inference.py 16.5 KB
Newer Older
wuyuefeng's avatar
Demo  
wuyuefeng committed
1
import mmcv
2
3
import numpy as np
import re
wuyuefeng's avatar
Demo  
wuyuefeng committed
4
import torch
zhangwenwei's avatar
zhangwenwei committed
5
from copy import deepcopy
wuyuefeng's avatar
Demo  
wuyuefeng committed
6
7
from mmcv.parallel import collate, scatter
from mmcv.runner import load_checkpoint
zhangwenwei's avatar
zhangwenwei committed
8
from os import path as osp
wuyuefeng's avatar
Demo  
wuyuefeng committed
9

10
11
from mmdet3d.core import (Box3DMode, DepthInstance3DBoxes,
                          LiDARInstance3DBoxes, show_multi_modality_result,
12
                          show_result, show_seg_result)
wuyuefeng's avatar
Demo  
wuyuefeng committed
13
from mmdet3d.core.bbox import get_box_type
14
from mmdet3d.core.bbox.structures.cam_box3d import CameraInstance3DBoxes
wuyuefeng's avatar
Demo  
wuyuefeng committed
15
from mmdet3d.datasets.pipelines import Compose
16
from mmdet3d.models import build_model
wuyuefeng's avatar
Demo  
wuyuefeng committed
17
18


19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
def convert_SyncBN(config):
    """Convert config's naiveSyncBN to BN.

    Args:
         config (str or :obj:`mmcv.Config`): Config file path or the config
            object.
    """
    if isinstance(config, dict):
        for item in config:
            if item == 'norm_cfg':
                config[item]['type'] = config[item]['type']. \
                                    replace('naiveSyncBN', 'BN')
            else:
                convert_SyncBN(config[item])


35
36
37
def init_model(config, checkpoint=None, device='cuda:0'):
    """Initialize a model from config file, which could be a 3D detector or a
    3D segmentor.
wuyuefeng's avatar
Demo  
wuyuefeng committed
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

    Args:
        config (str or :obj:`mmcv.Config`): Config file path or the config
            object.
        checkpoint (str, optional): Checkpoint path. If left as None, the model
            will not load any weights.
        device (str): Device to use.

    Returns:
        nn.Module: The constructed detector.
    """
    if isinstance(config, str):
        config = mmcv.Config.fromfile(config)
    elif not isinstance(config, mmcv.Config):
        raise TypeError('config must be a filename or Config object, '
                        f'but got {type(config)}')
    config.model.pretrained = None
55
    convert_SyncBN(config.model)
56
    config.model.train_cfg = None
57
    model = build_model(config.model, test_cfg=config.get('test_cfg'))
wuyuefeng's avatar
Demo  
wuyuefeng committed
58
59
60
61
62
63
    if checkpoint is not None:
        checkpoint = load_checkpoint(model, checkpoint)
        if 'CLASSES' in checkpoint['meta']:
            model.CLASSES = checkpoint['meta']['CLASSES']
        else:
            model.CLASSES = config.class_names
64
65
        if 'PALETTE' in checkpoint['meta']:  # 3D Segmentor
            model.PALETTE = checkpoint['meta']['PALETTE']
wuyuefeng's avatar
Demo  
wuyuefeng committed
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
    model.cfg = config  # save the config in the model for convenience
    model.to(device)
    model.eval()
    return model


def inference_detector(model, pcd):
    """Inference point cloud with the detector.

    Args:
        model (nn.Module): The loaded detector.
        pcd (str): Point cloud files.

    Returns:
        tuple: Predicted results and data from pipeline.
    """
    cfg = model.cfg
    device = next(model.parameters()).device  # model device
    # build the data pipeline
    test_pipeline = deepcopy(cfg.data.test.pipeline)
    test_pipeline = Compose(test_pipeline)
    box_type_3d, box_mode_3d = get_box_type(cfg.data.test.box_type_3d)
    data = dict(
        pts_filename=pcd,
        box_type_3d=box_type_3d,
        box_mode_3d=box_mode_3d,
92
93
94
        sweeps=[],
        # set timestamp = 0
        timestamp=[0],
wuyuefeng's avatar
Demo  
wuyuefeng committed
95
96
97
98
99
100
101
102
103
104
105
106
107
        img_fields=[],
        bbox3d_fields=[],
        pts_mask_fields=[],
        pts_seg_fields=[],
        bbox_fields=[],
        mask_fields=[],
        seg_fields=[])
    data = test_pipeline(data)
    data = collate([data], samples_per_gpu=1)
    if next(model.parameters()).is_cuda:
        # scatter to specified GPU
        data = scatter(data, [device.index])[0]
    else:
yinchimaoliang's avatar
yinchimaoliang committed
108
109
110
        # this is a workaround to avoid the bug of MMDataParallel
        data['img_metas'] = data['img_metas'][0].data
        data['points'] = data['points'][0].data
wuyuefeng's avatar
Demo  
wuyuefeng committed
111
112
113
114
115
116
    # forward the model
    with torch.no_grad():
        result = model(return_loss=False, rescale=True, **data)
    return result, data


117
def inference_multi_modality_detector(model, pcd, image, ann_file):
118
    """Inference point cloud with the multi-modality detector.
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183

    Args:
        model (nn.Module): The loaded detector.
        pcd (str): Point cloud files.
        image (str): Image files.
        ann_file (str): Annotation files.

    Returns:
        tuple: Predicted results and data from pipeline.
    """
    cfg = model.cfg
    device = next(model.parameters()).device  # model device
    # build the data pipeline
    test_pipeline = deepcopy(cfg.data.test.pipeline)
    test_pipeline = Compose(test_pipeline)
    box_type_3d, box_mode_3d = get_box_type(cfg.data.test.box_type_3d)
    # get data info containing calib
    data_infos = mmcv.load(ann_file)
    image_idx = int(re.findall(r'\d+', image)[-1])  # xxx/sunrgbd_000017.jpg
    for x in data_infos:
        if int(x['image']['image_idx']) != image_idx:
            continue
        info = x
        break
    data = dict(
        pts_filename=pcd,
        img_prefix=osp.dirname(image),
        img_info=dict(filename=osp.basename(image)),
        box_type_3d=box_type_3d,
        box_mode_3d=box_mode_3d,
        img_fields=[],
        bbox3d_fields=[],
        pts_mask_fields=[],
        pts_seg_fields=[],
        bbox_fields=[],
        mask_fields=[],
        seg_fields=[])

    # depth map points to image conversion
    if box_mode_3d == Box3DMode.DEPTH:
        data.update(dict(calib=info['calib']))

    data = test_pipeline(data)

    # LiDAR to image conversion
    if box_mode_3d == Box3DMode.LIDAR:
        rect = info['calib']['R0_rect'].astype(np.float32)
        Trv2c = info['calib']['Tr_velo_to_cam'].astype(np.float32)
        P2 = info['calib']['P2'].astype(np.float32)
        lidar2img = P2 @ rect @ Trv2c
        data['img_metas'][0].data['lidar2img'] = lidar2img
    elif box_mode_3d == Box3DMode.DEPTH:
        data['calib'][0]['Rt'] = data['calib'][0]['Rt'].astype(np.float32)
        data['calib'][0]['K'] = data['calib'][0]['K'].astype(np.float32)

    data = collate([data], samples_per_gpu=1)
    if next(model.parameters()).is_cuda:
        # scatter to specified GPU
        data = scatter(data, [device.index])[0]
    else:
        # this is a workaround to avoid the bug of MMDataParallel
        data['img_metas'] = data['img_metas'][0].data
        data['points'] = data['points'][0].data
        data['img'] = data['img'][0].data
        if box_mode_3d == Box3DMode.DEPTH:
184
185
            data['calib'][0]['Rt'] = data['calib'][0]['Rt'][0].data
            data['calib'][0]['K'] = data['calib'][0]['K'][0].data
186
187
188
189
190
191
192

    # forward the model
    with torch.no_grad():
        result = model(return_loss=False, rescale=True, **data)
    return result, data


193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
def inference_mono_3d_detector(model, image, ann_file):
    """Inference image with the monocular 3D detector.

    Args:
        model (nn.Module): The loaded detector.
        image (str): Image files.
        ann_file (str): Annotation files.

    Returns:
        tuple: Predicted results and data from pipeline.
    """
    cfg = model.cfg
    device = next(model.parameters()).device  # model device
    # build the data pipeline
    test_pipeline = deepcopy(cfg.data.test.pipeline)
    test_pipeline = Compose(test_pipeline)
    box_type_3d, box_mode_3d = get_box_type(cfg.data.test.box_type_3d)
    # get data info containing calib
    data_infos = mmcv.load(ann_file)
    # find the info corresponding to this image
    for x in data_infos['images']:
        if osp.basename(x['file_name']) != osp.basename(image):
            continue
        img_info = x
        break
    data = dict(
        img_prefix=osp.dirname(image),
        img_info=dict(filename=osp.basename(image)),
        box_type_3d=box_type_3d,
        box_mode_3d=box_mode_3d,
        img_fields=[],
        bbox3d_fields=[],
        pts_mask_fields=[],
        pts_seg_fields=[],
        bbox_fields=[],
        mask_fields=[],
        seg_fields=[])

    # camera points to image conversion
    if box_mode_3d == Box3DMode.CAM:
        data['img_info'].update(dict(cam_intrinsic=img_info['cam_intrinsic']))

    data = test_pipeline(data)

    data = collate([data], samples_per_gpu=1)
    if next(model.parameters()).is_cuda:
        # scatter to specified GPU
        data = scatter(data, [device.index])[0]
    else:
        # this is a workaround to avoid the bug of MMDataParallel
        data['img_metas'] = data['img_metas'][0].data
        data['img'] = data['img'][0].data

    # forward the model
    with torch.no_grad():
        result = model(return_loss=False, rescale=True, **data)
    return result, data


252
253
def inference_segmentor(model, pcd):
    """Inference point cloud with the segmentor.
wuyuefeng's avatar
Demo  
wuyuefeng committed
254
255

    Args:
256
257
258
259
260
        model (nn.Module): The loaded segmentor.
        pcd (str): Point cloud files.

    Returns:
        tuple: Predicted results and data from pipeline.
wuyuefeng's avatar
Demo  
wuyuefeng committed
261
    """
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
    cfg = model.cfg
    device = next(model.parameters()).device  # model device
    # build the data pipeline
    test_pipeline = deepcopy(cfg.data.test.pipeline)
    test_pipeline = Compose(test_pipeline)
    data = dict(
        pts_filename=pcd,
        img_fields=[],
        bbox3d_fields=[],
        pts_mask_fields=[],
        pts_seg_fields=[],
        bbox_fields=[],
        mask_fields=[],
        seg_fields=[])
    data = test_pipeline(data)
    data = collate([data], samples_per_gpu=1)
    if next(model.parameters()).is_cuda:
        # scatter to specified GPU
        data = scatter(data, [device.index])[0]
    else:
        # this is a workaround to avoid the bug of MMDataParallel
        data['img_metas'] = data['img_metas'][0].data
        data['points'] = data['points'][0].data
    # forward the model
    with torch.no_grad():
        result = model(return_loss=False, rescale=True, **data)
    return result, data


def show_det_result_meshlab(data,
                            result,
                            out_dir,
                            score_thr=0.0,
                            show=False,
                            snapshot=False):
    """Show 3D detection result by meshlab."""
wuyuefeng's avatar
Demo  
wuyuefeng committed
298
299
300
301
    points = data['points'][0][0].cpu().numpy()
    pts_filename = data['img_metas'][0][0]['pts_filename']
    file_name = osp.split(pts_filename)[-1].split('.')[0]

302
303
    if 'pts_bbox' in result[0].keys():
        pred_bboxes = result[0]['pts_bbox']['boxes_3d'].tensor.numpy()
304
        pred_scores = result[0]['pts_bbox']['scores_3d'].numpy()
305
306
    else:
        pred_bboxes = result[0]['boxes_3d'].tensor.numpy()
307
308
309
310
311
312
313
        pred_scores = result[0]['scores_3d'].numpy()

    # filter out low score bboxes for visualization
    if score_thr > 0:
        inds = pred_scores > score_thr
        pred_bboxes = pred_bboxes[inds]

wuyuefeng's avatar
Demo  
wuyuefeng committed
314
    # for now we convert points into depth mode
315
316
    box_mode = data['img_metas'][0][0]['box_mode_3d']
    if box_mode != Box3DMode.DEPTH:
wuyuefeng's avatar
Demo  
wuyuefeng committed
317
318
        points = points[..., [1, 0, 2]]
        points[..., 0] *= -1
319
320
321
        show_bboxes = Box3DMode.convert(pred_bboxes, box_mode, Box3DMode.DEPTH)
    else:
        show_bboxes = deepcopy(pred_bboxes)
322

323
324
325
326
327
328
329
330
    show_result(
        points,
        None,
        show_bboxes,
        out_dir,
        file_name,
        show=show,
        snapshot=snapshot)
331

332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
    return file_name


def show_seg_result_meshlab(data,
                            result,
                            out_dir,
                            palette,
                            show=False,
                            snapshot=False):
    """Show 3D segmentation result by meshlab."""
    points = data['points'][0][0].cpu().numpy()
    pts_filename = data['img_metas'][0][0]['pts_filename']
    file_name = osp.split(pts_filename)[-1].split('.')[0]

    pred_seg = result[0]['semantic_mask'].numpy()

    if palette is None:
        # generate random color map
        max_idx = pred_seg.max()
        palette = np.random.randint(0, 256, size=(max_idx + 1, 3))
    palette = np.array(palette).astype(np.int)

    show_seg_result(
        points,
        None,
        pred_seg,
        out_dir,
        file_name,
        palette=palette,
        show=show,
        snapshot=snapshot)

    return file_name

366

367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
def show_proj_det_result_meshlab(data,
                                 result,
                                 out_dir,
                                 score_thr=0.0,
                                 show=False,
                                 snapshot=False):
    """Show result of projecting 3D bbox to 2D image by meshlab."""
    assert 'img' in data.keys(), 'image data is not provided for visualization'

    img_filename = data['img_metas'][0][0]['filename']
    file_name = osp.split(img_filename)[-1].split('.')[0]

    # read from file because img in data_dict has undergone pipeline transform
    img = mmcv.imread(img_filename)

    if 'pts_bbox' in result[0].keys():
383
384
385
386
387
        result[0] = result[0]['pts_bbox']
    elif 'img_bbox' in result[0].keys():
        result[0] = result[0]['img_bbox']
    pred_bboxes = result[0]['boxes_3d'].tensor.numpy()
    pred_scores = result[0]['scores_3d'].numpy()
388
389
390
391
392
393
394

    # filter out low score bboxes for visualization
    if score_thr > 0:
        inds = pred_scores > score_thr
        pred_bboxes = pred_bboxes[inds]

    box_mode = data['img_metas'][0][0]['box_mode_3d']
395
396
397
398
399
400
401
402
403
404
405
406
407
408
    if box_mode == Box3DMode.LIDAR:
        if 'lidar2img' not in data['img_metas'][0][0]:
            raise NotImplementedError(
                'LiDAR to image transformation matrix is not provided')

        show_bboxes = LiDARInstance3DBoxes(pred_bboxes, origin=(0.5, 0.5, 0))

        show_multi_modality_result(
            img,
            None,
            show_bboxes,
            data['img_metas'][0][0]['lidar2img'],
            out_dir,
            file_name,
409
            box_mode='lidar',
410
            show=show)
411
412
413
414
415
416
417
418
419
420
421
422
423
424
    elif box_mode == Box3DMode.DEPTH:
        if 'calib' not in data.keys():
            raise NotImplementedError(
                'camera calibration information is not provided')

        show_bboxes = DepthInstance3DBoxes(pred_bboxes, origin=(0.5, 0.5, 0))

        show_multi_modality_result(
            img,
            None,
            show_bboxes,
            data['calib'][0],
            out_dir,
            file_name,
425
            box_mode='depth',
426
            img_metas=data['img_metas'][0][0],
427
            show=show)
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
    elif box_mode == Box3DMode.CAM:
        if 'cam_intrinsic' not in data['img_metas'][0][0]:
            raise NotImplementedError(
                'camera intrinsic matrix is not provided')

        from mmdet3d.core.bbox import mono_cam_box2vis
        show_bboxes = CameraInstance3DBoxes(
            pred_bboxes, box_dim=pred_bboxes.shape[-1], origin=(0.5, 1.0, 0.5))
        # TODO: remove the hack of box from NuScenesMonoDataset
        show_bboxes = mono_cam_box2vis(show_bboxes)

        show_multi_modality_result(
            img,
            None,
            show_bboxes,
            data['img_metas'][0][0]['cam_intrinsic'],
            out_dir,
            file_name,
            box_mode='camera',
            show=show)
448
449
450
451
    else:
        raise NotImplementedError(
            f'visualization of {box_mode} bbox is not supported')

452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
    return file_name


def show_result_meshlab(data,
                        result,
                        out_dir,
                        score_thr=0.0,
                        show=False,
                        snapshot=False,
                        task='det',
                        palette=None):
    """Show result by meshlab.

    Args:
        data (dict): Contain data from pipeline.
        result (dict): Predicted result from model.
        out_dir (str): Directory to save visualized result.
        score_thr (float): Minimum score of bboxes to be shown. Default: 0.0
        show (bool): Visualize the results online. Defaults to False.
        snapshot (bool): Whether to save the online results. Defaults to False.
        task (str): Distinguish which task result to visualize. Currently we
            support 3D detection, multi-modality detection and 3D segmentation.
            Defaults to 'det'.
        palette (list[list[int]]] | np.ndarray | None): The palette of
                segmentation map. If None is given, random palette will be
                generated. Defaults to None.
    """
479
    assert task in ['det', 'multi_modality-det', 'seg', 'mono-det'], \
480
481
482
        f'unsupported visualization task {task}'
    assert out_dir is not None, 'Expect out_dir, got none.'

483
    if task in ['det', 'multi_modality-det']:
484
485
486
        file_name = show_det_result_meshlab(data, result, out_dir, score_thr,
                                            show, snapshot)

487
    if task in ['seg']:
488
489
490
        file_name = show_seg_result_meshlab(data, result, out_dir, palette,
                                            show, snapshot)

491
    if task in ['multi_modality-det', 'mono-det']:
492
493
494
        file_name = show_proj_det_result_meshlab(data, result, out_dir,
                                                 score_thr, show, snapshot)

495
    return out_dir, file_name