.9438e-01, 2.1668e+00, 2.8431e-01,
                1.6506e+00, 0.0000e+00
            ],
                          [
                              -3.4269e-01, -2.7565e+00, 2.8144e-02, 6.8554e-01,
                              9.6854e-01, 6.1755e-01, 0.0000e+00
                          ],
                          [
                              -3.8320e+00, -1.0646e+00, 1.7074e-01, 2.4981e-01,
                              4.4708e-01, 6.2538e-01, 0.0000e+00
                          ],
                          [
                              4.1073e-01, 3.3757e+00, 3.4311e-01, 8.0617e-01,
                              2.8679e-01, 1.6060e+00, 0.0000e+00
                          ],
                          [
                              6.1199e-01, -3.1041e+00, 4.1873e-01, 1.2310e+00,
                              4.0162e-01, 1.7303e+00, 0.0000e+00
                          ],
                          [
                              -5.9877e-01, -2.6011e+00, 1.1148e+00, 1.5704e-01,
                              7.5957e-01, 9.6930e-01, 0.0000e+00
                          ],
                          [
                              2.7462e-01, -3.0088e+00, 6.5231e-02, 8.1208e-01,
                              4.1861e-01, 3.7339e-01, 0.0000e+00
                          ],
                          [
                              -1.4704e+00, -2.0024e+00, 2.7479e-01, 1.7888e+00,
                              1.0566e+00, 1.3704e+00, 0.0000e+00
                          ],
                          [
                              8.2727e-02, -3.1160e+00, 2.5690e-01, 1.4054e+00,
                              2.0772e-01, 9.6792e-01, 0.0000e+00
                          ],
                          [
                              2.6896e+00, 1.9881e+00, 1.1566e+00, 9.9885e-02,
                              3.5713e-01, 4.5638e-01, 0.0000e+00
                          ]]),
            origin=(0.5, 0.5, 0)),
liyinhao's avatar
liyinhao committed
55
        'scores_3d':
wuyuefeng's avatar
wuyuefeng committed
56
57
58
59
        torch.tensor([
            1.7516e-05, 1.0167e-06, 8.4486e-07, 7.1048e-02, 6.4274e-05,
            1.5003e-07, 5.8102e-06, 1.9399e-08, 5.3126e-07, 1.8630e-09
        ])
liyinhao's avatar
liyinhao committed
60
    }]
liyinhao's avatar
liyinhao committed
61
62
63
64
65
66
67
68
69

    label2cat = {
        0: 'cabinet',
        1: 'bed',
        2: 'chair',
        3: 'sofa',
    }
    gt_annos = [{
        'gt_num':
wuyuefeng's avatar
wuyuefeng committed
70
        10,
liyinhao's avatar
liyinhao committed
71
72
        'gt_boxes_upright_depth':
        np.array([[
wuyuefeng's avatar
wuyuefeng committed
73
74
            -2.4089e-03, -3.3174e+00, 4.9438e-01, 2.1668e+00, 2.8431e-01,
            1.6506e+00, 0.0000e+00
liyinhao's avatar
liyinhao committed
75
        ],
liyinhao's avatar
liyinhao committed
76
                  [
wuyuefeng's avatar
wuyuefeng committed
77
78
                      -3.4269e-01, -2.7565e+00, 2.8144e-02, 6.8554e-01,
                      9.6854e-01, 6.1755e-01, 0.0000e+00
liyinhao's avatar
liyinhao committed
79
80
                  ],
                  [
wuyuefeng's avatar
wuyuefeng committed
81
82
                      -3.8320e+00, -1.0646e+00, 1.7074e-01, 2.4981e-01,
                      4.4708e-01, 6.2538e-01, 0.0000e+00
liyinhao's avatar
liyinhao committed
83
84
                  ],
                  [
wuyuefeng's avatar
wuyuefeng committed
85
86
                      4.1073e-01, 3.3757e+00, 3.4311e-01, 8.0617e-01,
                      2.8679e-01, 1.6060e+00, 0.0000e+00
liyinhao's avatar
liyinhao committed
87
88
                  ],
                  [
wuyuefeng's avatar
wuyuefeng committed
89
90
                      6.1199e-01, -3.1041e+00, 4.1873e-01, 1.2310e+00,
                      4.0162e-01, 1.7303e+00, 0.0000e+00
liyinhao's avatar
liyinhao committed
91
92
                  ],
                  [
wuyuefeng's avatar
wuyuefeng committed
93
94
                      -5.9877e-01, -2.6011e+00, 1.1148e+00, 1.5704e-01,
                      7.5957e-01, 9.6930e-01, 0.0000e+00
liyinhao's avatar
liyinhao committed
95
96
                  ],
                  [
wuyuefeng's avatar
wuyuefeng committed
97
98
                      2.7462e-01, -3.0088e+00, 6.5231e-02, 8.1208e-01,
                      4.1861e-01, 3.7339e-01, 0.0000e+00
liyinhao's avatar
liyinhao committed
99
100
                  ],
                  [
wuyuefeng's avatar
wuyuefeng committed
101
102
                      -1.4704e+00, -2.0024e+00, 2.7479e-01, 1.7888e+00,
                      1.0566e+00, 1.3704e+00, 0.0000e+00
liyinhao's avatar
liyinhao committed
103
104
                  ],
                  [
wuyuefeng's avatar
wuyuefeng committed
105
106
                      8.2727e-02, -3.1160e+00, 2.5690e-01, 1.4054e+00,
                      2.0772e-01, 9.6792e-01, 0.0000e+00
liyinhao's avatar
liyinhao committed
107
108
                  ],
                  [
wuyuefeng's avatar
wuyuefeng committed
109
110
                      2.6896e+00, 1.9881e+00, 1.1566e+00, 9.9885e-02,
                      3.5713e-01, 4.5638e-01, 0.0000e+00
liyinhao's avatar
liyinhao committed
111
                  ]]),
liyinhao's avatar
liyinhao committed
112
        'class':
wuyuefeng's avatar
wuyuefeng committed
113
        np.array([0, 1, 2, 0, 0, 3, 1, 3, 3, 2])
liyinhao's avatar
liyinhao committed
114
115
    }]

wuyuefeng's avatar
wuyuefeng committed
116
117
118
119
120
121
122
123
124
125
126
127
    ret_value = indoor_eval(
        gt_annos,
        det_infos, [0.25, 0.5],
        label2cat,
        box_type_3d=DepthInstance3DBoxes,
        box_mode_3d=Box3DMode.DEPTH)

    assert abs(ret_value['cabinet_AP_0.25'] - 0.666667) < 1e-3
    assert abs(ret_value['bed_AP_0.25'] - 1.0) < 1e-3
    assert abs(ret_value['chair_AP_0.25'] - 0.5) < 1e-3
    assert abs(ret_value['mAP_0.25'] - 0.708333) < 1e-3
    assert abs(ret_value['mAR_0.25'] - 0.833333) < 1e-3
liyinhao's avatar
liyinhao committed
128
129
130
131
132
133
134
135


def test_average_precision():
    ap = average_precision(
        np.array([[0.25, 0.5, 0.75], [0.25, 0.5, 0.75]]),
        np.array([[1., 1., 1.], [1., 1., 1.]]), '11points')
    print(ap[0])
    assert abs(ap[0] - 0.06611571) < 0.001