kitti_dataset.py 30.2 KB
Newer Older
zhangwenwei's avatar
zhangwenwei committed
1
2
3
import copy
import mmcv
import numpy as np
zhangwenwei's avatar
zhangwenwei committed
4
5
import os
import tempfile
zhangwenwei's avatar
zhangwenwei committed
6
import torch
zhangwenwei's avatar
zhangwenwei committed
7
from mmcv.utils import print_log
zhangwenwei's avatar
zhangwenwei committed
8
from os import path as osp
zhangwenwei's avatar
zhangwenwei committed
9

zhangwenwei's avatar
zhangwenwei committed
10
from mmdet.datasets import DATASETS
11
from ..core import show_multi_modality_result, show_result
12
from ..core.bbox import (Box3DMode, CameraInstance3DBoxes, Coord3DMode,
13
                         LiDARInstance3DBoxes, points_cam2img)
zhangwenwei's avatar
zhangwenwei committed
14
from .custom_3d import Custom3DDataset
15
from .pipelines import Compose
zhangwenwei's avatar
zhangwenwei committed
16
17


18
@DATASETS.register_module()
zhangwenwei's avatar
zhangwenwei committed
19
class KittiDataset(Custom3DDataset):
zhangwenwei's avatar
zhangwenwei committed
20
    r"""KITTI Dataset.
wangtai's avatar
wangtai committed
21

zhangwenwei's avatar
zhangwenwei committed
22
23
    This class serves as the API for experiments on the `KITTI Dataset
    <http://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=3d>`_.
wangtai's avatar
wangtai committed
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

    Args:
        data_root (str): Path of dataset root.
        ann_file (str): Path of annotation file.
        split (str): Split of input data.
        pts_prefix (str, optional): Prefix of points files.
            Defaults to 'velodyne'.
        pipeline (list[dict], optional): Pipeline used for data processing.
            Defaults to None.
        classes (tuple[str], optional): Classes used in the dataset.
            Defaults to None.
        modality (dict, optional): Modality to specify the sensor data used
            as input. Defaults to None.
        box_type_3d (str, optional): Type of 3D box of this dataset.
            Based on the `box_type_3d`, the dataset will encapsulate the box
            to its original format then converted them to `box_type_3d`.
            Defaults to 'LiDAR' in this dataset. Available options includes

wangtai's avatar
wangtai committed
42
43
44
            - 'LiDAR': Box in LiDAR coordinates.
            - 'Depth': Box in depth coordinates, usually for indoor dataset.
            - 'Camera': Box in camera coordinates.
wangtai's avatar
wangtai committed
45
46
47
48
        filter_empty_gt (bool, optional): Whether to filter empty GT.
            Defaults to True.
        test_mode (bool, optional): Whether the dataset is in test mode.
            Defaults to False.
Wenwei Zhang's avatar
Wenwei Zhang committed
49
50
        pcd_limit_range (list): The range of point cloud used to filter
            invalid predicted boxes. Default: [0, -40, -3, 70.4, 40, 0.0].
wangtai's avatar
wangtai committed
51
    """
zhangwenwei's avatar
zhangwenwei committed
52
53
54
    CLASSES = ('car', 'pedestrian', 'cyclist')

    def __init__(self,
zhangwenwei's avatar
zhangwenwei committed
55
                 data_root,
zhangwenwei's avatar
zhangwenwei committed
56
57
                 ann_file,
                 split,
zhangwenwei's avatar
zhangwenwei committed
58
                 pts_prefix='velodyne',
zhangwenwei's avatar
zhangwenwei committed
59
                 pipeline=None,
zhangwenwei's avatar
zhangwenwei committed
60
                 classes=None,
zhangwenwei's avatar
zhangwenwei committed
61
                 modality=None,
62
63
                 box_type_3d='LiDAR',
                 filter_empty_gt=True,
Wenwei Zhang's avatar
Wenwei Zhang committed
64
65
                 test_mode=False,
                 pcd_limit_range=[0, -40, -3, 70.4, 40, 0.0]):
zhangwenwei's avatar
zhangwenwei committed
66
67
68
69
70
71
        super().__init__(
            data_root=data_root,
            ann_file=ann_file,
            pipeline=pipeline,
            classes=classes,
            modality=modality,
72
73
            box_type_3d=box_type_3d,
            filter_empty_gt=filter_empty_gt,
zhangwenwei's avatar
zhangwenwei committed
74
75
            test_mode=test_mode)

Wenwei Zhang's avatar
Wenwei Zhang committed
76
        self.split = split
zhangwenwei's avatar
zhangwenwei committed
77
        self.root_split = os.path.join(self.data_root, split)
zhangwenwei's avatar
zhangwenwei committed
78
        assert self.modality is not None
Wenwei Zhang's avatar
Wenwei Zhang committed
79
        self.pcd_limit_range = pcd_limit_range
zhangwenwei's avatar
zhangwenwei committed
80
        self.pts_prefix = pts_prefix
zhangwenwei's avatar
zhangwenwei committed
81

zhangwenwei's avatar
zhangwenwei committed
82
    def _get_pts_filename(self, idx):
83
84
85
86
87
88
89
90
        """Get point cloud filename according to the given index.

        Args:
            index (int): Index of the point cloud file to get.

        Returns:
            str: Name of the point cloud file.
        """
zhangwenwei's avatar
zhangwenwei committed
91
92
93
        pts_filename = osp.join(self.root_split, self.pts_prefix,
                                f'{idx:06d}.bin')
        return pts_filename
zhangwenwei's avatar
zhangwenwei committed
94

zhangwenwei's avatar
zhangwenwei committed
95
    def get_data_info(self, index):
96
97
98
99
100
101
        """Get data info according to the given index.

        Args:
            index (int): Index of the sample data to get.

        Returns:
zhangwenwei's avatar
zhangwenwei committed
102
103
            dict: Data information that will be passed to the data \
                preprocessing pipelines. It includes the following keys:
104

wangtai's avatar
wangtai committed
105
106
107
108
109
110
111
                - sample_idx (str): Sample index.
                - pts_filename (str): Filename of point clouds.
                - img_prefix (str | None): Prefix of image files.
                - img_info (dict): Image info.
                - lidar2img (list[np.ndarray], optional): Transformations \
                    from lidar to different cameras.
                - ann_info (dict): Annotation info.
112
        """
zhangwenwei's avatar
zhangwenwei committed
113
        info = self.data_infos[index]
zhangwenwei's avatar
zhangwenwei committed
114
        sample_idx = info['image']['image_idx']
zhangwenwei's avatar
zhangwenwei committed
115
        img_filename = os.path.join(self.data_root,
zhangwenwei's avatar
zhangwenwei committed
116
117
                                    info['image']['image_path'])

zhangwenwei's avatar
zhangwenwei committed
118
119
120
121
122
123
        # TODO: consider use torch.Tensor only
        rect = info['calib']['R0_rect'].astype(np.float32)
        Trv2c = info['calib']['Tr_velo_to_cam'].astype(np.float32)
        P2 = info['calib']['P2'].astype(np.float32)
        lidar2img = P2 @ rect @ Trv2c

zhangwenwei's avatar
zhangwenwei committed
124
        pts_filename = self._get_pts_filename(sample_idx)
zhangwenwei's avatar
zhangwenwei committed
125
126
        input_dict = dict(
            sample_idx=sample_idx,
zhangwenwei's avatar
zhangwenwei committed
127
            pts_filename=pts_filename,
zhangwenwei's avatar
zhangwenwei committed
128
129
            img_prefix=None,
            img_info=dict(filename=img_filename),
zhangwenwei's avatar
zhangwenwei committed
130
131
132
            lidar2img=lidar2img)

        if not self.test_mode:
zhangwenwei's avatar
zhangwenwei committed
133
            annos = self.get_ann_info(index)
zhangwenwei's avatar
zhangwenwei committed
134
            input_dict['ann_info'] = annos
zhangwenwei's avatar
zhangwenwei committed
135
136
137
138

        return input_dict

    def get_ann_info(self, index):
139
140
141
142
143
144
        """Get annotation info according to the given index.

        Args:
            index (int): Index of the annotation data to get.

        Returns:
zhangwenwei's avatar
zhangwenwei committed
145
            dict: annotation information consists of the following keys:
146

zhangwenwei's avatar
zhangwenwei committed
147
                - gt_bboxes_3d (:obj:`LiDARInstance3DBoxes`): \
wangtai's avatar
wangtai committed
148
149
150
151
152
                    3D ground truth bboxes.
                - gt_labels_3d (np.ndarray): Labels of ground truths.
                - gt_bboxes (np.ndarray): 2D ground truth bboxes.
                - gt_labels (np.ndarray): Labels of ground truths.
                - gt_names (list[str]): Class names of ground truths.
153
        """
zhangwenwei's avatar
zhangwenwei committed
154
        # Use index to get the annos, thus the evalhook could also use this api
zhangwenwei's avatar
zhangwenwei committed
155
        info = self.data_infos[index]
zhangwenwei's avatar
zhangwenwei committed
156
157
158
159
160
        rect = info['calib']['R0_rect'].astype(np.float32)
        Trv2c = info['calib']['Tr_velo_to_cam'].astype(np.float32)

        annos = info['annos']
        # we need other objects to avoid collision when sample
161
        annos = self.remove_dontcare(annos)
zhangwenwei's avatar
zhangwenwei committed
162
163
164
165
166
167
        loc = annos['location']
        dims = annos['dimensions']
        rots = annos['rotation_y']
        gt_names = annos['name']
        gt_bboxes_3d = np.concatenate([loc, dims, rots[..., np.newaxis]],
                                      axis=1).astype(np.float32)
168
169
170

        # convert gt_bboxes_3d to velodyne coordinates
        gt_bboxes_3d = CameraInstance3DBoxes(gt_bboxes_3d).convert_to(
171
            self.box_mode_3d, np.linalg.inv(rect @ Trv2c))
zhangwenwei's avatar
zhangwenwei committed
172
173
174
175
176
177
178
179
180
181
182
183
        gt_bboxes = annos['bbox']

        selected = self.drop_arrays_by_name(gt_names, ['DontCare'])
        gt_bboxes = gt_bboxes[selected].astype('float32')
        gt_names = gt_names[selected]

        gt_labels = []
        for cat in gt_names:
            if cat in self.CLASSES:
                gt_labels.append(self.CLASSES.index(cat))
            else:
                gt_labels.append(-1)
Wenwei Zhang's avatar
Wenwei Zhang committed
184
        gt_labels = np.array(gt_labels).astype(np.int64)
zhangwenwei's avatar
zhangwenwei committed
185
        gt_labels_3d = copy.deepcopy(gt_labels)
zhangwenwei's avatar
zhangwenwei committed
186
187
188

        anns_results = dict(
            gt_bboxes_3d=gt_bboxes_3d,
zhangwenwei's avatar
zhangwenwei committed
189
            gt_labels_3d=gt_labels_3d,
zhangwenwei's avatar
zhangwenwei committed
190
            bboxes=gt_bboxes,
liyinhao's avatar
liyinhao committed
191
192
            labels=gt_labels,
            gt_names=gt_names)
zhangwenwei's avatar
zhangwenwei committed
193
194
195
        return anns_results

    def drop_arrays_by_name(self, gt_names, used_classes):
196
197
198
199
200
201
202
203
204
        """Drop irrelevant ground truths by name.

        Args:
            gt_names (list[str]): Names of ground truths.
            used_classes (list[str]): Classes of interest.

        Returns:
            np.ndarray: Indices of ground truths that will be dropped.
        """
zhangwenwei's avatar
zhangwenwei committed
205
206
207
208
209
        inds = [i for i, x in enumerate(gt_names) if x not in used_classes]
        inds = np.array(inds, dtype=np.int64)
        return inds

    def keep_arrays_by_name(self, gt_names, used_classes):
210
211
212
213
214
215
216
217
218
        """Keep useful ground truths by name.

        Args:
            gt_names (list[str]): Names of ground truths.
            used_classes (list[str]): Classes of interest.

        Returns:
            np.ndarray: Indices of ground truths that will be keeped.
        """
zhangwenwei's avatar
zhangwenwei committed
219
220
221
222
        inds = [i for i, x in enumerate(gt_names) if x in used_classes]
        inds = np.array(inds, dtype=np.int64)
        return inds

223
    def remove_dontcare(self, ann_info):
224
225
226
227
228
229
230
231
232
        """Remove annotations that do not need to be cared.

        Args:
            ann_info (dict): Dict of annotation infos. The ``'DontCare'``
                annotations will be removed according to ann_file['name'].

        Returns:
            dict: Annotations after filtering.
        """
233
234
235
236
237
238
239
240
241
        img_filtered_annotations = {}
        relevant_annotation_indices = [
            i for i, x in enumerate(ann_info['name']) if x != 'DontCare'
        ]
        for key in ann_info.keys():
            img_filtered_annotations[key] = (
                ann_info[key][relevant_annotation_indices])
        return img_filtered_annotations

242
243
244
245
    def format_results(self,
                       outputs,
                       pklfile_prefix=None,
                       submission_prefix=None):
246
247
248
249
250
251
252
253
254
255
256
257
258
        """Format the results to pkl file.

        Args:
            outputs (list[dict]): Testing results of the dataset.
            pklfile_prefix (str | None): The prefix of pkl files. It includes
                the file path and the prefix of filename, e.g., "a/b/prefix".
                If not specified, a temp file will be created. Default: None.
            submission_prefix (str | None): The prefix of submitted files. It
                includes the file path and the prefix of filename, e.g.,
                "a/b/prefix". If not specified, a temp file will be created.
                Default: None.

        Returns:
zhangwenwei's avatar
zhangwenwei committed
259
260
            tuple: (result_files, tmp_dir), result_files is a dict containing \
                the json filepaths, tmp_dir is the temporal directory created \
261
262
                for saving json files when jsonfile_prefix is not specified.
        """
263
264
265
266
267
268
        if pklfile_prefix is None:
            tmp_dir = tempfile.TemporaryDirectory()
            pklfile_prefix = osp.join(tmp_dir.name, 'results')
        else:
            tmp_dir = None

zhangwenwei's avatar
zhangwenwei committed
269
        if not isinstance(outputs[0], dict):
zhangwenwei's avatar
zhangwenwei committed
270
            result_files = self.bbox2result_kitti2d(outputs, self.CLASSES,
zhangwenwei's avatar
zhangwenwei committed
271
                                                    pklfile_prefix,
272
                                                    submission_prefix)
zhangwenwei's avatar
zhangwenwei committed
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
        elif 'pts_bbox' in outputs[0] or 'img_bbox' in outputs[0]:
            result_files = dict()
            for name in outputs[0]:
                results_ = [out[name] for out in outputs]
                pklfile_prefix_ = pklfile_prefix + name
                if submission_prefix is not None:
                    submission_prefix_ = submission_prefix + name
                else:
                    submission_prefix_ = None
                if 'img' in name:
                    result_files = self.bbox2result_kitti2d(
                        results_, self.CLASSES, pklfile_prefix_,
                        submission_prefix_)
                else:
                    result_files_ = self.bbox2result_kitti(
                        results_, self.CLASSES, pklfile_prefix_,
                        submission_prefix_)
                result_files[name] = result_files_
zhangwenwei's avatar
zhangwenwei committed
291
        else:
zhangwenwei's avatar
zhangwenwei committed
292
            result_files = self.bbox2result_kitti(outputs, self.CLASSES,
293
294
                                                  pklfile_prefix,
                                                  submission_prefix)
zhangwenwei's avatar
zhangwenwei committed
295
        return result_files, tmp_dir
zhangwenwei's avatar
zhangwenwei committed
296

297
298
299
300
301
    def evaluate(self,
                 results,
                 metric=None,
                 logger=None,
                 pklfile_prefix=None,
liyinhao's avatar
liyinhao committed
302
303
                 submission_prefix=None,
                 show=False,
304
305
                 out_dir=None,
                 pipeline=None):
306
307
308
        """Evaluation in KITTI protocol.

        Args:
wangtai's avatar
wangtai committed
309
            results (list[dict]): Testing results of the dataset.
310
311
312
313
314
315
316
317
            metric (str | list[str]): Metrics to be evaluated.
            logger (logging.Logger | str | None): Logger used for printing
                related information during evaluation. Default: None.
            pklfile_prefix (str | None): The prefix of pkl files. It includes
                the file path and the prefix of filename, e.g., "a/b/prefix".
                If not specified, a temp file will be created. Default: None.
            submission_prefix (str | None): The prefix of submission datas.
                If not specified, the submission data will not be generated.
liyinhao's avatar
liyinhao committed
318
319
320
321
            show (bool): Whether to visualize.
                Default: False.
            out_dir (str): Path to save the visualization results.
                Default: None.
322
323
            pipeline (list[dict], optional): raw data loading for showing.
                Default: None.
324
325

        Returns:
wangtai's avatar
wangtai committed
326
            dict[str, float]: Results of each evaluation metric.
327
328
        """
        result_files, tmp_dir = self.format_results(results, pklfile_prefix)
zhangwenwei's avatar
zhangwenwei committed
329
        from mmdet3d.core.evaluation import kitti_eval
zhangwenwei's avatar
zhangwenwei committed
330
        gt_annos = [info['annos'] for info in self.data_infos]
zhangwenwei's avatar
zhangwenwei committed
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348

        if isinstance(result_files, dict):
            ap_dict = dict()
            for name, result_files_ in result_files.items():
                eval_types = ['bbox', 'bev', '3d']
                if 'img' in name:
                    eval_types = ['bbox']
                ap_result_str, ap_dict_ = kitti_eval(
                    gt_annos,
                    result_files_,
                    self.CLASSES,
                    eval_types=eval_types)
                for ap_type, ap in ap_dict_.items():
                    ap_dict[f'{name}/{ap_type}'] = float('{:.4f}'.format(ap))

                print_log(
                    f'Results of {name}:\n' + ap_result_str, logger=logger)

zhangwenwei's avatar
zhangwenwei committed
349
        else:
zhangwenwei's avatar
zhangwenwei committed
350
351
352
353
354
355
356
357
            if metric == 'img_bbox':
                ap_result_str, ap_dict = kitti_eval(
                    gt_annos, result_files, self.CLASSES, eval_types=['bbox'])
            else:
                ap_result_str, ap_dict = kitti_eval(gt_annos, result_files,
                                                    self.CLASSES)
            print_log('\n' + ap_result_str, logger=logger)

358
359
        if tmp_dir is not None:
            tmp_dir.cleanup()
liyinhao's avatar
liyinhao committed
360
        if show:
361
            self.show(results, out_dir, pipeline=pipeline)
362
        return ap_dict
363
364
365
366
367
368

    def bbox2result_kitti(self,
                          net_outputs,
                          class_names,
                          pklfile_prefix=None,
                          submission_prefix=None):
369
370
371
372
373
374
375
376
377
378
379
380
381
        """Convert 3D detection results to kitti format for evaluation and test
        submission.

        Args:
            net_outputs (list[np.ndarray]): List of array storing the \
                inferenced bounding boxes and scores.
            class_names (list[String]): A list of class names.
            pklfile_prefix (str | None): The prefix of pkl file.
            submission_prefix (str | None): The prefix of submission file.

        Returns:
            list[dict]: A list of dictionaries with the kitti format.
        """
Wenwei Zhang's avatar
Wenwei Zhang committed
382
383
        assert len(net_outputs) == len(self.data_infos), \
            'invalid list length of network outputs'
384
385
        if submission_prefix is not None:
            mmcv.mkdir_or_exist(submission_prefix)
zhangwenwei's avatar
zhangwenwei committed
386
387

        det_annos = []
zhangwenwei's avatar
zhangwenwei committed
388
        print('\nConverting prediction to KITTI format')
zhangwenwei's avatar
zhangwenwei committed
389
390
391
        for idx, pred_dicts in enumerate(
                mmcv.track_iter_progress(net_outputs)):
            annos = []
zhangwenwei's avatar
zhangwenwei committed
392
            info = self.data_infos[idx]
zhangwenwei's avatar
zhangwenwei committed
393
            sample_idx = info['image']['image_idx']
zhangwenwei's avatar
zhangwenwei committed
394
            image_shape = info['image']['image_shape'][:2]
zhangwenwei's avatar
zhangwenwei committed
395
            box_dict = self.convert_valid_bboxes(pred_dicts, info)
xiliu8006's avatar
xiliu8006 committed
396
397
398
399
400
401
402
403
404
405
406
            anno = {
                'name': [],
                'truncated': [],
                'occluded': [],
                'alpha': [],
                'bbox': [],
                'dimensions': [],
                'location': [],
                'rotation_y': [],
                'score': []
            }
zhangwenwei's avatar
zhangwenwei committed
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
            if len(box_dict['bbox']) > 0:
                box_2d_preds = box_dict['bbox']
                box_preds = box_dict['box3d_camera']
                scores = box_dict['scores']
                box_preds_lidar = box_dict['box3d_lidar']
                label_preds = box_dict['label_preds']

                for box, box_lidar, bbox, score, label in zip(
                        box_preds, box_preds_lidar, box_2d_preds, scores,
                        label_preds):
                    bbox[2:] = np.minimum(bbox[2:], image_shape[::-1])
                    bbox[:2] = np.maximum(bbox[:2], [0, 0])
                    anno['name'].append(class_names[int(label)])
                    anno['truncated'].append(0.0)
                    anno['occluded'].append(0)
                    anno['alpha'].append(
                        -np.arctan2(-box_lidar[1], box_lidar[0]) + box[6])
                    anno['bbox'].append(bbox)
                    anno['dimensions'].append(box[3:6])
                    anno['location'].append(box[:3])
                    anno['rotation_y'].append(box[6])
                    anno['score'].append(score)

                anno = {k: np.stack(v) for k, v in anno.items()}
                annos.append(anno)
            else:
xiliu8006's avatar
xiliu8006 committed
433
                anno = {
zhangwenwei's avatar
zhangwenwei committed
434
435
436
437
438
439
440
441
442
                    'name': np.array([]),
                    'truncated': np.array([]),
                    'occluded': np.array([]),
                    'alpha': np.array([]),
                    'bbox': np.zeros([0, 4]),
                    'dimensions': np.zeros([0, 3]),
                    'location': np.zeros([0, 3]),
                    'rotation_y': np.array([]),
                    'score': np.array([]),
xiliu8006's avatar
xiliu8006 committed
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
                }
                annos.append(anno)

            if submission_prefix is not None:
                curr_file = f'{submission_prefix}/{sample_idx:06d}.txt'
                with open(curr_file, 'w') as f:
                    bbox = anno['bbox']
                    loc = anno['location']
                    dims = anno['dimensions']  # lhw -> hwl

                    for idx in range(len(bbox)):
                        print(
                            '{} -1 -1 {:.4f} {:.4f} {:.4f} {:.4f} '
                            '{:.4f} {:.4f} {:.4f} '
                            '{:.4f} {:.4f} {:.4f} {:.4f} {:.4f} {:.4f}'.format(
                                anno['name'][idx], anno['alpha'][idx],
                                bbox[idx][0], bbox[idx][1], bbox[idx][2],
                                bbox[idx][3], dims[idx][1], dims[idx][2],
                                dims[idx][0], loc[idx][0], loc[idx][1],
                                loc[idx][2], anno['rotation_y'][idx],
                                anno['score'][idx]),
                            file=f)

zhangwenwei's avatar
zhangwenwei committed
466
467
            annos[-1]['sample_idx'] = np.array(
                [sample_idx] * len(annos[-1]['score']), dtype=np.int64)
zhangwenwei's avatar
zhangwenwei committed
468
469
470

            det_annos += annos

471
472
473
        if pklfile_prefix is not None:
            if not pklfile_prefix.endswith(('.pkl', '.pickle')):
                out = f'{pklfile_prefix}.pkl'
zhangwenwei's avatar
zhangwenwei committed
474
            mmcv.dump(det_annos, out)
Wenwei Zhang's avatar
Wenwei Zhang committed
475
            print(f'Result is saved to {out}.')
zhangwenwei's avatar
zhangwenwei committed
476
477
478
479
480
481

        return det_annos

    def bbox2result_kitti2d(self,
                            net_outputs,
                            class_names,
482
483
                            pklfile_prefix=None,
                            submission_prefix=None):
zhangwenwei's avatar
zhangwenwei committed
484
485
        """Convert 2D detection results to kitti format for evaluation and test
        submission.
zhangwenwei's avatar
zhangwenwei committed
486
487

        Args:
488
489
490
            net_outputs (list[np.ndarray]): List of array storing the \
                inferenced bounding boxes and scores.
            class_names (list[String]): A list of class names.
491
492
            pklfile_prefix (str | None): The prefix of pkl file.
            submission_prefix (str | None): The prefix of submission file.
zhangwenwei's avatar
zhangwenwei committed
493

494
        Returns:
495
            list[dict]: A list of dictionaries have the kitti format
zhangwenwei's avatar
zhangwenwei committed
496
        """
Wenwei Zhang's avatar
Wenwei Zhang committed
497
498
        assert len(net_outputs) == len(self.data_infos), \
            'invalid list length of network outputs'
zhangwenwei's avatar
zhangwenwei committed
499
        det_annos = []
zhangwenwei's avatar
zhangwenwei committed
500
        print('\nConverting prediction to KITTI format')
zhangwenwei's avatar
zhangwenwei committed
501
502
503
504
505
506
507
508
509
510
511
512
513
        for i, bboxes_per_sample in enumerate(
                mmcv.track_iter_progress(net_outputs)):
            annos = []
            anno = dict(
                name=[],
                truncated=[],
                occluded=[],
                alpha=[],
                bbox=[],
                dimensions=[],
                location=[],
                rotation_y=[],
                score=[])
zhangwenwei's avatar
zhangwenwei committed
514
            sample_idx = self.data_infos[i]['image']['image_idx']
zhangwenwei's avatar
zhangwenwei committed
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555

            num_example = 0
            for label in range(len(bboxes_per_sample)):
                bbox = bboxes_per_sample[label]
                for i in range(bbox.shape[0]):
                    anno['name'].append(class_names[int(label)])
                    anno['truncated'].append(0.0)
                    anno['occluded'].append(0)
                    anno['alpha'].append(0.0)
                    anno['bbox'].append(bbox[i, :4])
                    # set dimensions (height, width, length) to zero
                    anno['dimensions'].append(
                        np.zeros(shape=[3], dtype=np.float32))
                    # set the 3D translation to (-1000, -1000, -1000)
                    anno['location'].append(
                        np.ones(shape=[3], dtype=np.float32) * (-1000.0))
                    anno['rotation_y'].append(0.0)
                    anno['score'].append(bbox[i, 4])
                    num_example += 1

            if num_example == 0:
                annos.append(
                    dict(
                        name=np.array([]),
                        truncated=np.array([]),
                        occluded=np.array([]),
                        alpha=np.array([]),
                        bbox=np.zeros([0, 4]),
                        dimensions=np.zeros([0, 3]),
                        location=np.zeros([0, 3]),
                        rotation_y=np.array([]),
                        score=np.array([]),
                    ))
            else:
                anno = {k: np.stack(v) for k, v in anno.items()}
                annos.append(anno)

            annos[-1]['sample_idx'] = np.array(
                [sample_idx] * num_example, dtype=np.int64)
            det_annos += annos

556
557
558
559
560
561
562
563
        if pklfile_prefix is not None:
            # save file in pkl format
            pklfile_path = (
                pklfile_prefix[:-4] if pklfile_prefix.endswith(
                    ('.pkl', '.pickle')) else pklfile_prefix)
            mmcv.dump(det_annos, pklfile_path)

        if submission_prefix is not None:
zhangwenwei's avatar
zhangwenwei committed
564
            # save file in submission format
565
566
            mmcv.mkdir_or_exist(submission_prefix)
            print(f'Saving KITTI submission to {submission_prefix}')
zhangwenwei's avatar
zhangwenwei committed
567
            for i, anno in enumerate(det_annos):
zhangwenwei's avatar
zhangwenwei committed
568
                sample_idx = self.data_infos[i]['image']['image_idx']
569
                cur_det_file = f'{submission_prefix}/{sample_idx:06d}.txt'
zhangwenwei's avatar
zhangwenwei committed
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
                with open(cur_det_file, 'w') as f:
                    bbox = anno['bbox']
                    loc = anno['location']
                    dims = anno['dimensions'][::-1]  # lhw -> hwl
                    for idx in range(len(bbox)):
                        print(
                            '{} -1 -1 {:4f} {:4f} {:4f} {:4f} {:4f} {:4f} '
                            '{:4f} {:4f} {:4f} {:4f} {:4f} {:4f} {:4f}'.format(
                                anno['name'][idx],
                                anno['alpha'][idx],
                                *bbox[idx],  # 4 float
                                *dims[idx],  # 3 float
                                *loc[idx],  # 3 float
                                anno['rotation_y'][idx],
                                anno['score'][idx]),
                            file=f,
                        )
587
            print(f'Result is saved to {submission_prefix}')
zhangwenwei's avatar
zhangwenwei committed
588
589
590
591

        return det_annos

    def convert_valid_bboxes(self, box_dict, info):
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
        """Convert the predicted boxes into valid ones.

        Args:
            box_dict (dict): Box dictionaries to be converted.

                - boxes_3d (:obj:`LiDARInstance3DBoxes`): 3D bounding boxes.
                - scores_3d (torch.Tensor): Scores of boxes.
                - labels_3d (torch.Tensor): Class labels of boxes.
            info (dict): Data info.

        Returns:
            dict: Valid predicted boxes.

                - bbox (np.ndarray): 2D bounding boxes.
                - box3d_camera (np.ndarray): 3D bounding boxes in \
                    camera coordinate.
                - box3d_lidar (np.ndarray): 3D bounding boxes in \
                    LiDAR coordinate.
                - scores (np.ndarray): Scores of boxes.
                - label_preds (np.ndarray): Class label predictions.
                - sample_idx (int): Sample index.
        """
zhangwenwei's avatar
zhangwenwei committed
614
        # TODO: refactor this function
615
616
617
        box_preds = box_dict['boxes_3d']
        scores = box_dict['scores_3d']
        labels = box_dict['labels_3d']
zhangwenwei's avatar
zhangwenwei committed
618
        sample_idx = info['image']['image_idx']
619
620
621
        # TODO: remove the hack of yaw
        box_preds.tensor[:, -1] = box_preds.tensor[:, -1] - np.pi
        box_preds.limit_yaw(offset=0.5, period=np.pi * 2)
zhangwenwei's avatar
zhangwenwei committed
622

623
        if len(box_preds) == 0:
zhangwenwei's avatar
zhangwenwei committed
624
            return dict(
625
626
627
628
629
630
                bbox=np.zeros([0, 4]),
                box3d_camera=np.zeros([0, 7]),
                box3d_lidar=np.zeros([0, 7]),
                scores=np.zeros([0]),
                label_preds=np.zeros([0, 4]),
                sample_idx=sample_idx)
zhangwenwei's avatar
zhangwenwei committed
631
632
633
634
635

        rect = info['calib']['R0_rect'].astype(np.float32)
        Trv2c = info['calib']['Tr_velo_to_cam'].astype(np.float32)
        P2 = info['calib']['P2'].astype(np.float32)
        img_shape = info['image']['image_shape']
636
637
638
639
640
        P2 = box_preds.tensor.new_tensor(P2)

        box_preds_camera = box_preds.convert_to(Box3DMode.CAM, rect @ Trv2c)

        box_corners = box_preds_camera.corners
zhangwenwei's avatar
zhangwenwei committed
641
        box_corners_in_image = points_cam2img(box_corners, P2)
zhangwenwei's avatar
zhangwenwei committed
642
643
644
645
646
        # box_corners_in_image: [N, 8, 2]
        minxy = torch.min(box_corners_in_image, dim=1)[0]
        maxxy = torch.max(box_corners_in_image, dim=1)[0]
        box_2d_preds = torch.cat([minxy, maxxy], dim=1)
        # Post-processing
647
648
        # check box_preds_camera
        image_shape = box_preds.tensor.new_tensor(img_shape)
twang's avatar
twang committed
649
650
651
        valid_cam_inds = ((box_2d_preds[:, 0] < image_shape[1]) &
                          (box_2d_preds[:, 1] < image_shape[0]) &
                          (box_2d_preds[:, 2] > 0) & (box_2d_preds[:, 3] > 0))
652
653
654
655
        # check box_preds
        limit_range = box_preds.tensor.new_tensor(self.pcd_limit_range)
        valid_pcd_inds = ((box_preds.center > limit_range[:3]) &
                          (box_preds.center < limit_range[3:]))
zhangwenwei's avatar
zhangwenwei committed
656
657
658
659
660
        valid_inds = valid_cam_inds & valid_pcd_inds.all(-1)

        if valid_inds.sum() > 0:
            return dict(
                bbox=box_2d_preds[valid_inds, :].numpy(),
661
662
663
664
                box3d_camera=box_preds_camera[valid_inds].tensor.numpy(),
                box3d_lidar=box_preds[valid_inds].tensor.numpy(),
                scores=scores[valid_inds].numpy(),
                label_preds=labels[valid_inds].numpy(),
665
                sample_idx=sample_idx)
zhangwenwei's avatar
zhangwenwei committed
666
667
        else:
            return dict(
668
669
670
671
672
                bbox=np.zeros([0, 4]),
                box3d_camera=np.zeros([0, 7]),
                box3d_lidar=np.zeros([0, 7]),
                scores=np.zeros([0]),
                label_preds=np.zeros([0, 4]),
673
                sample_idx=sample_idx)
liyinhao's avatar
liyinhao committed
674

675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
    def _build_default_pipeline(self):
        """Build the default pipeline for this dataset."""
        pipeline = [
            dict(
                type='LoadPointsFromFile',
                coord_type='LIDAR',
                load_dim=4,
                use_dim=4,
                file_client_args=dict(backend='disk')),
            dict(
                type='DefaultFormatBundle3D',
                class_names=self.CLASSES,
                with_label=False),
            dict(type='Collect3D', keys=['points'])
        ]
        if self.modality['use_camera']:
            pipeline.insert(0, dict(type='LoadImageFromFile'))
        return Compose(pipeline)

    def show(self, results, out_dir, show=True, pipeline=None):
695
696
697
        """Results visualization.

        Args:
wangtai's avatar
wangtai committed
698
            results (list[dict]): List of bounding boxes results.
699
            out_dir (str): Output directory of visualization result.
700
            show (bool): Visualize the results online.
701
702
            pipeline (list[dict], optional): raw data loading for showing.
                Default: None.
703
        """
liyinhao's avatar
liyinhao committed
704
        assert out_dir is not None, 'Expect out_dir, got none.'
705
        pipeline = self._get_pipeline(pipeline)
liyinhao's avatar
liyinhao committed
706
        for i, result in enumerate(results):
707
708
            if 'pts_bbox' in result.keys():
                result = result['pts_bbox']
liyinhao's avatar
liyinhao committed
709
710
711
            data_info = self.data_infos[i]
            pts_path = data_info['point_cloud']['velodyne_path']
            file_name = osp.split(pts_path)[-1].split('.')[0]
712
713
714
            points, img_metas, img = self._extract_data(
                i, pipeline, ['points', 'img_metas', 'img'])
            points = points.numpy()
liyinhao's avatar
liyinhao committed
715
            # for now we convert points into depth mode
716
717
            points = Coord3DMode.convert_point(points, Coord3DMode.LIDAR,
                                               Coord3DMode.DEPTH)
718
719
720
            gt_bboxes = self.get_ann_info(i)['gt_bboxes_3d'].tensor.numpy()
            show_gt_bboxes = Box3DMode.convert(gt_bboxes, Box3DMode.LIDAR,
                                               Box3DMode.DEPTH)
liyinhao's avatar
liyinhao committed
721
            pred_bboxes = result['boxes_3d'].tensor.numpy()
722
723
724
725
726
727
            show_pred_bboxes = Box3DMode.convert(pred_bboxes, Box3DMode.LIDAR,
                                                 Box3DMode.DEPTH)
            show_result(points, show_gt_bboxes, show_pred_bboxes, out_dir,
                        file_name, show)

            # multi-modality visualization
728
729
730
731
            if self.modality['use_camera'] and 'lidar2img' in img_metas.keys():
                img = img.numpy()
                # need to transpose channel to first dim
                img = img.transpose(1, 2, 0)
732
733
734
735
736
737
738
739
                show_pred_bboxes = LiDARInstance3DBoxes(
                    pred_bboxes, origin=(0.5, 0.5, 0))
                show_gt_bboxes = LiDARInstance3DBoxes(
                    gt_bboxes, origin=(0.5, 0.5, 0))
                show_multi_modality_result(
                    img,
                    show_gt_bboxes,
                    show_pred_bboxes,
740
                    img_metas['lidar2img'],
741
742
                    out_dir,
                    file_name,
743
744
                    box_mode='lidar',
                    show=show)