test_indoor_eval.py 6.64 KB
Newer Older
liyinhao's avatar
liyinhao committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import numpy as np
import torch

from mmdet3d.core.evaluation.indoor_eval import indoor_eval


def test_indoor_eval():
    det_infos = [[[[
        17.0,
        [
            3.2112048e+00, 5.6918913e-01, -8.6143613e-04, 1.1942449e-01,
            1.2988183e+00, 1.9952521e-01, 0.0000000e+00
        ],
        torch.as_tensor(0.9965866)
    ],
                   [
                       17.0,
                       [
                           3.248133, 0.4324184, 0.20038621, 0.17225507,
                           1.2736976, 0.32598814, 0.
                       ],
                       torch.as_tensor(0.99507546)
                   ],
                   [
                       3.0,
                       [
                           -1.2793612, -2.3155289, 0.15598366, 1.2822601,
                           2.2253945, 0.8361754, 0.
                       ],
                       torch.as_tensor(0.9916463)
                   ],
                   [
                       4.0,
                       [
                           2.8716104, -0.26416883, -0.04933786, 0.8190681,
                           0.60294986, 0.5769499, 0.
                       ],
                       torch.as_tensor(0.9702634)
                   ],
                   [
                       17.0,
                       [
                           -2.2109854, 0.19445783, -0.01614259, 0.40659013,
                           0.35370222, 0.3290567, 0.
                       ],
                       torch.as_tensor(0.95803124)
                   ],
                   [
                       4.0,
                       [
                           0.18409574, -3.3322976, 0.13188198, 0.960528,
                           0.91082716, 0.59325826, 0.
                       ],
                       torch.as_tensor(0.9483817)
                   ],
                   [
                       17.0,
                       [
                           1.9499326, 2.0099056, 0.32836294, 0.98528206,
                           1.0611539, 1.2197046, 0.
                       ],
                       torch.as_tensor(0.92196786)
                   ],
                   [
                       2.0,
                       [
                           -1.6204697, 2.3374724, 0.06042781, 0.49681002,
                           0.44362187, 0.47277915, 0.
                       ],
                       torch.as_tensor(0.87960094)
                   ],
                   [
                       17.0,
                       [
                           2.1414487, -1.7601899, 0.17694443, 1.0071366,
                           2.211764, 1.4690719, 0.
                       ],
                       torch.as_tensor(0.8586809)
                   ],
                   [
                       17.0,
                       [
                           -0.0484907, -3.639972, 0.41367513, 3.948648,
                           1.3692774, 1.0810001, 0.
                       ],
                       torch.as_tensor(0.80680436)
                   ]]]]

    label2cat = {
        0: 'cabinet',
        1: 'bed',
        2: 'chair',
        3: 'sofa',
        4: 'table',
        5: 'door',
        6: 'window',
        7: 'bookshelf',
        8: 'picture',
        9: 'counter',
        10: 'desk',
        11: 'curtain',
        12: 'refrigerator',
        13: 'showercurtrain',
        14: 'toilet',
        15: 'sink',
        16: 'bathtub',
        17: 'garbagebin'
    }
    gt_annos = [{
        'gt_num':
        12,
        'name': [
            'table', 'curtain', 'sofa', 'bookshelf', 'picture', 'chair',
            'chair', 'garbagebin', 'table', 'chair', 'chair', 'garbagebin'
        ],
        'gt_boxes_upright_depth':
        np.array([[
            3.48649406, 0.24238291, 0.48358256, 1.34014034, 0.72744983,
            0.40819243
        ],
                  [
                      -0.50371504, 3.25293231, 1.25988698, 2.12330937,
                      0.27563906, 1.80230701
                  ],
                  [
                      2.58820581, -0.99452347, 0.57732373, 2.94801593,
                      1.67463434, 0.88743341
                  ],
                  [
                      -1.9116497, -2.88811016, 0.70502496, 1.62386703,
                      0.60732293, 1.5857985
                  ],
                  [
                      -2.55324745, 0.6909315, 1.59045517, 0.07264495,
                      0.32018459, 0.3506999
                  ],
                  [
                      -2.3436017, -2.1659112, 0.254318, 0.5333302, 0.56154585,
                      0.64904487
                  ],
                  [
                      -2.32046795, -1.6880455, 0.26138437, 0.5586133,
                      0.59743834, 0.6378752
                  ],
                  [
                      -0.46495372, 3.22126102, 0.03188983, 1.92557108,
                      0.15160203, 0.24680007
                  ],
                  [
                      0.28087699, 2.88433838, 0.2495866, 0.57001019,
                      0.85177159, 0.5689255
                  ],
                  [
                      -0.05292395, 2.90586925, 0.23064148, 0.39113954,
                      0.43746281, 0.52981442
                  ],
                  [
                      0.25537968, 2.25156307, 0.24932587, 0.48192862,
                      0.51398182, 0.38040417
                  ],
                  [
                      2.60432816, 1.62303996, 0.42025632, 1.23775268,
                      0.51761389, 0.66034317
                  ]]),
        'class': [4, 11, 3, 7, 8, 2, 2, 17, 4, 2, 2, 17]
    }]

    ret_value = indoor_eval(gt_annos, det_infos, [0.25, 0.5], label2cat)
    garbagebin_AP_25 = ret_value['garbagebin_AP_0.25']
    sofa_AP_25 = ret_value['sofa_AP_0.25']
    table_AP_25 = ret_value['table_AP_0.25']
    chair_AP_25 = ret_value['chair_AP_0.25']
    mAP_25 = ret_value['mAP_0.25']
    garbagebin_rec_25 = ret_value['garbagebin_rec_0.25']
    sofa_rec_25 = ret_value['sofa_rec_0.25']
    table_rec_25 = ret_value['table_rec_0.25']
    chair_rec_25 = ret_value['chair_rec_0.25']
    mAR_25 = ret_value['mAR_0.25']
    table_AP_50 = ret_value['table_AP_0.50']
    mAP_50 = ret_value['mAP_0.50']
    table_rec_50 = ret_value['table_rec_0.50']
    mAR_50 = ret_value['mAR_0.50']
    assert garbagebin_AP_25 == 0.5
    assert sofa_AP_25 == 1.0
    assert table_AP_25 == 1.0
    assert chair_AP_25 == 0.25
    assert abs(mAP_25 - 0.392857) < 0.001
    assert garbagebin_rec_25 == 0.5
    assert sofa_rec_25 == 1.0
    assert table_rec_25 == 1.0
    assert chair_rec_25 == 0.25
    assert abs(mAR_25 - 0.392857) < 0.001
    assert table_AP_50 == 0.5
    assert abs(mAP_50 - 0.0714) < 0.001
    assert table_rec_50 == 0.5
    assert abs(mAR_50 - 0.0714) < 0.001