loading.py 36.8 KB
Newer Older
dingchang's avatar
dingchang committed
1
# Copyright (c) OpenMMLab. All rights reserved.
2
3
import copy
from typing import List, Optional, Union
4

zhangwenwei's avatar
zhangwenwei committed
5
import mmcv
6
import mmengine
zhangwenwei's avatar
zhangwenwei committed
7
import numpy as np
8
from mmcv.transforms import LoadImageFromFile
9
from mmcv.transforms.base import BaseTransform
10
from mmdet.datasets.transforms import LoadAnnotations
zhangwenwei's avatar
zhangwenwei committed
11

12
from mmdet3d.registry import TRANSFORMS
zhangshilong's avatar
zhangshilong committed
13
from mmdet3d.structures.points import BasePoints, get_points_type
zhangwenwei's avatar
zhangwenwei committed
14
15


16
@TRANSFORMS.register_module()
17
class LoadMultiViewImageFromFiles(BaseTransform):
zhangwenwei's avatar
zhangwenwei committed
18
    """Load multi channel images from a list of separate channel files.
zhangwenwei's avatar
zhangwenwei committed
19

liyinhao's avatar
liyinhao committed
20
21
22
    Expects results['img_filename'] to be a list of filenames.

    Args:
23
        to_float32 (bool): Whether to convert the img to float32.
liyinhao's avatar
liyinhao committed
24
            Defaults to False.
25
26
27
28
29
30
31
32
33
        color_type (str): Color type of the file. Defaults to 'unchanged'.
        file_client_args (dict): Arguments to instantiate a FileClient.
            See :class:`mmengine.fileio.FileClient` for details.
            Defaults to dict(backend='disk').
        num_views (int): Number of view in a frame. Defaults to 5.
        num_ref_frames (int): Number of frame in loading. Defaults to -1.
        test_mode (bool): Whether is test mode in loading. Defaults to False.
        set_default_scale (bool): Whether to set default scale.
            Defaults to True.
zhangwenwei's avatar
zhangwenwei committed
34
    """
zhangwenwei's avatar
zhangwenwei committed
35

36
37
    def __init__(self,
                 to_float32: bool = False,
38
39
40
41
42
43
                 color_type: str = 'unchanged',
                 file_client_args: dict = dict(backend='disk'),
                 num_views: int = 5,
                 num_ref_frames: int = -1,
                 test_mode: bool = False,
                 set_default_scale: bool = True) -> None:
zhangwenwei's avatar
zhangwenwei committed
44
45
        self.to_float32 = to_float32
        self.color_type = color_type
46
47
48
49
50
51
52
53
54
55
56
        self.file_client_args = file_client_args.copy()
        self.file_client = None
        self.num_views = num_views
        # num_ref_frames is used for multi-sweep loading
        self.num_ref_frames = num_ref_frames
        # when test_mode=False, we randomly select previous frames
        # otherwise, select the earliest one
        self.test_mode = test_mode
        self.set_default_scale = set_default_scale

    def transform(self, results: dict) -> Optional[dict]:
57
58
59
60
61
62
        """Call function to load multi-view image from files.

        Args:
            results (dict): Result dict containing multi-view image filenames.

        Returns:
63
            dict: The result dict containing the multi-view image data.
64
            Added keys and values are described below.
65
66
67
68
69
70
71
72
73

                - filename (str): Multi-view image filenames.
                - img (np.ndarray): Multi-view image arrays.
                - img_shape (tuple[int]): Shape of multi-view image arrays.
                - ori_shape (tuple[int]): Shape of original image arrays.
                - pad_shape (tuple[int]): Shape of padded image arrays.
                - scale_factor (float): Scale factor.
                - img_norm_cfg (dict): Normalization configuration of images.
        """
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
        # TODO: consider split the multi-sweep part out of this pipeline
        # Derive the mask and transform for loading of multi-sweep data
        if self.num_ref_frames > 0:
            # init choice with the current frame
            init_choice = np.array([0], dtype=np.int64)
            num_frames = len(results['img_filename']) // self.num_views - 1
            if num_frames == 0:  # no previous frame, then copy cur frames
                choices = np.random.choice(
                    1, self.num_ref_frames, replace=True)
            elif num_frames >= self.num_ref_frames:
                # NOTE: suppose the info is saved following the order
                # from latest to earlier frames
                if self.test_mode:
                    choices = np.arange(num_frames - self.num_ref_frames,
                                        num_frames) + 1
                # NOTE: +1 is for selecting previous frames
                else:
                    choices = np.random.choice(
                        num_frames, self.num_ref_frames, replace=False) + 1
            elif num_frames > 0 and num_frames < self.num_ref_frames:
                if self.test_mode:
                    base_choices = np.arange(num_frames) + 1
                    random_choices = np.random.choice(
                        num_frames,
                        self.num_ref_frames - num_frames,
                        replace=True) + 1
                    choices = np.concatenate([base_choices, random_choices])
                else:
                    choices = np.random.choice(
                        num_frames, self.num_ref_frames, replace=True) + 1
            else:
                raise NotImplementedError
            choices = np.concatenate([init_choice, choices])
            select_filename = []
            for choice in choices:
                select_filename += results['img_filename'][choice *
                                                           self.num_views:
                                                           (choice + 1) *
                                                           self.num_views]
            results['img_filename'] = select_filename
            for key in ['cam2img', 'lidar2cam']:
                if key in results:
                    select_results = []
                    for choice in choices:
                        select_results += results[key][choice *
                                                       self.num_views:(choice +
                                                                       1) *
                                                       self.num_views]
                    results[key] = select_results
            for key in ['ego2global']:
                if key in results:
                    select_results = []
                    for choice in choices:
                        select_results += [results[key][choice]]
                    results[key] = select_results
            # Transform lidar2cam to
            # [cur_lidar]2[prev_img] and [cur_lidar]2[prev_cam]
            for key in ['lidar2cam']:
                if key in results:
                    # only change matrices of previous frames
                    for choice_idx in range(1, len(choices)):
                        pad_prev_ego2global = np.eye(4)
                        prev_ego2global = results['ego2global'][choice_idx]
                        pad_prev_ego2global[:prev_ego2global.
                                            shape[0], :prev_ego2global.
                                            shape[1]] = prev_ego2global
                        pad_cur_ego2global = np.eye(4)
                        cur_ego2global = results['ego2global'][0]
                        pad_cur_ego2global[:cur_ego2global.
                                           shape[0], :cur_ego2global.
                                           shape[1]] = cur_ego2global
                        cur2prev = np.linalg.inv(pad_prev_ego2global).dot(
                            pad_cur_ego2global)
                        for result_idx in range(choice_idx * self.num_views,
                                                (choice_idx + 1) *
                                                self.num_views):
                            results[key][result_idx] = \
                                results[key][result_idx].dot(cur2prev)
        # Support multi-view images with different shapes
        # TODO: record the origin shape and padded shape
        filename, cam2img, lidar2cam = [], [], []
        for _, cam_item in results['images'].items():
            filename.append(cam_item['img_path'])
            cam2img.append(cam_item['cam2img'])
            lidar2cam.append(cam_item['lidar2cam'])
        results['filename'] = filename
        results['cam2img'] = cam2img
        results['lidar2cam'] = lidar2cam

        results['ori_cam2img'] = copy.deepcopy(results['cam2img'])

        if self.file_client is None:
166
            self.file_client = mmengine.FileClient(**self.file_client_args)
167

168
        # img is of shape (h, w, c, num_views)
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
        # h and w can be different for different views
        img_bytes = [self.file_client.get(name) for name in filename]
        imgs = [
            mmcv.imfrombytes(img_byte, flag=self.color_type)
            for img_byte in img_bytes
        ]
        # handle the image with different shape
        img_shapes = np.stack([img.shape for img in imgs], axis=0)
        img_shape_max = np.max(img_shapes, axis=0)
        img_shape_min = np.min(img_shapes, axis=0)
        assert img_shape_min[-1] == img_shape_max[-1]
        if not np.all(img_shape_max == img_shape_min):
            pad_shape = img_shape_max[:2]
        else:
            pad_shape = None
        if pad_shape is not None:
            imgs = [
                mmcv.impad(img, shape=pad_shape, pad_val=0) for img in imgs
            ]
        img = np.stack(imgs, axis=-1)
zhangwenwei's avatar
zhangwenwei committed
189
190
        if self.to_float32:
            img = img.astype(np.float32)
191

zhangwenwei's avatar
zhangwenwei committed
192
        results['filename'] = filename
193
        # unravel to list, see `DefaultFormatBundle` in formating.py
194
195
        # which will transpose each image separately and then stack into array
        results['img'] = [img[..., i] for i in range(img.shape[-1])]
zhangwenwei's avatar
zhangwenwei committed
196
197
198
199
        results['img_shape'] = img.shape
        results['ori_shape'] = img.shape
        # Set initial values for default meta_keys
        results['pad_shape'] = img.shape
200
201
        if self.set_default_scale:
            results['scale_factor'] = 1.0
zhangwenwei's avatar
zhangwenwei committed
202
203
204
205
206
        num_channels = 1 if len(img.shape) < 3 else img.shape[2]
        results['img_norm_cfg'] = dict(
            mean=np.zeros(num_channels, dtype=np.float32),
            std=np.ones(num_channels, dtype=np.float32),
            to_rgb=False)
207
208
        results['num_views'] = self.num_views
        results['num_ref_frames'] = self.num_ref_frames
zhangwenwei's avatar
zhangwenwei committed
209
210
        return results

211
    def __repr__(self) -> str:
212
        """str: Return a string that describes the module."""
213
214
        repr_str = self.__class__.__name__
        repr_str += f'(to_float32={self.to_float32}, '
215
216
217
218
        repr_str += f"color_type='{self.color_type}', "
        repr_str += f'num_views={self.num_views}, '
        repr_str += f'num_ref_frames={self.num_ref_frames}, '
        repr_str += f'test_mode={self.test_mode})'
219
        return repr_str
zhangwenwei's avatar
zhangwenwei committed
220
221


222
@TRANSFORMS.register_module()
223
224
225
226
227
class LoadImageFromFileMono3D(LoadImageFromFile):
    """Load an image from file in monocular 3D object detection. Compared to 2D
    detection, additional camera parameters need to be loaded.

    Args:
228
        kwargs (dict): Arguments are the same as those in
229
230
231
            :class:`LoadImageFromFile`.
    """

ZCMax's avatar
ZCMax committed
232
    def transform(self, results: dict) -> dict:
233
234
235
236
237
238
239
240
        """Call functions to load image and get image meta information.

        Args:
            results (dict): Result dict from :obj:`mmdet.CustomDataset`.

        Returns:
            dict: The dict contains loaded image and meta information.
        """
ZCMax's avatar
ZCMax committed
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
        # TODO: load different camera image from data info,
        # for kitti dataset, we load 'CAM2' image.
        # for nuscenes dataset, we load 'CAM_FRONT' image.

        if 'CAM2' in results['images']:
            filename = results['images']['CAM2']['img_path']
            results['cam2img'] = results['images']['CAM2']['cam2img']
        elif len(list(results['images'].keys())) == 1:
            camera_type = list(results['images'].keys())[0]
            filename = results['images'][camera_type]['img_path']
            results['cam2img'] = results['images'][camera_type]['cam2img']
        else:
            raise NotImplementedError(
                'Currently we only support load image from kitti and'
                'nuscenes datasets')

        img_bytes = self.file_client.get(filename)
        img = mmcv.imfrombytes(
            img_bytes, flag=self.color_type, backend=self.imdecode_backend)
        if self.to_float32:
            img = img.astype(np.float32)

        results['img'] = img
        results['img_shape'] = img.shape[:2]
        results['ori_shape'] = img.shape[:2]

267
268
269
        return results


270
@TRANSFORMS.register_module()
VVsssssk's avatar
VVsssssk committed
271
class LoadPointsFromMultiSweeps(BaseTransform):
zhangwenwei's avatar
zhangwenwei committed
272
    """Load points from multiple sweeps.
zhangwenwei's avatar
zhangwenwei committed
273

zhangwenwei's avatar
zhangwenwei committed
274
275
276
    This is usually used for nuScenes dataset to utilize previous sweeps.

    Args:
277
278
279
280
281
282
283
        sweeps_num (int): Number of sweeps. Defaults to 10.
        load_dim (int): Dimension number of the loaded points. Defaults to 5.
        use_dim (list[int]): Which dimension to use. Defaults to [0, 1, 2, 4].
        file_client_args (dict): Arguments to instantiate a FileClient.
            See :class:`mmengine.fileio.FileClient` for details.
            Defaults to dict(backend='disk').
        pad_empty_sweeps (bool): Whether to repeat keyframe when
284
            sweeps is empty. Defaults to False.
285
286
287
        remove_close (bool): Whether to remove close points. Defaults to False.
        test_mode (bool): If `test_mode=True`, it will not randomly sample
            sweeps but select the nearest N frames. Defaults to False.
zhangwenwei's avatar
zhangwenwei committed
288
289
    """

290
291
292
293
294
295
296
297
    def __init__(self,
                 sweeps_num: int = 10,
                 load_dim: int = 5,
                 use_dim: List[int] = [0, 1, 2, 4],
                 file_client_args: dict = dict(backend='disk'),
                 pad_empty_sweeps: bool = False,
                 remove_close: bool = False,
                 test_mode: bool = False) -> None:
zhangwenwei's avatar
zhangwenwei committed
298
        self.load_dim = load_dim
zhangwenwei's avatar
zhangwenwei committed
299
        self.sweeps_num = sweeps_num
300
        self.use_dim = use_dim
zhangwenwei's avatar
zhangwenwei committed
301
302
        self.file_client_args = file_client_args.copy()
        self.file_client = None
303
304
305
        self.pad_empty_sweeps = pad_empty_sweeps
        self.remove_close = remove_close
        self.test_mode = test_mode
zhangwenwei's avatar
zhangwenwei committed
306

307
    def _load_points(self, pts_filename: str) -> np.ndarray:
308
309
310
311
312
313
314
315
        """Private function to load point clouds data.

        Args:
            pts_filename (str): Filename of point clouds data.

        Returns:
            np.ndarray: An array containing point clouds data.
        """
zhangwenwei's avatar
zhangwenwei committed
316
        if self.file_client is None:
317
            self.file_client = mmengine.FileClient(**self.file_client_args)
zhangwenwei's avatar
zhangwenwei committed
318
319
320
321
        try:
            pts_bytes = self.file_client.get(pts_filename)
            points = np.frombuffer(pts_bytes, dtype=np.float32)
        except ConnectionError:
322
            mmengine.check_file_exist(pts_filename)
zhangwenwei's avatar
zhangwenwei committed
323
324
325
326
327
            if pts_filename.endswith('.npy'):
                points = np.load(pts_filename)
            else:
                points = np.fromfile(pts_filename, dtype=np.float32)
        return points
zhangwenwei's avatar
zhangwenwei committed
328

329
330
331
    def _remove_close(self,
                      points: Union[np.ndarray, BasePoints],
                      radius: float = 1.0) -> Union[np.ndarray, BasePoints]:
332
        """Remove point too close within a certain radius from origin.
333
334

        Args:
335
            points (np.ndarray | :obj:`BasePoints`): Sweep points.
336
            radius (float): Radius below which points are removed.
337
338
339
                Defaults to 1.0.

        Returns:
340
            np.ndarray | :obj:`BasePoints`: Points after removing.
341
        """
342
343
344
345
346
347
348
349
        if isinstance(points, np.ndarray):
            points_numpy = points
        elif isinstance(points, BasePoints):
            points_numpy = points.tensor.numpy()
        else:
            raise NotImplementedError
        x_filt = np.abs(points_numpy[:, 0]) < radius
        y_filt = np.abs(points_numpy[:, 1]) < radius
350
        not_close = np.logical_not(np.logical_and(x_filt, y_filt))
351
        return points[not_close]
352

353
    def transform(self, results: dict) -> dict:
354
355
356
        """Call function to load multi-sweep point clouds from files.

        Args:
357
            results (dict): Result dict containing multi-sweep point cloud
358
359
360
                filenames.

        Returns:
361
            dict: The result dict containing the multi-sweep points data.
362
            Updated key and value are described below.
363

364
                - points (np.ndarray | :obj:`BasePoints`): Multi-sweep point
365
                  cloud arrays.
366
        """
zhangwenwei's avatar
zhangwenwei committed
367
        points = results['points']
368
        points.tensor[:, 4] = 0
zhangwenwei's avatar
zhangwenwei committed
369
370
        sweep_points_list = [points]
        ts = results['timestamp']
VVsssssk's avatar
VVsssssk committed
371
372
373
374
375
376
377
        if 'lidar_sweeps' not in results:
            if self.pad_empty_sweeps:
                for i in range(self.sweeps_num):
                    if self.remove_close:
                        sweep_points_list.append(self._remove_close(points))
                    else:
                        sweep_points_list.append(points)
378
        else:
VVsssssk's avatar
VVsssssk committed
379
380
            if len(results['lidar_sweeps']) <= self.sweeps_num:
                choices = np.arange(len(results['lidar_sweeps']))
381
382
383
384
            elif self.test_mode:
                choices = np.arange(self.sweeps_num)
            else:
                choices = np.random.choice(
VVsssssk's avatar
VVsssssk committed
385
386
387
                    len(results['lidar_sweeps']),
                    self.sweeps_num,
                    replace=False)
388
            for idx in choices:
VVsssssk's avatar
VVsssssk committed
389
390
391
                sweep = results['lidar_sweeps'][idx]
                points_sweep = self._load_points(
                    sweep['lidar_points']['lidar_path'])
392
393
394
                points_sweep = np.copy(points_sweep).reshape(-1, self.load_dim)
                if self.remove_close:
                    points_sweep = self._remove_close(points_sweep)
VVsssssk's avatar
VVsssssk committed
395
396
                # bc-breaking: Timestamp has divided 1e6 in pkl infos.
                sweep_ts = sweep['timestamp']
397
398
399
400
                lidar2sensor = np.array(sweep['lidar_points']['lidar2sensor'])
                points_sweep[:, :
                             3] = points_sweep[:, :3] @ lidar2sensor[:3, :3]
                points_sweep[:, :3] -= lidar2sensor[:3, 3]
401
                points_sweep[:, 4] = ts - sweep_ts
402
                points_sweep = points.new_point(points_sweep)
403
404
                sweep_points_list.append(points_sweep)

405
406
        points = points.cat(sweep_points_list)
        points = points[:, self.use_dim]
zhangwenwei's avatar
zhangwenwei committed
407
408
409
        results['points'] = points
        return results

410
    def __repr__(self) -> str:
411
        """str: Return a string that describes the module."""
zhangwenwei's avatar
zhangwenwei committed
412
        return f'{self.__class__.__name__}(sweeps_num={self.sweeps_num})'
wuyuefeng's avatar
wuyuefeng committed
413
414


415
@TRANSFORMS.register_module()
416
class PointSegClassMapping(BaseTransform):
wuyuefeng's avatar
wuyuefeng committed
417
418
    """Map original semantic class to valid category ids.

419
420
    Required Keys:

421
422
    - seg_label_mapping (np.ndarray)
    - pts_semantic_mask (np.ndarray)
423
424
425
426
427

    Added Keys:

    - points (np.float32)

wuyuefeng's avatar
wuyuefeng committed
428
429
430
431
    Map valid classes as 0~len(valid_cat_ids)-1 and
    others as len(valid_cat_ids).
    """

432
    def transform(self, results: dict) -> dict:
433
434
435
436
437
438
        """Call function to map original semantic class to valid category ids.

        Args:
            results (dict): Result dict containing point semantic masks.

        Returns:
439
            dict: The result dict containing the mapped category ids.
440
            Updated key and value are described below.
441
442
443

                - pts_semantic_mask (np.ndarray): Mapped semantic masks.
        """
wuyuefeng's avatar
wuyuefeng committed
444
445
446
        assert 'pts_semantic_mask' in results
        pts_semantic_mask = results['pts_semantic_mask']

447
448
449
        assert 'seg_label_mapping' in results
        label_mapping = results['seg_label_mapping']
        converted_pts_sem_mask = label_mapping[pts_semantic_mask]
wuyuefeng's avatar
wuyuefeng committed
450

451
        results['pts_semantic_mask'] = converted_pts_sem_mask
ZCMax's avatar
ZCMax committed
452
453
454
455
456
457
458

        # 'eval_ann_info' will be passed to evaluator
        if 'eval_ann_info' in results:
            assert 'pts_semantic_mask' in results['eval_ann_info']
            results['eval_ann_info']['pts_semantic_mask'] = \
                converted_pts_sem_mask

wuyuefeng's avatar
wuyuefeng committed
459
460
        return results

461
    def __repr__(self) -> str:
462
        """str: Return a string that describes the module."""
wuyuefeng's avatar
wuyuefeng committed
463
464
465
466
        repr_str = self.__class__.__name__
        return repr_str


467
@TRANSFORMS.register_module()
ZCMax's avatar
ZCMax committed
468
class NormalizePointsColor(BaseTransform):
zhangwenwei's avatar
zhangwenwei committed
469
    """Normalize color of points.
wuyuefeng's avatar
wuyuefeng committed
470
471
472
473
474

    Args:
        color_mean (list[float]): Mean color of the point cloud.
    """

ZCMax's avatar
ZCMax committed
475
    def __init__(self, color_mean: List[float]) -> None:
wuyuefeng's avatar
wuyuefeng committed
476
477
        self.color_mean = color_mean

ZCMax's avatar
ZCMax committed
478
    def transform(self, input_dict: dict) -> dict:
479
480
481
482
483
484
        """Call function to normalize color of points.

        Args:
            results (dict): Result dict containing point clouds data.

        Returns:
485
            dict: The result dict containing the normalized points.
486
            Updated key and value are described below.
487

488
                - points (:obj:`BasePoints`): Points after color normalization.
489
        """
ZCMax's avatar
ZCMax committed
490
        points = input_dict['points']
491
        assert points.attribute_dims is not None and \
492
493
               'color' in points.attribute_dims.keys(), \
               'Expect points have color attribute'
494
495
        if self.color_mean is not None:
            points.color = points.color - \
496
                           points.color.new_tensor(self.color_mean)
497
        points.color = points.color / 255.0
ZCMax's avatar
ZCMax committed
498
499
        input_dict['points'] = points
        return input_dict
wuyuefeng's avatar
wuyuefeng committed
500

501
    def __repr__(self) -> str:
502
        """str: Return a string that describes the module."""
wuyuefeng's avatar
wuyuefeng committed
503
        repr_str = self.__class__.__name__
504
        repr_str += f'(color_mean={self.color_mean})'
wuyuefeng's avatar
wuyuefeng committed
505
506
507
        return repr_str


508
@TRANSFORMS.register_module()
jshilong's avatar
jshilong committed
509
class LoadPointsFromFile(BaseTransform):
wuyuefeng's avatar
wuyuefeng committed
510
511
    """Load Points From File.

jshilong's avatar
jshilong committed
512
513
514
515
516
517
518
519
520
    Required Keys:

    - lidar_points (dict)

        - lidar_path (str)

    Added Keys:

    - points (np.float32)
wuyuefeng's avatar
wuyuefeng committed
521
522

    Args:
523
524
        coord_type (str): The type of coordinates of points cloud.
            Available options includes:
525

526
527
528
            - 'LIDAR': Points in LiDAR coordinates.
            - 'DEPTH': Points in depth coordinates, usually for indoor dataset.
            - 'CAMERA': Points in camera coordinates.
529
530
531
        load_dim (int): The dimension of the loaded points. Defaults to 6.
        use_dim (list[int] | int): Which dimensions of the points to use.
            Defaults to [0, 1, 2]. For KITTI dataset, set use_dim=4
liyinhao's avatar
liyinhao committed
532
            or use_dim=[0, 1, 2, 3] to use the intensity dimension.
533
534
        shift_height (bool): Whether to use shifted height. Defaults to False.
        use_color (bool): Whether to use color features. Defaults to False.
535
536
        norm_intensity (bool): Whether to normlize the intensity. Defaults to
            False.
537
538
539
        file_client_args (dict): Arguments to instantiate a FileClient.
            See :class:`mmengine.fileio.FileClient` for details.
            Defaults to dict(backend='disk').
wuyuefeng's avatar
wuyuefeng committed
540
541
    """

jshilong's avatar
jshilong committed
542
543
544
545
    def __init__(
        self,
        coord_type: str,
        load_dim: int = 6,
546
        use_dim: Union[int, List[int]] = [0, 1, 2],
jshilong's avatar
jshilong committed
547
548
        shift_height: bool = False,
        use_color: bool = False,
549
        norm_intensity: bool = False,
jshilong's avatar
jshilong committed
550
551
        file_client_args: dict = dict(backend='disk')
    ) -> None:
wuyuefeng's avatar
wuyuefeng committed
552
        self.shift_height = shift_height
553
        self.use_color = use_color
wuyuefeng's avatar
wuyuefeng committed
554
555
556
557
        if isinstance(use_dim, int):
            use_dim = list(range(use_dim))
        assert max(use_dim) < load_dim, \
            f'Expect all used dimensions < {load_dim}, got {use_dim}'
558
        assert coord_type in ['CAMERA', 'LIDAR', 'DEPTH']
wuyuefeng's avatar
wuyuefeng committed
559

560
        self.coord_type = coord_type
wuyuefeng's avatar
wuyuefeng committed
561
562
        self.load_dim = load_dim
        self.use_dim = use_dim
563
        self.norm_intensity = norm_intensity
wuyuefeng's avatar
wuyuefeng committed
564
565
566
        self.file_client_args = file_client_args.copy()
        self.file_client = None

jshilong's avatar
jshilong committed
567
    def _load_points(self, pts_filename: str) -> np.ndarray:
568
569
570
571
572
573
574
575
        """Private function to load point clouds data.

        Args:
            pts_filename (str): Filename of point clouds data.

        Returns:
            np.ndarray: An array containing point clouds data.
        """
wuyuefeng's avatar
wuyuefeng committed
576
        if self.file_client is None:
577
            self.file_client = mmengine.FileClient(**self.file_client_args)
wuyuefeng's avatar
wuyuefeng committed
578
579
580
581
        try:
            pts_bytes = self.file_client.get(pts_filename)
            points = np.frombuffer(pts_bytes, dtype=np.float32)
        except ConnectionError:
582
            mmengine.check_file_exist(pts_filename)
wuyuefeng's avatar
wuyuefeng committed
583
584
585
586
            if pts_filename.endswith('.npy'):
                points = np.load(pts_filename)
            else:
                points = np.fromfile(pts_filename, dtype=np.float32)
587

wuyuefeng's avatar
wuyuefeng committed
588
589
        return points

jshilong's avatar
jshilong committed
590
591
    def transform(self, results: dict) -> dict:
        """Method to load points data from file.
592
593
594
595
596

        Args:
            results (dict): Result dict containing point clouds data.

        Returns:
597
            dict: The result dict containing the point clouds data.
598
            Added key and value are described below.
599

600
                - points (:obj:`BasePoints`): Point clouds data.
601
        """
jshilong's avatar
jshilong committed
602
603
        pts_file_path = results['lidar_points']['lidar_path']
        points = self._load_points(pts_file_path)
wuyuefeng's avatar
wuyuefeng committed
604
605
        points = points.reshape(-1, self.load_dim)
        points = points[:, self.use_dim]
606
607
608
609
        if self.norm_intensity:
            assert len(self.use_dim) >= 4, \
                f'When using intensity norm, expect used dimensions >= 4, got {len(self.use_dim)}'  # noqa: E501
            points[:, 3] = np.tanh(points[:, 3])
610
        attribute_dims = None
wuyuefeng's avatar
wuyuefeng committed
611
612
613
614

        if self.shift_height:
            floor_height = np.percentile(points[:, 2], 0.99)
            height = points[:, 2] - floor_height
615
616
617
            points = np.concatenate(
                [points[:, :3],
                 np.expand_dims(height, 1), points[:, 3:]], 1)
618
619
            attribute_dims = dict(height=3)

620
621
622
623
624
625
626
627
628
629
630
        if self.use_color:
            assert len(self.use_dim) >= 6
            if attribute_dims is None:
                attribute_dims = dict()
            attribute_dims.update(
                dict(color=[
                    points.shape[1] - 3,
                    points.shape[1] - 2,
                    points.shape[1] - 1,
                ]))

631
632
633
        points_class = get_points_type(self.coord_type)
        points = points_class(
            points, points_dim=points.shape[-1], attribute_dims=attribute_dims)
wuyuefeng's avatar
wuyuefeng committed
634
        results['points'] = points
635

wuyuefeng's avatar
wuyuefeng committed
636
637
        return results

638
    def __repr__(self) -> str:
639
        """str: Return a string that describes the module."""
liyinhao's avatar
liyinhao committed
640
        repr_str = self.__class__.__name__ + '('
641
642
643
644
645
        repr_str += f'shift_height={self.shift_height}, '
        repr_str += f'use_color={self.use_color}, '
        repr_str += f'file_client_args={self.file_client_args}, '
        repr_str += f'load_dim={self.load_dim}, '
        repr_str += f'use_dim={self.use_dim})'
wuyuefeng's avatar
wuyuefeng committed
646
647
648
        return repr_str


649
@TRANSFORMS.register_module()
650
651
652
class LoadPointsFromDict(LoadPointsFromFile):
    """Load Points From Dict."""

ChaimZhu's avatar
ChaimZhu committed
653
    def transform(self, results: dict) -> dict:
654
655
656
657
        assert 'points' in results
        return results


658
@TRANSFORMS.register_module()
wuyuefeng's avatar
wuyuefeng committed
659
660
661
662
663
664
class LoadAnnotations3D(LoadAnnotations):
    """Load Annotations3D.

    Load instance mask and semantic mask of points and
    encapsulate the items into related fields.

jshilong's avatar
jshilong committed
665
666
667
    Required Keys:

    - ann_info (dict)
668

jshilong's avatar
jshilong committed
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
        - gt_bboxes_3d (:obj:`LiDARInstance3DBoxes` |
          :obj:`DepthInstance3DBoxes` | :obj:`CameraInstance3DBoxes`):
          3D ground truth bboxes. Only when `with_bbox_3d` is True
        - gt_labels_3d (np.int64): Labels of ground truths.
          Only when `with_label_3d` is True.
        - gt_bboxes (np.float32): 2D ground truth bboxes.
          Only when `with_bbox` is True.
        - gt_labels (np.ndarray): Labels of ground truths.
          Only when `with_label` is True.
        - depths (np.ndarray): Only when
          `with_bbox_depth` is True.
        - centers_2d (np.ndarray): Only when
          `with_bbox_depth` is True.
        - attr_labels (np.ndarray): Attribute labels of instances.
          Only when `with_attr_label` is True.

    - pts_instance_mask_path (str): Path of instance mask file.
      Only when `with_mask_3d` is True.
    - pts_semantic_mask_path (str): Path of semantic mask file.
688
      Only when `with_seg_3d` is True.
jshilong's avatar
jshilong committed
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711

    Added Keys:

    - gt_bboxes_3d (:obj:`LiDARInstance3DBoxes` |
      :obj:`DepthInstance3DBoxes` | :obj:`CameraInstance3DBoxes`):
      3D ground truth bboxes. Only when `with_bbox_3d` is True
    - gt_labels_3d (np.int64): Labels of ground truths.
      Only when `with_label_3d` is True.
    - gt_bboxes (np.float32): 2D ground truth bboxes.
      Only when `with_bbox` is True.
    - gt_labels (np.int64): Labels of ground truths.
      Only when `with_label` is True.
    - depths (np.float32): Only when
      `with_bbox_depth` is True.
    - centers_2d (np.ndarray): Only when
      `with_bbox_depth` is True.
    - attr_labels (np.int64): Attribute labels of instances.
      Only when `with_attr_label` is True.
    - pts_instance_mask (np.int64): Instance mask of each point.
      Only when `with_mask_3d` is True.
    - pts_semantic_mask (np.int64): Semantic mask of each point.
      Only when `with_seg_3d` is True.

wuyuefeng's avatar
wuyuefeng committed
712
    Args:
713
714
715
        with_bbox_3d (bool): Whether to load 3D boxes. Defaults to True.
        with_label_3d (bool): Whether to load 3D labels. Defaults to True.
        with_attr_label (bool): Whether to load attribute label.
wuyuefeng's avatar
wuyuefeng committed
716
            Defaults to False.
717
        with_mask_3d (bool): Whether to load 3D instance masks for points.
wuyuefeng's avatar
wuyuefeng committed
718
            Defaults to False.
719
        with_seg_3d (bool): Whether to load 3D semantic masks for points.
wuyuefeng's avatar
wuyuefeng committed
720
            Defaults to False.
721
722
723
724
725
726
727
728
729
730
731
        with_bbox (bool): Whether to load 2D boxes. Defaults to False.
        with_label (bool): Whether to load 2D labels. Defaults to False.
        with_mask (bool): Whether to load 2D instance masks. Defaults to False.
        with_seg (bool): Whether to load 2D semantic masks. Defaults to False.
        with_bbox_depth (bool): Whether to load 2.5D boxes. Defaults to False.
        poly2mask (bool): Whether to convert polygon annotations to bitmasks.
            Defaults to True.
        seg_3d_dtype (dtype): Dtype of 3D semantic masks. Defaults to int64.
        file_client_args (dict): Arguments to instantiate a FileClient.
            See :class:`mmengine.fileio.FileClient` for details.
            Defaults to dict(backend='disk').
wuyuefeng's avatar
wuyuefeng committed
732
733
    """

jshilong's avatar
jshilong committed
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
    def __init__(
        self,
        with_bbox_3d: bool = True,
        with_label_3d: bool = True,
        with_attr_label: bool = False,
        with_mask_3d: bool = False,
        with_seg_3d: bool = False,
        with_bbox: bool = False,
        with_label: bool = False,
        with_mask: bool = False,
        with_seg: bool = False,
        with_bbox_depth: bool = False,
        poly2mask: bool = True,
        seg_3d_dtype: np.dtype = np.int64,
        file_client_args: dict = dict(backend='disk')
    ) -> None:
wuyuefeng's avatar
wuyuefeng committed
750
        super().__init__(
jshilong's avatar
jshilong committed
751
752
753
754
755
            with_bbox=with_bbox,
            with_label=with_label,
            with_mask=with_mask,
            with_seg=with_seg,
            poly2mask=poly2mask,
wuyuefeng's avatar
wuyuefeng committed
756
757
            file_client_args=file_client_args)
        self.with_bbox_3d = with_bbox_3d
758
        self.with_bbox_depth = with_bbox_depth
wuyuefeng's avatar
wuyuefeng committed
759
        self.with_label_3d = with_label_3d
760
        self.with_attr_label = with_attr_label
wuyuefeng's avatar
wuyuefeng committed
761
762
        self.with_mask_3d = with_mask_3d
        self.with_seg_3d = with_seg_3d
763
        self.seg_3d_dtype = seg_3d_dtype
wuyuefeng's avatar
wuyuefeng committed
764

jshilong's avatar
jshilong committed
765
766
767
    def _load_bboxes_3d(self, results: dict) -> dict:
        """Private function to move the 3D bounding box annotation from
        `ann_info` field to the root of `results`.
768
769
770
771
772
773
774

        Args:
            results (dict): Result dict from :obj:`mmdet3d.CustomDataset`.

        Returns:
            dict: The dict containing loaded 3D bounding box annotations.
        """
jshilong's avatar
jshilong committed
775

wuyuefeng's avatar
wuyuefeng committed
776
777
778
        results['gt_bboxes_3d'] = results['ann_info']['gt_bboxes_3d']
        return results

jshilong's avatar
jshilong committed
779
    def _load_bboxes_depth(self, results: dict) -> dict:
780
781
782
783
784
785
786
787
        """Private function to load 2.5D bounding box annotations.

        Args:
            results (dict): Result dict from :obj:`mmdet3d.CustomDataset`.

        Returns:
            dict: The dict containing loaded 2.5D bounding box annotations.
        """
jshilong's avatar
jshilong committed
788

789
        results['depths'] = results['ann_info']['depths']
jshilong's avatar
jshilong committed
790
        results['centers_2d'] = results['ann_info']['centers_2d']
791
792
        return results

jshilong's avatar
jshilong committed
793
    def _load_labels_3d(self, results: dict) -> dict:
794
795
796
797
798
799
800
801
        """Private function to load label annotations.

        Args:
            results (dict): Result dict from :obj:`mmdet3d.CustomDataset`.

        Returns:
            dict: The dict containing loaded label annotations.
        """
jshilong's avatar
jshilong committed
802

wuyuefeng's avatar
wuyuefeng committed
803
804
805
        results['gt_labels_3d'] = results['ann_info']['gt_labels_3d']
        return results

jshilong's avatar
jshilong committed
806
    def _load_attr_labels(self, results: dict) -> dict:
807
808
809
810
811
812
813
814
815
816
817
        """Private function to load label annotations.

        Args:
            results (dict): Result dict from :obj:`mmdet3d.CustomDataset`.

        Returns:
            dict: The dict containing loaded label annotations.
        """
        results['attr_labels'] = results['ann_info']['attr_labels']
        return results

jshilong's avatar
jshilong committed
818
    def _load_masks_3d(self, results: dict) -> dict:
819
820
821
822
823
824
825
826
        """Private function to load 3D mask annotations.

        Args:
            results (dict): Result dict from :obj:`mmdet3d.CustomDataset`.

        Returns:
            dict: The dict containing loaded 3D mask annotations.
        """
jshilong's avatar
jshilong committed
827
        pts_instance_mask_path = results['pts_instance_mask_path']
wuyuefeng's avatar
wuyuefeng committed
828
829

        if self.file_client is None:
830
            self.file_client = mmengine.FileClient(**self.file_client_args)
wuyuefeng's avatar
wuyuefeng committed
831
832
        try:
            mask_bytes = self.file_client.get(pts_instance_mask_path)
833
            pts_instance_mask = np.frombuffer(mask_bytes, dtype=np.int64)
wuyuefeng's avatar
wuyuefeng committed
834
        except ConnectionError:
835
            mmengine.check_file_exist(pts_instance_mask_path)
wuyuefeng's avatar
wuyuefeng committed
836
            pts_instance_mask = np.fromfile(
WRH's avatar
WRH committed
837
                pts_instance_mask_path, dtype=np.int64)
wuyuefeng's avatar
wuyuefeng committed
838
839

        results['pts_instance_mask'] = pts_instance_mask
jshilong's avatar
jshilong committed
840
841
842
        # 'eval_ann_info' will be passed to evaluator
        if 'eval_ann_info' in results:
            results['eval_ann_info']['pts_instance_mask'] = pts_instance_mask
wuyuefeng's avatar
wuyuefeng committed
843
844
        return results

jshilong's avatar
jshilong committed
845
    def _load_semantic_seg_3d(self, results: dict) -> dict:
846
847
848
849
850
851
852
853
        """Private function to load 3D semantic segmentation annotations.

        Args:
            results (dict): Result dict from :obj:`mmdet3d.CustomDataset`.

        Returns:
            dict: The dict containing the semantic segmentation annotations.
        """
jshilong's avatar
jshilong committed
854
        pts_semantic_mask_path = results['pts_semantic_mask_path']
wuyuefeng's avatar
wuyuefeng committed
855
856

        if self.file_client is None:
857
            self.file_client = mmengine.FileClient(**self.file_client_args)
wuyuefeng's avatar
wuyuefeng committed
858
859
860
        try:
            mask_bytes = self.file_client.get(pts_semantic_mask_path)
            # add .copy() to fix read-only bug
861
862
            pts_semantic_mask = np.frombuffer(
                mask_bytes, dtype=self.seg_3d_dtype).copy()
wuyuefeng's avatar
wuyuefeng committed
863
        except ConnectionError:
864
            mmengine.check_file_exist(pts_semantic_mask_path)
wuyuefeng's avatar
wuyuefeng committed
865
            pts_semantic_mask = np.fromfile(
WRH's avatar
WRH committed
866
                pts_semantic_mask_path, dtype=np.int64)
wuyuefeng's avatar
wuyuefeng committed
867
868

        results['pts_semantic_mask'] = pts_semantic_mask
jshilong's avatar
jshilong committed
869
870
871
        # 'eval_ann_info' will be passed to evaluator
        if 'eval_ann_info' in results:
            results['eval_ann_info']['pts_semantic_mask'] = pts_semantic_mask
wuyuefeng's avatar
wuyuefeng committed
872
873
        return results

zhangshilong's avatar
zhangshilong committed
874
875
876
877
878
879
880
    def _load_bboxes(self, results: dict) -> None:
        """Private function to load bounding box annotations.

        The only difference is it remove the proceess for
        `ignore_flag`

        Args:
881
882
            results (dict): Result dict from :obj:`mmcv.BaseDataset`.

zhangshilong's avatar
zhangshilong committed
883
884
885
886
        Returns:
            dict: The dict contains loaded bounding box annotations.
        """

887
        results['gt_bboxes'] = results['ann_info']['gt_bboxes']
zhangshilong's avatar
zhangshilong committed
888
889
890
891
892

    def _load_labels(self, results: dict) -> None:
        """Private function to load label annotations.

        Args:
893
            results (dict): Result dict from :obj :obj:`mmcv.BaseDataset`.
zhangshilong's avatar
zhangshilong committed
894
895
896
897

        Returns:
            dict: The dict contains loaded label annotations.
        """
898
        results['gt_bboxes_labels'] = results['ann_info']['gt_bboxes_labels']
zhangshilong's avatar
zhangshilong committed
899

jshilong's avatar
jshilong committed
900
901
    def transform(self, results: dict) -> dict:
        """Function to load multiple types annotations.
902
903
904
905
906
907

        Args:
            results (dict): Result dict from :obj:`mmdet3d.CustomDataset`.

        Returns:
            dict: The dict containing loaded 3D bounding box, label, mask and
jshilong's avatar
jshilong committed
908
            semantic segmentation annotations.
909
        """
jshilong's avatar
jshilong committed
910
        results = super().transform(results)
wuyuefeng's avatar
wuyuefeng committed
911
912
        if self.with_bbox_3d:
            results = self._load_bboxes_3d(results)
913
914
        if self.with_bbox_depth:
            results = self._load_bboxes_depth(results)
wuyuefeng's avatar
wuyuefeng committed
915
916
        if self.with_label_3d:
            results = self._load_labels_3d(results)
917
918
        if self.with_attr_label:
            results = self._load_attr_labels(results)
wuyuefeng's avatar
wuyuefeng committed
919
920
921
922
923
924
925
        if self.with_mask_3d:
            results = self._load_masks_3d(results)
        if self.with_seg_3d:
            results = self._load_semantic_seg_3d(results)

        return results

926
    def __repr__(self) -> str:
927
        """str: Return a string that describes the module."""
wuyuefeng's avatar
wuyuefeng committed
928
929
        indent_str = '    '
        repr_str = self.__class__.__name__ + '(\n'
liyinhao's avatar
liyinhao committed
930
931
        repr_str += f'{indent_str}with_bbox_3d={self.with_bbox_3d}, '
        repr_str += f'{indent_str}with_label_3d={self.with_label_3d}, '
932
        repr_str += f'{indent_str}with_attr_label={self.with_attr_label}, '
liyinhao's avatar
liyinhao committed
933
934
935
936
937
938
        repr_str += f'{indent_str}with_mask_3d={self.with_mask_3d}, '
        repr_str += f'{indent_str}with_seg_3d={self.with_seg_3d}, '
        repr_str += f'{indent_str}with_bbox={self.with_bbox}, '
        repr_str += f'{indent_str}with_label={self.with_label}, '
        repr_str += f'{indent_str}with_mask={self.with_mask}, '
        repr_str += f'{indent_str}with_seg={self.with_seg}, '
939
        repr_str += f'{indent_str}with_bbox_depth={self.with_bbox_depth}, '
wuyuefeng's avatar
wuyuefeng committed
940
941
        repr_str += f'{indent_str}poly2mask={self.poly2mask})'
        return repr_str