image_vis.py 8.17 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import copy
import cv2
import numpy as np
import torch
from matplotlib import pyplot as plt


def project_pts_on_img(points,
                       raw_img,
                       lidar2img_rt,
                       max_distance=70,
                       thickness=-1):
    """Project the 3D points cloud on 2D image.

    Args:
        points (numpy.array): 3D points cloud (x, y, z) to visualize.
        raw_img (numpy.array): The numpy array of image.
        lidar2img_rt (numpy.array, shape=[4, 4]): The projection matrix
            according to the camera intrinsic parameters.
        max_distance (float): the max distance of the points cloud.
            Default: 70.
        thickness (int, optional): The thickness of 2D points. Default: -1.
    """
    img = raw_img.copy()
    num_points = points.shape[0]
    pts_4d = np.concatenate([points[:, :3], np.ones((num_points, 1))], axis=-1)
    pts_2d = pts_4d @ lidar2img_rt.T

    # cam_points is Tensor of Nx4 whose last column is 1
    # transform camera coordinate to image coordinate
    pts_2d[:, 2] = np.clip(pts_2d[:, 2], a_min=1e-5, a_max=99999)
    pts_2d[:, 0] /= pts_2d[:, 2]
    pts_2d[:, 1] /= pts_2d[:, 2]

    fov_inds = ((pts_2d[:, 0] < img.shape[1])
                & (pts_2d[:, 0] >= 0)
                & (pts_2d[:, 1] < img.shape[0])
                & (pts_2d[:, 1] >= 0))

    imgfov_pts_2d = pts_2d[fov_inds, :3]  # u, v, d

    cmap = plt.cm.get_cmap('hsv', 256)
    cmap = np.array([cmap(i) for i in range(256)])[:, :3] * 255
    for i in range(imgfov_pts_2d.shape[0]):
        depth = imgfov_pts_2d[i, 2]
        color = cmap[np.clip(int(max_distance * 10 / depth), 0, 255), :]
        cv2.circle(
            img,
            center=(int(np.round(imgfov_pts_2d[i, 0])),
                    int(np.round(imgfov_pts_2d[i, 1]))),
            radius=1,
            color=tuple(color),
            thickness=thickness,
        )
    cv2.imshow('project_pts_img', img.astype(np.uint8))
    cv2.waitKey(100)


59
60
61
62
63
64
def plot_rect3d_on_img(img,
                       num_rects,
                       rect_corners,
                       color=(0, 255, 0),
                       thickness=1):
    """Plot the boundary lines of 3D rectangular on 2D images.
65
66

    Args:
67
68
69
70
71
        img (numpy.array): The numpy array of image.
        num_rects (int): Number of 3D rectangulars.
        rect_corners (numpy.array): Coordinates of the corners of 3D
            rectangulars. Should be in the shape of [num_rect, 8, 2].
        color (tuple[int]): The color to draw bboxes. Default: (0, 255, 0).
72
73
74
75
        thickness (int, optional): The thickness of bboxes. Default: 1.
    """
    line_indices = ((0, 1), (0, 3), (0, 4), (1, 2), (1, 5), (3, 2), (3, 7),
                    (4, 5), (4, 7), (2, 6), (5, 6), (6, 7))
76
77
    for i in range(num_rects):
        corners = rect_corners[i].astype(np.int)
78
79
80
81
82
        for start, end in line_indices:
            cv2.line(img, (corners[start, 0], corners[start, 1]),
                     (corners[end, 0], corners[end, 1]), color, thickness,
                     cv2.LINE_AA)

83
    return img.astype(np.uint8)
84
85
86
87
88
89
90
91
92
93
94


def draw_lidar_bbox3d_on_img(bboxes3d,
                             raw_img,
                             lidar2img_rt,
                             img_metas,
                             color=(0, 255, 0),
                             thickness=1):
    """Project the 3D bbox on 2D plane and draw on input image.

    Args:
95
96
        bboxes3d (:obj:`LiDARInstance3DBoxes`):
            3d bbox in lidar coordinate system to visualize.
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
        raw_img (numpy.array): The numpy array of image.
        lidar2img_rt (numpy.array, shape=[4, 4]): The projection matrix
            according to the camera intrinsic parameters.
        img_metas (dict): Useless here.
        color (tuple[int]): The color to draw bboxes. Default: (0, 255, 0).
        thickness (int, optional): The thickness of bboxes. Default: 1.
    """
    img = raw_img.copy()
    corners_3d = bboxes3d.corners
    num_bbox = corners_3d.shape[0]
    pts_4d = np.concatenate(
        [corners_3d.reshape(-1, 3),
         np.ones((num_bbox * 8, 1))], axis=-1)
    lidar2img_rt = copy.deepcopy(lidar2img_rt).reshape(4, 4)
    if isinstance(lidar2img_rt, torch.Tensor):
        lidar2img_rt = lidar2img_rt.cpu().numpy()
    pts_2d = pts_4d @ lidar2img_rt.T

    pts_2d[:, 2] = np.clip(pts_2d[:, 2], a_min=1e-5, a_max=1e5)
    pts_2d[:, 0] /= pts_2d[:, 2]
    pts_2d[:, 1] /= pts_2d[:, 2]
    imgfov_pts_2d = pts_2d[..., :2].reshape(num_bbox, 8, 2)

120
    return plot_rect3d_on_img(img, num_bbox, imgfov_pts_2d, color, thickness)
121
122
123
124
125
126
127
128
129
130
131


def draw_depth_bbox3d_on_img(bboxes3d,
                             raw_img,
                             calibs,
                             img_metas,
                             color=(0, 255, 0),
                             thickness=1):
    """Project the 3D bbox on 2D plane and draw on input image.

    Args:
132
133
        bboxes3d (:obj:`DepthInstance3DBoxes`, shape=[M, 7]):
            3d bbox in depth coordinate system to visualize.
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
        raw_img (numpy.array): The numpy array of image.
        calibs (dict): Camera calibration information, Rt and K.
        img_metas (dict): Used in coordinates transformation.
        color (tuple[int]): The color to draw bboxes. Default: (0, 255, 0).
        thickness (int, optional): The thickness of bboxes. Default: 1.
    """
    from mmdet3d.core import Coord3DMode
    from mmdet3d.core.bbox import points_cam2img
    from mmdet3d.models import apply_3d_transformation

    img = raw_img.copy()
    calibs = copy.deepcopy(calibs)
    img_metas = copy.deepcopy(img_metas)
    corners_3d = bboxes3d.corners
    num_bbox = corners_3d.shape[0]
    points_3d = corners_3d.reshape(-1, 3)
    assert ('Rt' in calibs.keys() and 'K' in calibs.keys()), \
        'Rt and K matrix should be provided as camera caliberation information'
    if not isinstance(calibs['Rt'], torch.Tensor):
        calibs['Rt'] = torch.from_numpy(np.array(calibs['Rt']))
    if not isinstance(calibs['K'], torch.Tensor):
        calibs['K'] = torch.from_numpy(np.array(calibs['K']))
    calibs['Rt'] = calibs['Rt'].reshape(3, 3).float().cpu()
    calibs['K'] = calibs['K'].reshape(3, 3).float().cpu()

    # first reverse the data transformations
    xyz_depth = apply_3d_transformation(
        points_3d, 'DEPTH', img_metas, reverse=True)

    # then convert from depth coords to camera coords
    xyz_cam = Coord3DMode.convert_point(
        xyz_depth, Coord3DMode.DEPTH, Coord3DMode.CAM, rt_mat=calibs['Rt'])

    # project to 2d to get image coords (uv)
    uv_origin = points_cam2img(xyz_cam, calibs['K'])
    uv_origin = (uv_origin - 1).round()
    imgfov_pts_2d = uv_origin[..., :2].reshape(num_bbox, 8, 2).numpy()

172
    return plot_rect3d_on_img(img, num_bbox, imgfov_pts_2d, color, thickness)
173

174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209

def draw_camera_bbox3d_on_img(bboxes3d,
                              raw_img,
                              cam_intrinsic,
                              img_metas,
                              color=(0, 255, 0),
                              thickness=1):
    """Project the 3D bbox on 2D plane and draw on input image.

    Args:
        bboxes3d (:obj:`CameraInstance3DBoxes`, shape=[M, 7]):
            3d bbox in camera coordinate system to visualize.
        raw_img (numpy.array): The numpy array of image.
        cam_intrinsic (dict): Camera intrinsic matrix,
            denoted as `K` in depth bbox coordinate system.
        img_metas (dict): Useless here.
        color (tuple[int]): The color to draw bboxes. Default: (0, 255, 0).
        thickness (int, optional): The thickness of bboxes. Default: 1.
    """
    from mmdet3d.core.bbox import points_cam2img

    img = raw_img.copy()
    cam_intrinsic = copy.deepcopy(cam_intrinsic)
    corners_3d = bboxes3d.corners
    num_bbox = corners_3d.shape[0]
    points_3d = corners_3d.reshape(-1, 3)
    if not isinstance(cam_intrinsic, torch.Tensor):
        cam_intrinsic = torch.from_numpy(np.array(cam_intrinsic))
    cam_intrinsic = cam_intrinsic.reshape(3, 3).float().cpu()

    # project to 2d to get image coords (uv)
    uv_origin = points_cam2img(points_3d, cam_intrinsic)
    uv_origin = (uv_origin - 1).round()
    imgfov_pts_2d = uv_origin[..., :2].reshape(num_bbox, 8, 2).numpy()

    return plot_rect3d_on_img(img, num_bbox, imgfov_pts_2d, color, thickness)