README.md 15.8 KB
Newer Older
zhangwenwei's avatar
zhangwenwei committed
1
<div align="center">
zhangwenwei's avatar
zhangwenwei committed
2
  <img src="resources/mmdet3d-logo.png" width="600"/>
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
  <div>&nbsp;</div>
  <div align="center">
    <b><font size="5">OpenMMLab website</font></b>
    <sup>
      <a href="https://openmmlab.com">
        <i><font size="4">HOT</font></i>
      </a>
    </sup>
    &nbsp;&nbsp;&nbsp;&nbsp;
    <b><font size="5">OpenMMLab platform</font></b>
    <sup>
      <a href="https://platform.openmmlab.com">
        <i><font size="4">TRY IT OUT</font></i>
      </a>
    </sup>
  </div>
  <div>&nbsp;</div>
zhangwenwei's avatar
zhangwenwei committed
20
</div>
zhangwenwei's avatar
zhangwenwei committed
21

Wenwei Zhang's avatar
Wenwei Zhang committed
22
23
24
25
26
[![docs](https://img.shields.io/badge/docs-latest-blue)](https://mmdetection3d.readthedocs.io/en/latest/)
[![badge](https://github.com/open-mmlab/mmdetection3d/workflows/build/badge.svg)](https://github.com/open-mmlab/mmdetection3d/actions)
[![codecov](https://codecov.io/gh/open-mmlab/mmdetection3d/branch/master/graph/badge.svg)](https://codecov.io/gh/open-mmlab/mmdetection3d)
[![license](https://img.shields.io/github/license/open-mmlab/mmdetection3d.svg)](https://github.com/open-mmlab/mmdetection3d/blob/master/LICENSE)

Tai-Wang's avatar
Tai-Wang committed
27
**News**: We released the codebase v1.0.0rc3.
Tai-Wang's avatar
Tai-Wang committed
28

Tai-Wang's avatar
Tai-Wang committed
29
Note: We are going through large refactoring to provide simpler and more unified usage of many modules.
Tai-Wang's avatar
Tai-Wang committed
30

31
The compatibilities of models are broken due to the unification and simplification of coordinate systems. For now, most models are benchmarked with similar performance, though few models are still being benchmarked. In this version, we update some of the model checkpoints after the refactor of coordinate systems. See more details in the [Changelog](docs/en/changelog.md).
Tai-Wang's avatar
Tai-Wang committed
32

Tai-Wang's avatar
Tai-Wang committed
33
In the [nuScenes 3D detection challenge](https://www.nuscenes.org/object-detection?externalData=all&mapData=all&modalities=Any) of the 5th AI Driving Olympics in NeurIPS 2020, we obtained the best PKL award and the second runner-up by multi-modality entry, and the best vision-only results.
34
35

Code and models for the best vision-only method, [FCOS3D](https://arxiv.org/abs/2104.10956), have been released. Please stay tuned for [MoCa](https://arxiv.org/abs/2012.12741).
zhangwenwei's avatar
zhangwenwei committed
36

VVsssssk's avatar
VVsssssk committed
37
38
MMDeploy has supported some MMDetection3d model deployment.

zhangwenwei's avatar
zhangwenwei committed
39
Documentation: https://mmdetection3d.readthedocs.io/
zhangwenwei's avatar
zhangwenwei committed
40
41
42

## Introduction

43
44
45
English | [简体中文](README_zh-CN.md)

The master branch works with **PyTorch 1.3+**.
zhangwenwei's avatar
zhangwenwei committed
46

47
MMDetection3D is an open source object detection toolbox based on PyTorch, towards the next-generation platform for general 3D detection. It is
zhangwenwei's avatar
zhangwenwei committed
48
a part of the OpenMMLab project developed by [MMLab](http://mmlab.ie.cuhk.edu.hk/).
zhangwenwei's avatar
zhangwenwei committed
49

zhangwenwei's avatar
zhangwenwei committed
50
![demo image](resources/mmdet3d_outdoor_demo.gif)
zhangwenwei's avatar
zhangwenwei committed
51
52
53

### Major features

zhangwenwei's avatar
zhangwenwei committed
54
- **Support multi-modality/single-modality detectors out of box**
zhangwenwei's avatar
zhangwenwei committed
55

56
  It directly supports multi-modality/single-modality detectors including MVXNet, VoteNet, PointPillars, etc.
zhangwenwei's avatar
zhangwenwei committed
57

zhangwenwei's avatar
zhangwenwei committed
58
- **Support indoor/outdoor 3D detection out of box**
zhangwenwei's avatar
zhangwenwei committed
59

Wenwei Zhang's avatar
Wenwei Zhang committed
60
  It directly supports popular indoor and outdoor 3D detection datasets, including ScanNet, SUNRGB-D, Waymo, nuScenes, Lyft, and KITTI.
61
  For nuScenes dataset, we also support [nuImages dataset](https://github.com/open-mmlab/mmdetection3d/tree/master/configs/nuimages).
zhangwenwei's avatar
zhangwenwei committed
62

zhangwenwei's avatar
zhangwenwei committed
63
- **Natural integration with 2D detection**
64

Wenhao Wu's avatar
Wenhao Wu committed
65
  All the about **300+ models, methods of 40+ papers**, and modules supported in [MMDetection](https://github.com/open-mmlab/mmdetection/blob/master/docs/en/model_zoo.md) can be trained or used in this codebase.
zhangwenwei's avatar
zhangwenwei committed
66

zhangwenwei's avatar
zhangwenwei committed
67
- **High efficiency**
zhangwenwei's avatar
zhangwenwei committed
68

Wenhao Wu's avatar
Wenhao Wu committed
69
  It trains faster than other codebases. The main results are as below. Details can be found in [benchmark.md](./docs/en/benchmarks.md). We compare the number of samples trained per second (the higher, the better). The models that are not supported by other codebases are marked by `×`.
zhangwenwei's avatar
zhangwenwei committed
70

71
72
73
74
75
76
77
  |       Methods       | MMDetection3D | [OpenPCDet](https://github.com/open-mmlab/OpenPCDet) | [votenet](https://github.com/facebookresearch/votenet) | [Det3D](https://github.com/poodarchu/Det3D) |
  | :-----------------: | :-----------: | :--------------------------------------------------: | :----------------------------------------------------: | :-----------------------------------------: |
  |       VoteNet       |      358      |                          ×                           |                           77                           |                      ×                      |
  |  PointPillars-car   |      141      |                          ×                           |                           ×                            |                     140                     |
  | PointPillars-3class |      107      |                          44                          |                           ×                            |                      ×                      |
  |       SECOND        |      40       |                          30                          |                           ×                            |                      ×                      |
  |       Part-A2       |      17       |                          14                          |                           ×                            |                      ×                      |
Wenwei Zhang's avatar
Wenwei Zhang committed
78
79

Like [MMDetection](https://github.com/open-mmlab/mmdetection) and [MMCV](https://github.com/open-mmlab/mmcv), MMDetection3D can also be used as a library to support different projects on top of it.
zhangwenwei's avatar
zhangwenwei committed
80
81
82
83
84

## License

This project is released under the [Apache 2.0 license](LICENSE).

zhangwenwei's avatar
zhangwenwei committed
85
## Changelog
zhangwenwei's avatar
zhangwenwei committed
86

Tai-Wang's avatar
Tai-Wang committed
87
v1.0.0rc3 was released in 8/6/2022.
Tai-Wang's avatar
Tai-Wang committed
88

Tai-Wang's avatar
Tai-Wang committed
89
- Support [SA-SSD](https://openaccess.thecvf.com/content_CVPR_2020/papers/He_Structure_Aware_Single-Stage_3D_Object_Detection_From_Point_Cloud_CVPR_2020_paper.pdf)
Tai-Wang's avatar
Tai-Wang committed
90

Wenhao Wu's avatar
Wenhao Wu committed
91
Please refer to [changelog.md](docs/en/changelog.md) for details and release history.
zhangwenwei's avatar
zhangwenwei committed
92
93
94

## Benchmark and model zoo

Wenhao Wu's avatar
Wenhao Wu committed
95
Results and models are available in the [model zoo](docs/en/model_zoo.md).
zhangwenwei's avatar
zhangwenwei committed
96

97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
<div align="center">
  <b>Components</b>
</div>
<table align="center">
  <tbody>
    <tr align="center" valign="bottom">
      <td>
        <b>Backbones</b>
      </td>
      <td>
        <b>Heads</b>
      </td>
      <td>
        <b>Features</b>
      </td>
    </tr>
    <tr valign="top">
      <td>
      <ul>
        <li><a href="configs/pointnet2">PointNet (CVPR'2017)</a></li>
        <li><a href="configs/pointnet2">PointNet++ (NeurIPS'2017)</a></li>
        <li><a href="configs/regnet">RegNet (CVPR'2020)</a></li>
        <li><a href="configs/dgcnn">DGCNN (TOG'2019)</a></li>
        <li>DLA (CVPR'2018)</li>
      </ul>
      </td>
      <td>
      <ul>
        <li><a href="configs/free_anchor">FreeAnchor (NeurIPS'2019)</a></li>
      </ul>
      </td>
      <td>
      <ul>
        <li><a href="configs/dynamic_voxelization">Dynamic Voxelization (CoRL'2019)</a></li>
      </ul>
      </td>
    </tr>
</td>
    </tr>
  </tbody>
</table>

<div align="center">
  <b>Architectures</b>
</div>
<table align="center">
  <tbody>
    <tr align="center" valign="middle">
      <td>
        <b>3D Object Detection</b>
      </td>
      <td>
        <b>Monocular 3D Object Detection</b>
      </td>
      <td>
        <b>Multi-modal 3D Object Detection</b>
      </td>
      <td>
        <b>3D Semantic Segmentation</b>
      </td>
    </tr>
    <tr valign="top">
      <td>
        <li><b>Outdoor</b></li>
        <ul>
            <li><a href="configs/second">SECOND (Sensor'2018)</a></li>
            <li><a href="configs/pointpillars">PointPillars (CVPR'2019)</a></li>
            <li><a href="configs/ssn">SSN (ECCV'2020)</a></li>
            <li><a href="configs/3dssd">3DSSD (CVPR'2020)</a></li>
Tai-Wang's avatar
Tai-Wang committed
166
            <li><a href="configs/sassd">SA-SSD (CVPR'2020)</a></li>
ChaimZhu's avatar
ChaimZhu committed
167
            <li><a href="configs/point_rcnn">PointRCNN (CVPR'2019)</a></li>
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
            <li><a href="configs/parta2">Part-A2 (TPAMI'2020)</a></li>
            <li><a href="configs/centerpoint">CenterPoint (CVPR'2021)</a></li>
        </ul>
        <li><b>Indoor</b></li>
        <ul>
            <li><a href="configs/votenet">VoteNet (ICCV'2019)</a></li>
            <li><a href="configs/h3dnet">H3DNet (ECCV'2020)</a></li>
            <li><a href="configs/groupfree3d">Group-Free-3D (ICCV'2021)</a></li>
      </ul>
      </td>
      <td>
        <li><b>Outdoor</b></li>
        <ul>
          <li><a href="configs/imvoxelnet">ImVoxelNet (WACV'2022)</a></li>
          <li><a href="configs/smoke">SMOKE (CVPRW'2020)</a></li>
          <li><a href="configs/fcos3d">FCOS3D (ICCVW'2021)</a></li>
          <li><a href="configs/pgd">PGD (CoRL'2021)</a></li>
          <li><a href="configs/monoflex">MonoFlex (CVPR'2021)</a></li>
        </ul>
      </td>
      <td>
        <li><b>Outdoor</b></li>
        <ul>
          <li><a href="configs/mvxnet">MVXNet (ICRA'2019)</a></li>
        </ul>
        <li><b>Indoor</b></li>
        <ul>
          <li><a href="configs/imvotenet">ImVoteNet (CVPR'2020)</a></li>
        </ul>
      </td>
      <td>
        <li><b>Indoor</b></li>
        <ul>
          <li><a href="configs/pointnet2">PointNet++ (NeurIPS'2017)</a></li>
          <li><a href="configs/paconv">PAConv (CVPR'2021)</a></li>
          <li><a href="configs/dgcnn">DGCNN (TOG'2019)</a></li>
        </ul>
      </ul>
      </td>
    </tr>
</td>
    </tr>
  </tbody>
</table>
212

213
214
215
216
217
218
219
220
|               | ResNet | ResNeXt | SENet | PointNet++ | DGCNN | HRNet | RegNetX | Res2Net | DLA |
| ------------- | :----: | :-----: | :---: | :--------: | :---: | :---: | :-----: | :-----: | :-: |
| SECOND        |   ☐    |    ☐    |   ☐   |     ✗      |   ✗   |   ☐   |    ✓    |    ☐    |  ✗  |
| PointPillars  |   ☐    |    ☐    |   ☐   |     ✗      |   ✗   |   ☐   |    ✓    |    ☐    |  ✗  |
| FreeAnchor    |   ☐    |    ☐    |   ☐   |     ✗      |   ✗   |   ☐   |    ✓    |    ☐    |  ✗  |
| VoteNet       |   ✗    |    ✗    |   ✗   |     ✓      |   ✗   |   ✗   |    ✗    |    ✗    |  ✗  |
| H3DNet        |   ✗    |    ✗    |   ✗   |     ✓      |   ✗   |   ✗   |    ✗    |    ✗    |  ✗  |
| 3DSSD         |   ✗    |    ✗    |   ✗   |     ✓      |   ✗   |   ✗   |    ✗    |    ✗    |  ✗  |
Tai-Wang's avatar
Tai-Wang committed
221
222
223
| Part-A2       |   ☐    |    ☐    |   ☐   |     ✗      |   ✗   |   ☐   |    ☐    |    ☐    |  ✗  |
| MVXNet        |   ☐    |    ☐    |   ☐   |     ✗      |   ✗   |   ☐   |    ☐    |    ☐    |  ✗  |
| CenterPoint   |   ☐    |    ☐    |   ☐   |     ✗      |   ✗   |   ☐   |    ☐    |    ☐    |  ✗  |
224
225
226
227
228
229
230
231
232
233
234
| SSN           |   ☐    |    ☐    |   ☐   |     ✗      |   ✗   |   ☐   |    ✓    |    ☐    |  ✗  |
| ImVoteNet     |   ✗    |    ✗    |   ✗   |     ✓      |   ✗   |   ✗   |    ✗    |    ✗    |  ✗  |
| FCOS3D        |   ✓    |    ☐    |   ☐   |     ✗      |   ✗   |   ☐   |    ☐    |    ☐    |  ✗  |
| PointNet++    |   ✗    |    ✗    |   ✗   |     ✓      |   ✗   |   ✗   |    ✗    |    ✗    |  ✗  |
| Group-Free-3D |   ✗    |    ✗    |   ✗   |     ✓      |   ✗   |   ✗   |    ✗    |    ✗    |  ✗  |
| ImVoxelNet    |   ✓    |    ✗    |   ✗   |     ✗      |   ✗   |   ✗   |    ✗    |    ✗    |  ✗  |
| PAConv        |   ✗    |    ✗    |   ✗   |     ✓      |   ✗   |   ✗   |    ✗    |    ✗    |  ✗  |
| DGCNN         |   ✗    |    ✗    |   ✗   |     ✗      |   ✓   |   ✗   |    ✗    |    ✗    |  ✗  |
| SMOKE         |   ✗    |    ✗    |   ✗   |     ✗      |   ✗   |   ✗   |    ✗    |    ✗    |  ✓  |
| PGD           |   ✓    |    ☐    |   ☐   |     ✗      |   ✗   |   ☐   |    ☐    |    ☐    |  ✗  |
| MonoFlex      |   ✗    |    ✗    |   ✗   |     ✗      |   ✗   |   ✗   |    ✗    |    ✗    |  ✓  |
Tai-Wang's avatar
Tai-Wang committed
235
| SA-SSD        |   ☐    |    ☐    |   ☐   |     ✗      |   ✗   |   ☐   |    ☐    |    ☐    |  ✗  |
zhangwenwei's avatar
zhangwenwei committed
236

Wenhao Wu's avatar
Wenhao Wu committed
237
**Note:** All the about **300+ models, methods of 40+ papers** in 2D detection supported by [MMDetection](https://github.com/open-mmlab/mmdetection/blob/master/docs/en/model_zoo.md) can be trained or used in this codebase.
zhangwenwei's avatar
zhangwenwei committed
238
239
240

## Installation

Wenhao Wu's avatar
Wenhao Wu committed
241
Please refer to [getting_started.md](docs/en/getting_started.md) for installation.
zhangwenwei's avatar
zhangwenwei committed
242
243
244

## Get Started

Wenhao Wu's avatar
Wenhao Wu committed
245
Please see [getting_started.md](docs/en/getting_started.md) for the basic usage of MMDetection3D. We provide guidance for quick run [with existing dataset](docs/en/1_exist_data_model.md) and [with customized dataset](docs/en/2_new_data_model.md) for beginners. There are also tutorials for [learning configuration systems](docs/en/tutorials/config.md), [adding new dataset](docs/en/tutorials/customize_dataset.md), [designing data pipeline](docs/en/tutorials/data_pipeline.md), [customizing models](docs/en/tutorials/customize_models.md), [customizing runtime settings](docs/en/tutorials/customize_runtime.md) and [Waymo dataset](docs/en/datasets/waymo_det.md).
zhangwenwei's avatar
zhangwenwei committed
246

Wenhao Wu's avatar
Wenhao Wu committed
247
Please refer to [FAQ](docs/en/faq.md) for frequently asked questions. When updating the version of MMDetection3D, please also check the [compatibility doc](docs/en/compatibility.md) to be aware of the BC-breaking updates introduced in each version.
248

VVsssssk's avatar
VVsssssk committed
249
250
251
## Model deployment

Now MMDeploy has supported some MMDetection3D model deployment. Please refer to [model_deployment.md](docs/en/tutorials/model_deployment.md) for more details.
252

253
254
255
256
257
258
## Citation

If you find this project useful in your research, please consider cite:

```latex
@misc{mmdet3d2020,
Ziyi Wu's avatar
Ziyi Wu committed
259
    title={{MMDetection3D: OpenMMLab} next-generation platform for general {3D} object detection},
260
261
262
263
264
265
    author={MMDetection3D Contributors},
    howpublished = {\url{https://github.com/open-mmlab/mmdetection3d}},
    year={2020}
}
```

zhangwenwei's avatar
zhangwenwei committed
266
267
## Contributing

zhangwenwei's avatar
zhangwenwei committed
268
We appreciate all contributions to improve MMDetection3D. Please refer to [CONTRIBUTING.md](.github/CONTRIBUTING.md) for the contributing guideline.
zhangwenwei's avatar
zhangwenwei committed
269
270
271

## Acknowledgement

zhangwenwei's avatar
zhangwenwei committed
272
MMDetection3D is an open source project that is contributed by researchers and engineers from various colleges and companies. We appreciate all the contributors as well as users who give valuable feedbacks.
zhangwenwei's avatar
zhangwenwei committed
273
We wish that the toolbox and benchmark could serve the growing research community by providing a flexible toolkit to reimplement existing methods and develop their own new 3D detectors.
274
275
276
277

## Projects in OpenMMLab

- [MMCV](https://github.com/open-mmlab/mmcv): OpenMMLab foundational library for computer vision.
278
- [MIM](https://github.com/open-mmlab/mim): MIM installs OpenMMLab packages.
279
280
- [MMClassification](https://github.com/open-mmlab/mmclassification): OpenMMLab image classification toolbox and benchmark.
- [MMDetection](https://github.com/open-mmlab/mmdetection): OpenMMLab detection toolbox and benchmark.
281
282
- [MMDetection3D](https://github.com/open-mmlab/mmdetection3d): OpenMMLab's next-generation platform for general 3D object detection.
- [MMRotate](https://github.com/open-mmlab/mmrotate): OpenMMLab rotated object detection toolbox and benchmark.
283
- [MMSegmentation](https://github.com/open-mmlab/mmsegmentation): OpenMMLab semantic segmentation toolbox and benchmark.
284
285
286
287
288
289
- [MMOCR](https://github.com/open-mmlab/mmocr): OpenMMLab text detection, recognition, and understanding toolbox.
- [MMPose](https://github.com/open-mmlab/mmpose): OpenMMLab pose estimation toolbox and benchmark.
- [MMHuman3D](https://github.com/open-mmlab/mmhuman3d): OpenMMLab 3D human parametric model toolbox and benchmark.
- [MMSelfSup](https://github.com/open-mmlab/mmselfsup): OpenMMLab self-supervised learning toolbox and benchmark.
- [MMRazor](https://github.com/open-mmlab/mmrazor): OpenMMLab model compression toolbox and benchmark.
- [MMFewShot](https://github.com/open-mmlab/mmfewshot): OpenMMLab fewshot learning toolbox and benchmark.
290
291
- [MMAction2](https://github.com/open-mmlab/mmaction2): OpenMMLab's next-generation action understanding toolbox and benchmark.
- [MMTracking](https://github.com/open-mmlab/mmtracking): OpenMMLab video perception toolbox and benchmark.
292
- [MMFlow](https://github.com/open-mmlab/mmflow): OpenMMLab optical flow toolbox and benchmark.
293
- [MMEditing](https://github.com/open-mmlab/mmediting): OpenMMLab image and video editing toolbox.
294
- [MMGeneration](https://github.com/open-mmlab/mmgeneration): OpenMMLab image and video generative models toolbox.
295
- [MMDeploy](https://github.com/open-mmlab/mmdeploy): OpenMMLab model deployment framework.