inference.py 9.3 KB
Newer Older
wuyuefeng's avatar
Demo  
wuyuefeng committed
1
import mmcv
2
3
import numpy as np
import re
wuyuefeng's avatar
Demo  
wuyuefeng committed
4
import torch
zhangwenwei's avatar
zhangwenwei committed
5
from copy import deepcopy
wuyuefeng's avatar
Demo  
wuyuefeng committed
6
7
from mmcv.parallel import collate, scatter
from mmcv.runner import load_checkpoint
zhangwenwei's avatar
zhangwenwei committed
8
from os import path as osp
wuyuefeng's avatar
Demo  
wuyuefeng committed
9

10
11
12
from mmdet3d.core import (Box3DMode, DepthInstance3DBoxes,
                          LiDARInstance3DBoxes, show_multi_modality_result,
                          show_result)
wuyuefeng's avatar
Demo  
wuyuefeng committed
13
14
15
16
17
from mmdet3d.core.bbox import get_box_type
from mmdet3d.datasets.pipelines import Compose
from mmdet3d.models import build_detector


18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
def convert_SyncBN(config):
    """Convert config's naiveSyncBN to BN.

    Args:
         config (str or :obj:`mmcv.Config`): Config file path or the config
            object.
    """
    if isinstance(config, dict):
        for item in config:
            if item == 'norm_cfg':
                config[item]['type'] = config[item]['type']. \
                                    replace('naiveSyncBN', 'BN')
            else:
                convert_SyncBN(config[item])


wuyuefeng's avatar
Demo  
wuyuefeng committed
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
def init_detector(config, checkpoint=None, device='cuda:0'):
    """Initialize a detector from config file.

    Args:
        config (str or :obj:`mmcv.Config`): Config file path or the config
            object.
        checkpoint (str, optional): Checkpoint path. If left as None, the model
            will not load any weights.
        device (str): Device to use.

    Returns:
        nn.Module: The constructed detector.
    """
    if isinstance(config, str):
        config = mmcv.Config.fromfile(config)
    elif not isinstance(config, mmcv.Config):
        raise TypeError('config must be a filename or Config object, '
                        f'but got {type(config)}')
    config.model.pretrained = None
53
    convert_SyncBN(config.model)
54
55
    config.model.train_cfg = None
    model = build_detector(config.model, test_cfg=config.get('test_cfg'))
wuyuefeng's avatar
Demo  
wuyuefeng committed
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
    if checkpoint is not None:
        checkpoint = load_checkpoint(model, checkpoint)
        if 'CLASSES' in checkpoint['meta']:
            model.CLASSES = checkpoint['meta']['CLASSES']
        else:
            model.CLASSES = config.class_names
    model.cfg = config  # save the config in the model for convenience
    model.to(device)
    model.eval()
    return model


def inference_detector(model, pcd):
    """Inference point cloud with the detector.

    Args:
        model (nn.Module): The loaded detector.
        pcd (str): Point cloud files.

    Returns:
        tuple: Predicted results and data from pipeline.
    """
    cfg = model.cfg
    device = next(model.parameters()).device  # model device
    # build the data pipeline
    test_pipeline = deepcopy(cfg.data.test.pipeline)
    test_pipeline = Compose(test_pipeline)
    box_type_3d, box_mode_3d = get_box_type(cfg.data.test.box_type_3d)
    data = dict(
        pts_filename=pcd,
        box_type_3d=box_type_3d,
        box_mode_3d=box_mode_3d,
88
89
90
        sweeps=[],
        # set timestamp = 0
        timestamp=[0],
wuyuefeng's avatar
Demo  
wuyuefeng committed
91
92
93
94
95
96
97
98
99
100
101
102
103
        img_fields=[],
        bbox3d_fields=[],
        pts_mask_fields=[],
        pts_seg_fields=[],
        bbox_fields=[],
        mask_fields=[],
        seg_fields=[])
    data = test_pipeline(data)
    data = collate([data], samples_per_gpu=1)
    if next(model.parameters()).is_cuda:
        # scatter to specified GPU
        data = scatter(data, [device.index])[0]
    else:
yinchimaoliang's avatar
yinchimaoliang committed
104
105
106
        # this is a workaround to avoid the bug of MMDataParallel
        data['img_metas'] = data['img_metas'][0].data
        data['points'] = data['points'][0].data
wuyuefeng's avatar
Demo  
wuyuefeng committed
107
108
109
110
111
112
    # forward the model
    with torch.no_grad():
        result = model(return_loss=False, rescale=True, **data)
    return result, data


113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
def inference_multi_modality_detector(model, pcd, image, ann_file):
    """Inference point cloud with the multimodality detector.

    Args:
        model (nn.Module): The loaded detector.
        pcd (str): Point cloud files.
        image (str): Image files.
        ann_file (str): Annotation files.

    Returns:
        tuple: Predicted results and data from pipeline.
    """
    cfg = model.cfg
    device = next(model.parameters()).device  # model device
    # build the data pipeline
    test_pipeline = deepcopy(cfg.data.test.pipeline)
    test_pipeline = Compose(test_pipeline)
    box_type_3d, box_mode_3d = get_box_type(cfg.data.test.box_type_3d)
    # get data info containing calib
    data_infos = mmcv.load(ann_file)
    image_idx = int(re.findall(r'\d+', image)[-1])  # xxx/sunrgbd_000017.jpg
    for x in data_infos:
        if int(x['image']['image_idx']) != image_idx:
            continue
        info = x
        break
    data = dict(
        pts_filename=pcd,
        img_prefix=osp.dirname(image),
        img_info=dict(filename=osp.basename(image)),
        box_type_3d=box_type_3d,
        box_mode_3d=box_mode_3d,
        img_fields=[],
        bbox3d_fields=[],
        pts_mask_fields=[],
        pts_seg_fields=[],
        bbox_fields=[],
        mask_fields=[],
        seg_fields=[])

    # depth map points to image conversion
    if box_mode_3d == Box3DMode.DEPTH:
        data.update(dict(calib=info['calib']))

    data = test_pipeline(data)

    # LiDAR to image conversion
    if box_mode_3d == Box3DMode.LIDAR:
        rect = info['calib']['R0_rect'].astype(np.float32)
        Trv2c = info['calib']['Tr_velo_to_cam'].astype(np.float32)
        P2 = info['calib']['P2'].astype(np.float32)
        lidar2img = P2 @ rect @ Trv2c
        data['img_metas'][0].data['lidar2img'] = lidar2img
    elif box_mode_3d == Box3DMode.DEPTH:
        data['calib'][0]['Rt'] = data['calib'][0]['Rt'].astype(np.float32)
        data['calib'][0]['K'] = data['calib'][0]['K'].astype(np.float32)

    data = collate([data], samples_per_gpu=1)
    if next(model.parameters()).is_cuda:
        # scatter to specified GPU
        data = scatter(data, [device.index])[0]
    else:
        # this is a workaround to avoid the bug of MMDataParallel
        data['img_metas'] = data['img_metas'][0].data
        data['points'] = data['points'][0].data
        data['img'] = data['img'][0].data
        if box_mode_3d == Box3DMode.DEPTH:
            data['calib'] = data['calib'][0].data

    # forward the model
    with torch.no_grad():
        result = model(return_loss=False, rescale=True, **data)
    return result, data


188
189
190
191
192
193
def show_result_meshlab(data,
                        result,
                        out_dir,
                        score_thr=0.0,
                        show=False,
                        snapshot=False):
wuyuefeng's avatar
Demo  
wuyuefeng committed
194
195
196
197
198
199
    """Show result by meshlab.

    Args:
        data (dict): Contain data from pipeline.
        result (dict): Predicted result from model.
        out_dir (str): Directory to save visualized result.
200
        score_thr (float): Minimum score of bboxes to be shown. Default: 0.0
201
202
        show (bool): Visualize the results online. Defaults to False.
        snapshot (bool): Whether to save the online results. Defaults to False.
wuyuefeng's avatar
Demo  
wuyuefeng committed
203
204
205
206
207
208
209
    """
    points = data['points'][0][0].cpu().numpy()
    pts_filename = data['img_metas'][0][0]['pts_filename']
    file_name = osp.split(pts_filename)[-1].split('.')[0]

    assert out_dir is not None, 'Expect out_dir, got none.'

210
211
    if 'pts_bbox' in result[0].keys():
        pred_bboxes = result[0]['pts_bbox']['boxes_3d'].tensor.numpy()
212
        pred_scores = result[0]['pts_bbox']['scores_3d'].numpy()
213
214
    else:
        pred_bboxes = result[0]['boxes_3d'].tensor.numpy()
215
216
217
218
219
220
221
        pred_scores = result[0]['scores_3d'].numpy()

    # filter out low score bboxes for visualization
    if score_thr > 0:
        inds = pred_scores > score_thr
        pred_bboxes = pred_bboxes[inds]

wuyuefeng's avatar
Demo  
wuyuefeng committed
222
    # for now we convert points into depth mode
223
224
    box_mode = data['img_metas'][0][0]['box_mode_3d']
    if box_mode != Box3DMode.DEPTH:
wuyuefeng's avatar
Demo  
wuyuefeng committed
225
226
        points = points[..., [1, 0, 2]]
        points[..., 0] *= -1
227
228
229
        show_bboxes = Box3DMode.convert(pred_bboxes, box_mode, Box3DMode.DEPTH)
    else:
        show_bboxes = deepcopy(pred_bboxes)
230
231
232
233
234
235
236
237
    show_result(
        points,
        None,
        show_bboxes,
        out_dir,
        file_name,
        show=show,
        snapshot=snapshot)
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258

    if 'img' not in data.keys():
        return out_dir, file_name

    # multi-modality visualization
    # project 3D bbox to 2D image plane
    if box_mode == Box3DMode.LIDAR:
        if 'lidar2img' not in data['img_metas'][0][0]:
            raise NotImplementedError(
                'LiDAR to image transformation matrix is not provided')

        show_bboxes = LiDARInstance3DBoxes(pred_bboxes, origin=(0.5, 0.5, 0))
        img = mmcv.imread(data['img_metas'][0][0]['filename'])

        show_multi_modality_result(
            img,
            None,
            show_bboxes,
            data['img_metas'][0][0]['lidar2img'],
            out_dir,
            file_name,
259
            show=show)
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
    elif box_mode == Box3DMode.DEPTH:
        if 'calib' not in data.keys():
            raise NotImplementedError(
                'camera calibration information is not provided')

        show_bboxes = DepthInstance3DBoxes(pred_bboxes, origin=(0.5, 0.5, 0))
        img = mmcv.imread(data['img_metas'][0][0]['filename'])

        show_multi_modality_result(
            img,
            None,
            show_bboxes,
            data['calib'][0],
            out_dir,
            file_name,
            depth_bbox=True,
            img_metas=data['img_metas'][0][0],
277
            show=show)
278
279
280
281
    else:
        raise NotImplementedError(
            f'visualization of {box_mode} bbox is not supported')

282
    return out_dir, file_name