image_vis.py 7.93 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import copy
import cv2
import numpy as np
import torch
from matplotlib import pyplot as plt


def project_pts_on_img(points,
                       raw_img,
                       lidar2img_rt,
                       max_distance=70,
                       thickness=-1):
    """Project the 3D points cloud on 2D image.

    Args:
        points (numpy.array): 3D points cloud (x, y, z) to visualize.
        raw_img (numpy.array): The numpy array of image.
        lidar2img_rt (numpy.array, shape=[4, 4]): The projection matrix
            according to the camera intrinsic parameters.
        max_distance (float): the max distance of the points cloud.
            Default: 70.
        thickness (int, optional): The thickness of 2D points. Default: -1.
    """
    img = raw_img.copy()
    num_points = points.shape[0]
    pts_4d = np.concatenate([points[:, :3], np.ones((num_points, 1))], axis=-1)
    pts_2d = pts_4d @ lidar2img_rt.T

    # cam_points is Tensor of Nx4 whose last column is 1
    # transform camera coordinate to image coordinate
    pts_2d[:, 2] = np.clip(pts_2d[:, 2], a_min=1e-5, a_max=99999)
    pts_2d[:, 0] /= pts_2d[:, 2]
    pts_2d[:, 1] /= pts_2d[:, 2]

    fov_inds = ((pts_2d[:, 0] < img.shape[1])
                & (pts_2d[:, 0] >= 0)
                & (pts_2d[:, 1] < img.shape[0])
                & (pts_2d[:, 1] >= 0))

    imgfov_pts_2d = pts_2d[fov_inds, :3]  # u, v, d

    cmap = plt.cm.get_cmap('hsv', 256)
    cmap = np.array([cmap(i) for i in range(256)])[:, :3] * 255
    for i in range(imgfov_pts_2d.shape[0]):
        depth = imgfov_pts_2d[i, 2]
        color = cmap[np.clip(int(max_distance * 10 / depth), 0, 255), :]
        cv2.circle(
            img,
            center=(int(np.round(imgfov_pts_2d[i, 0])),
                    int(np.round(imgfov_pts_2d[i, 1]))),
            radius=1,
            color=tuple(color),
            thickness=thickness,
        )
    cv2.imshow('project_pts_img', img.astype(np.uint8))
    cv2.waitKey(100)


def project_bbox3d_on_img(bboxes3d,
                          raw_img,
                          lidar2img_rt,
                          color=(0, 255, 0),
                          thickness=1):
    """Project the 3D bbox on 2D image.

    Args:
        bboxes3d (numpy.array, shape=[M, 7]):
            3d bbox (x, y, z, dx, dy, dz, yaw) to visualize.
        raw_img (numpy.array): The numpy array of image.
        lidar2img_rt (numpy.array, shape=[4, 4]): The projection matrix
            according to the camera intrinsic parameters.
        color (tuple[int]): the color to draw bboxes. Default: (0, 255, 0).
        thickness (int, optional): The thickness of bboxes. Default: 1.
    """
    img = raw_img.copy()
    corners_3d = bboxes3d.corners
    num_bbox = corners_3d.shape[0]
    pts_4d = np.concatenate(
        [corners_3d.reshape(-1, 3),
         np.ones((num_bbox * 8, 1))], axis=-1)
    pts_2d = pts_4d @ lidar2img_rt.T

    pts_2d[:, 2] = np.clip(pts_2d[:, 2], a_min=1e-5, a_max=1e5)
    pts_2d[:, 0] /= pts_2d[:, 2]
    pts_2d[:, 1] /= pts_2d[:, 2]
    imgfov_pts_2d = pts_2d[..., :2].reshape(num_bbox, 8, 2)

    line_indices = ((0, 1), (0, 3), (0, 4), (1, 2), (1, 5), (3, 2), (3, 7),
                    (4, 5), (4, 7), (2, 6), (5, 6), (6, 7))
    for i in range(num_bbox):
        corners = imgfov_pts_2d[i].astype(np.int)
        for start, end in line_indices:
            cv2.line(img, (corners[start, 0], corners[start, 1]),
                     (corners[end, 0], corners[end, 1]), color, thickness,
                     cv2.LINE_AA)

    cv2.imshow('project_bbox3d_img', img.astype(np.uint8))
    cv2.waitKey(0)


def draw_lidar_bbox3d_on_img(bboxes3d,
                             raw_img,
                             lidar2img_rt,
                             img_metas,
                             color=(0, 255, 0),
                             thickness=1):
    """Project the 3D bbox on 2D plane and draw on input image.

    Args:
        bboxes3d (numpy.array, shape=[M, 7]):
            3d bbox (x, y, z, dx, dy, dz, yaw) to visualize.
        raw_img (numpy.array): The numpy array of image.
        lidar2img_rt (numpy.array, shape=[4, 4]): The projection matrix
            according to the camera intrinsic parameters.
        img_metas (dict): Useless here.
        color (tuple[int]): The color to draw bboxes. Default: (0, 255, 0).
        thickness (int, optional): The thickness of bboxes. Default: 1.
    """
    img = raw_img.copy()
    corners_3d = bboxes3d.corners
    num_bbox = corners_3d.shape[0]
    pts_4d = np.concatenate(
        [corners_3d.reshape(-1, 3),
         np.ones((num_bbox * 8, 1))], axis=-1)
    lidar2img_rt = copy.deepcopy(lidar2img_rt).reshape(4, 4)
    if isinstance(lidar2img_rt, torch.Tensor):
        lidar2img_rt = lidar2img_rt.cpu().numpy()
    pts_2d = pts_4d @ lidar2img_rt.T

    pts_2d[:, 2] = np.clip(pts_2d[:, 2], a_min=1e-5, a_max=1e5)
    pts_2d[:, 0] /= pts_2d[:, 2]
    pts_2d[:, 1] /= pts_2d[:, 2]
    imgfov_pts_2d = pts_2d[..., :2].reshape(num_bbox, 8, 2)

    line_indices = ((0, 1), (0, 3), (0, 4), (1, 2), (1, 5), (3, 2), (3, 7),
                    (4, 5), (4, 7), (2, 6), (5, 6), (6, 7))
    for i in range(num_bbox):
        corners = imgfov_pts_2d[i].astype(np.int)
        for start, end in line_indices:
            cv2.line(img, (corners[start, 0], corners[start, 1]),
                     (corners[end, 0], corners[end, 1]), color, thickness,
                     cv2.LINE_AA)

    return img.astype(np.uint8)


def draw_depth_bbox3d_on_img(bboxes3d,
                             raw_img,
                             calibs,
                             img_metas,
                             color=(0, 255, 0),
                             thickness=1):
    """Project the 3D bbox on 2D plane and draw on input image.

    Args:
        bboxes3d (numpy.array, shape=[M, 7]):
            3d camera bbox (x, y, z, dx, dy, dz, yaw) to visualize.
        raw_img (numpy.array): The numpy array of image.
        calibs (dict): Camera calibration information, Rt and K.
        img_metas (dict): Used in coordinates transformation.
        color (tuple[int]): The color to draw bboxes. Default: (0, 255, 0).
        thickness (int, optional): The thickness of bboxes. Default: 1.
    """
    from mmdet3d.core import Coord3DMode
    from mmdet3d.core.bbox import points_cam2img
    from mmdet3d.models import apply_3d_transformation

    img = raw_img.copy()
    calibs = copy.deepcopy(calibs)
    img_metas = copy.deepcopy(img_metas)
    corners_3d = bboxes3d.corners
    num_bbox = corners_3d.shape[0]
    points_3d = corners_3d.reshape(-1, 3)
    assert ('Rt' in calibs.keys() and 'K' in calibs.keys()), \
        'Rt and K matrix should be provided as camera caliberation information'
    if not isinstance(calibs['Rt'], torch.Tensor):
        calibs['Rt'] = torch.from_numpy(np.array(calibs['Rt']))
    if not isinstance(calibs['K'], torch.Tensor):
        calibs['K'] = torch.from_numpy(np.array(calibs['K']))
    calibs['Rt'] = calibs['Rt'].reshape(3, 3).float().cpu()
    calibs['K'] = calibs['K'].reshape(3, 3).float().cpu()

    # first reverse the data transformations
    xyz_depth = apply_3d_transformation(
        points_3d, 'DEPTH', img_metas, reverse=True)

    # then convert from depth coords to camera coords
    xyz_cam = Coord3DMode.convert_point(
        xyz_depth, Coord3DMode.DEPTH, Coord3DMode.CAM, rt_mat=calibs['Rt'])

    # project to 2d to get image coords (uv)
    uv_origin = points_cam2img(xyz_cam, calibs['K'])
    uv_origin = (uv_origin - 1).round()
    imgfov_pts_2d = uv_origin[..., :2].reshape(num_bbox, 8, 2).numpy()

    line_indices = ((0, 1), (0, 3), (0, 4), (1, 2), (1, 5), (3, 2), (3, 7),
                    (4, 5), (4, 7), (2, 6), (5, 6), (6, 7))
    for i in range(num_bbox):
        corners = imgfov_pts_2d[i].astype(np.int)
        for start, end in line_indices:
            cv2.line(img, (corners[start, 0], corners[start, 1]),
                     (corners[end, 0], corners[end, 1]), color, thickness,
                     cv2.LINE_AA)

    return img.astype(np.uint8)