test_indoor_eval.py 8.59 KB
Newer Older
liyinhao's avatar
liyinhao committed
1
2
import numpy as np

liyinhao's avatar
liyinhao committed
3
from mmdet3d.core.evaluation.indoor_eval import average_precision, indoor_eval
liyinhao's avatar
liyinhao committed
4
5
6
7


def test_indoor_eval():
    det_infos = [[[[
liyinhao's avatar
liyinhao committed
8
        4.0,
liyinhao's avatar
liyinhao committed
9
        [
liyinhao's avatar
liyinhao committed
10
11
12
            2.8734498, -0.187645, -0.02600911, 0.6761766, 0.56542563,
            0.5953976, 0.
        ], 0.9980684
liyinhao's avatar
liyinhao committed
13
14
    ],
                   [
liyinhao's avatar
liyinhao committed
15
                       4.0,
liyinhao's avatar
liyinhao committed
16
                       [
liyinhao's avatar
liyinhao committed
17
18
19
                           0.4031701, -3.2346897, 0.07118589, 0.73209894,
                           0.8711227, 0.5148243, 0.
                       ], 0.9747082
liyinhao's avatar
liyinhao committed
20
21
22
23
                   ],
                   [
                       3.0,
                       [
liyinhao's avatar
liyinhao committed
24
25
26
                           -1.274147, -2.351935, 0.07428858, 1.4534658,
                           2.563081, 0.8587492, 0.
                       ], 0.9709939
liyinhao's avatar
liyinhao committed
27
28
29
30
                   ],
                   [
                       17.0,
                       [
liyinhao's avatar
liyinhao committed
31
32
33
                           3.2214177, 0.7899204, 0.03836718, 0.05321002,
                           1.2607929, 0.1411697, 0.
                       ], 0.9482147
liyinhao's avatar
liyinhao committed
34
35
                   ],
                   [
liyinhao's avatar
liyinhao committed
36
                       2.0,
liyinhao's avatar
liyinhao committed
37
                       [
liyinhao's avatar
liyinhao committed
38
39
40
41
42
43
44
45
46
47
48
49
                           -1.6804854, 2.399011, -0.13099639, 0.5608963,
                           0.5052759, 0.6770297, 0.
                       ], 0.84311247
                   ]]],
                 [[[
                     17.0,
                     [
                         3.2112048e+00, 5.6918913e-01, -8.6143613e-04,
                         1.1942449e-01, 1.2988183e+00, 1.9952521e-01,
                         0.0000000e+00
                     ], 0.9965866
                 ],
liyinhao's avatar
liyinhao committed
50
51
52
                   [
                       17.0,
                       [
liyinhao's avatar
liyinhao committed
53
54
55
                           3.248133, 0.4324184, 0.20038621, 0.17225507,
                           1.2736976, 0.32598814, 0.
                       ], 0.99507546
liyinhao's avatar
liyinhao committed
56
57
                   ],
                   [
liyinhao's avatar
liyinhao committed
58
                       3.0,
liyinhao's avatar
liyinhao committed
59
                       [
liyinhao's avatar
liyinhao committed
60
61
62
                           -1.2793612, -2.3155289, 0.15598366, 1.2822601,
                           2.2253945, 0.8361754, 0.
                       ], 0.9916463
liyinhao's avatar
liyinhao committed
63
64
                   ],
                   [
liyinhao's avatar
liyinhao committed
65
                       4.0,
liyinhao's avatar
liyinhao committed
66
                       [
liyinhao's avatar
liyinhao committed
67
68
69
                           2.8716104, -0.26416883, -0.04933786, 0.8190681,
                           0.60294986, 0.5769499, 0.
                       ], 0.9702634
liyinhao's avatar
liyinhao committed
70
71
72
73
                   ],
                   [
                       17.0,
                       [
liyinhao's avatar
liyinhao committed
74
75
76
                           -2.2109854, 0.19445783, -0.01614259, 0.40659013,
                           0.35370222, 0.3290567, 0.
                       ], 0.95803124
liyinhao's avatar
liyinhao committed
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
                   ]]]]

    label2cat = {
        0: 'cabinet',
        1: 'bed',
        2: 'chair',
        3: 'sofa',
        4: 'table',
        5: 'door',
        6: 'window',
        7: 'bookshelf',
        8: 'picture',
        9: 'counter',
        10: 'desk',
        11: 'curtain',
        12: 'refrigerator',
        13: 'showercurtrain',
        14: 'toilet',
        15: 'sink',
        16: 'bathtub',
        17: 'garbagebin'
    }
    gt_annos = [{
        'gt_num':
        12,
liyinhao's avatar
liyinhao committed
102
103
104
105
        'gt_boxes_upright_depth':
        np.array([[
            2.54621506, -0.89397144, 0.54144311, 2.90430856, 1.78370309,
            0.93826824
liyinhao's avatar
liyinhao committed
106
        ],
liyinhao's avatar
liyinhao committed
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
                  [
                      3.36553669, 0.31014189, 0.38758934, 1.2504847,
                      0.71281439, 0.3908577
                  ],
                  [
                      0.17272574, 2.90289116, 0.27966365, 0.56292468,
                      0.8512187, 0.4987641
                  ],
                  [
                      2.39521956, 1.67557895, 0.40407273, 1.23511314,
                      0.49469376, 0.62720448
                  ],
                  [
                      -2.41815996, -1.69104958, 0.22304082, 0.55816364,
                      0.48154473, 0.66580439
                  ],
                  [
                      -0.18044823, 2.9227581, 0.24480903, 0.36165208,
                      0.44468427, 0.53103662
                  ],
                  [
                      -2.44398379, -2.1610918, 0.23631772, 0.52229881,
                      0.63388562, 0.66596919
                  ],
                  [
                      -2.01452827, -2.9558928, 0.8139953, 1.61732554,
                      0.60224247, 1.79295814
                  ],
                  [
                      -0.61519569, 3.24365234, 1.24335742, 2.11988783,
                      0.26006722, 1.77748263
                  ],
                  [
                      -2.64330673, 0.59929442, 1.59422684, 0.07352924,
                      0.28620502, 0.35408139
                  ],
                  [
                      -0.58128822, 3.23699641, 0.06050609, 1.94151425,
                      0.16413498, 0.20168215
                  ],
                  [
                      0.15343043, 2.24693251, 0.22470728, 0.49632657,
                      0.47379827, 0.43063563
                  ]]),
        'class': [3, 4, 4, 17, 2, 2, 2, 7, 11, 8, 17, 2]
    }, {
        'gt_num':
        12,
liyinhao's avatar
liyinhao committed
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
        'gt_boxes_upright_depth':
        np.array([[
            3.48649406, 0.24238291, 0.48358256, 1.34014034, 0.72744983,
            0.40819243
        ],
                  [
                      -0.50371504, 3.25293231, 1.25988698, 2.12330937,
                      0.27563906, 1.80230701
                  ],
                  [
                      2.58820581, -0.99452347, 0.57732373, 2.94801593,
                      1.67463434, 0.88743341
                  ],
                  [
                      -1.9116497, -2.88811016, 0.70502496, 1.62386703,
                      0.60732293, 1.5857985
                  ],
                  [
                      -2.55324745, 0.6909315, 1.59045517, 0.07264495,
                      0.32018459, 0.3506999
                  ],
                  [
                      -2.3436017, -2.1659112, 0.254318, 0.5333302, 0.56154585,
                      0.64904487
                  ],
                  [
                      -2.32046795, -1.6880455, 0.26138437, 0.5586133,
                      0.59743834, 0.6378752
                  ],
                  [
                      -0.46495372, 3.22126102, 0.03188983, 1.92557108,
                      0.15160203, 0.24680007
                  ],
                  [
                      0.28087699, 2.88433838, 0.2495866, 0.57001019,
                      0.85177159, 0.5689255
                  ],
                  [
                      -0.05292395, 2.90586925, 0.23064148, 0.39113954,
                      0.43746281, 0.52981442
                  ],
                  [
                      0.25537968, 2.25156307, 0.24932587, 0.48192862,
                      0.51398182, 0.38040417
                  ],
                  [
                      2.60432816, 1.62303996, 0.42025632, 1.23775268,
                      0.51761389, 0.66034317
                  ]]),
        'class': [4, 11, 3, 7, 8, 2, 2, 17, 4, 2, 2, 17]
    }]

    ret_value = indoor_eval(gt_annos, det_infos, [0.25, 0.5], label2cat)
    garbagebin_AP_25 = ret_value['garbagebin_AP_0.25']
    sofa_AP_25 = ret_value['sofa_AP_0.25']
    table_AP_25 = ret_value['table_AP_0.25']
    chair_AP_25 = ret_value['chair_AP_0.25']
    mAP_25 = ret_value['mAP_0.25']
    garbagebin_rec_25 = ret_value['garbagebin_rec_0.25']
    sofa_rec_25 = ret_value['sofa_rec_0.25']
    table_rec_25 = ret_value['table_rec_0.25']
    chair_rec_25 = ret_value['chair_rec_0.25']
    mAR_25 = ret_value['mAR_0.25']
liyinhao's avatar
liyinhao committed
218
    sofa_AP_50 = ret_value['sofa_AP_0.50']
liyinhao's avatar
liyinhao committed
219
    table_AP_50 = ret_value['table_AP_0.50']
liyinhao's avatar
liyinhao committed
220
    chair_AP_50 = ret_value['chair_AP_0.50']
liyinhao's avatar
liyinhao committed
221
    mAP_50 = ret_value['mAP_0.50']
liyinhao's avatar
liyinhao committed
222
    sofa_rec_50 = ret_value['sofa_rec_0.50']
liyinhao's avatar
liyinhao committed
223
    table_rec_50 = ret_value['table_rec_0.50']
liyinhao's avatar
liyinhao committed
224
    chair_rec_50 = ret_value['chair_rec_0.50']
liyinhao's avatar
liyinhao committed
225
    mAR_50 = ret_value['mAR_0.50']
liyinhao's avatar
liyinhao committed
226
    assert garbagebin_AP_25 == 0.25
liyinhao's avatar
liyinhao committed
227
    assert sofa_AP_25 == 1.0
liyinhao's avatar
liyinhao committed
228
229
230
231
    assert table_AP_25 == 0.75
    assert chair_AP_25 == 0.125
    assert abs(mAP_25 - 0.303571) < 0.001
    assert garbagebin_rec_25 == 0.25
liyinhao's avatar
liyinhao committed
232
    assert sofa_rec_25 == 1.0
liyinhao's avatar
liyinhao committed
233
234
235
236
237
238
239
240
    assert table_rec_25 == 0.75
    assert chair_rec_25 == 0.125
    assert abs(mAR_25 - 0.303571) < 0.001
    assert sofa_AP_50 == 0.25
    assert abs(table_AP_50 - 0.416667) < 0.001
    assert chair_AP_50 == 0.125
    assert abs(mAP_50 - 0.113095) < 0.001
    assert sofa_rec_50 == 0.5
liyinhao's avatar
liyinhao committed
241
    assert table_rec_50 == 0.5
liyinhao's avatar
liyinhao committed
242
243
    assert chair_rec_50 == 0.125
    assert abs(mAR_50 - 0.160714) < 0.001
liyinhao's avatar
liyinhao committed
244
245
246
247
248
249
250
251


def test_average_precision():
    ap = average_precision(
        np.array([[0.25, 0.5, 0.75], [0.25, 0.5, 0.75]]),
        np.array([[1., 1., 1.], [1., 1., 1.]]), '11points')
    print(ap[0])
    assert abs(ap[0] - 0.06611571) < 0.001