".github/vscode:/vscode.git/clone" did not exist on "ddab4fc7c70dd6fa1154b0e5d39255078fbbbad6"
loading.py 30.3 KB
Newer Older
dingchang's avatar
dingchang committed
1
# Copyright (c) OpenMMLab. All rights reserved.
ZCMax's avatar
ZCMax committed
2
from typing import List
3

zhangwenwei's avatar
zhangwenwei committed
4
5
import mmcv
import numpy as np
6
from mmcv.transforms import LoadImageFromFile
7
from mmcv.transforms.base import BaseTransform
zhangwenwei's avatar
zhangwenwei committed
8

9
from mmdet3d.registry import TRANSFORMS
zhangshilong's avatar
zhangshilong committed
10
11
from mmdet3d.structures.points import BasePoints, get_points_type
from mmdet.datasets.transforms import LoadAnnotations
zhangwenwei's avatar
zhangwenwei committed
12
13


14
@TRANSFORMS.register_module()
zhangwenwei's avatar
zhangwenwei committed
15
class LoadMultiViewImageFromFiles(object):
zhangwenwei's avatar
zhangwenwei committed
16
    """Load multi channel images from a list of separate channel files.
zhangwenwei's avatar
zhangwenwei committed
17

liyinhao's avatar
liyinhao committed
18
19
20
    Expects results['img_filename'] to be a list of filenames.

    Args:
21
        to_float32 (bool, optional): Whether to convert the img to float32.
liyinhao's avatar
liyinhao committed
22
            Defaults to False.
23
24
        color_type (str, optional): Color type of the file.
            Defaults to 'unchanged'.
zhangwenwei's avatar
zhangwenwei committed
25
    """
zhangwenwei's avatar
zhangwenwei committed
26

zhangwenwei's avatar
zhangwenwei committed
27
28
29
    def __init__(self, to_float32=False, color_type='unchanged'):
        self.to_float32 = to_float32
        self.color_type = color_type
zhangwenwei's avatar
zhangwenwei committed
30
31

    def __call__(self, results):
32
33
34
35
36
37
        """Call function to load multi-view image from files.

        Args:
            results (dict): Result dict containing multi-view image filenames.

        Returns:
38
            dict: The result dict containing the multi-view image data.
39
40
41
42
43
44
45
46
47
48
                Added keys and values are described below.

                - filename (str): Multi-view image filenames.
                - img (np.ndarray): Multi-view image arrays.
                - img_shape (tuple[int]): Shape of multi-view image arrays.
                - ori_shape (tuple[int]): Shape of original image arrays.
                - pad_shape (tuple[int]): Shape of padded image arrays.
                - scale_factor (float): Scale factor.
                - img_norm_cfg (dict): Normalization configuration of images.
        """
zhangwenwei's avatar
zhangwenwei committed
49
        filename = results['img_filename']
50
        # img is of shape (h, w, c, num_views)
zhangwenwei's avatar
zhangwenwei committed
51
52
53
54
55
        img = np.stack(
            [mmcv.imread(name, self.color_type) for name in filename], axis=-1)
        if self.to_float32:
            img = img.astype(np.float32)
        results['filename'] = filename
56
        # unravel to list, see `DefaultFormatBundle` in formatting.py
57
58
        # which will transpose each image separately and then stack into array
        results['img'] = [img[..., i] for i in range(img.shape[-1])]
zhangwenwei's avatar
zhangwenwei committed
59
60
61
62
63
64
65
66
67
68
        results['img_shape'] = img.shape
        results['ori_shape'] = img.shape
        # Set initial values for default meta_keys
        results['pad_shape'] = img.shape
        results['scale_factor'] = 1.0
        num_channels = 1 if len(img.shape) < 3 else img.shape[2]
        results['img_norm_cfg'] = dict(
            mean=np.zeros(num_channels, dtype=np.float32),
            std=np.ones(num_channels, dtype=np.float32),
            to_rgb=False)
zhangwenwei's avatar
zhangwenwei committed
69
70
71
        return results

    def __repr__(self):
72
        """str: Return a string that describes the module."""
73
74
75
76
        repr_str = self.__class__.__name__
        repr_str += f'(to_float32={self.to_float32}, '
        repr_str += f"color_type='{self.color_type}')"
        return repr_str
zhangwenwei's avatar
zhangwenwei committed
77
78


79
@TRANSFORMS.register_module()
80
81
82
83
84
class LoadImageFromFileMono3D(LoadImageFromFile):
    """Load an image from file in monocular 3D object detection. Compared to 2D
    detection, additional camera parameters need to be loaded.

    Args:
85
        kwargs (dict): Arguments are the same as those in
86
87
88
            :class:`LoadImageFromFile`.
    """

ZCMax's avatar
ZCMax committed
89
    def transform(self, results: dict) -> dict:
90
91
92
93
94
95
96
97
        """Call functions to load image and get image meta information.

        Args:
            results (dict): Result dict from :obj:`mmdet.CustomDataset`.

        Returns:
            dict: The dict contains loaded image and meta information.
        """
ZCMax's avatar
ZCMax committed
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
        # TODO: load different camera image from data info,
        # for kitti dataset, we load 'CAM2' image.
        # for nuscenes dataset, we load 'CAM_FRONT' image.

        if 'CAM2' in results['images']:
            filename = results['images']['CAM2']['img_path']
            results['cam2img'] = results['images']['CAM2']['cam2img']
        elif len(list(results['images'].keys())) == 1:
            camera_type = list(results['images'].keys())[0]
            filename = results['images'][camera_type]['img_path']
            results['cam2img'] = results['images'][camera_type]['cam2img']
        else:
            raise NotImplementedError(
                'Currently we only support load image from kitti and'
                'nuscenes datasets')

        img_bytes = self.file_client.get(filename)
        img = mmcv.imfrombytes(
            img_bytes, flag=self.color_type, backend=self.imdecode_backend)
        if self.to_float32:
            img = img.astype(np.float32)

        results['img'] = img
        results['img_shape'] = img.shape[:2]
        results['ori_shape'] = img.shape[:2]

124
125
126
        return results


127
@TRANSFORMS.register_module()
VVsssssk's avatar
VVsssssk committed
128
class LoadPointsFromMultiSweeps(BaseTransform):
zhangwenwei's avatar
zhangwenwei committed
129
    """Load points from multiple sweeps.
zhangwenwei's avatar
zhangwenwei committed
130

zhangwenwei's avatar
zhangwenwei committed
131
132
133
    This is usually used for nuScenes dataset to utilize previous sweeps.

    Args:
134
135
136
137
138
139
140
        sweeps_num (int, optional): Number of sweeps. Defaults to 10.
        load_dim (int, optional): Dimension number of the loaded points.
            Defaults to 5.
        use_dim (list[int], optional): Which dimension to use.
            Defaults to [0, 1, 2, 4].
        file_client_args (dict, optional): Config dict of file clients,
            refer to
zhangwenwei's avatar
zhangwenwei committed
141
            https://github.com/open-mmlab/mmcv/blob/master/mmcv/fileio/file_client.py
liyinhao's avatar
liyinhao committed
142
            for more details. Defaults to dict(backend='disk').
143
        pad_empty_sweeps (bool, optional): Whether to repeat keyframe when
144
            sweeps is empty. Defaults to False.
145
        remove_close (bool, optional): Whether to remove close points.
146
            Defaults to False.
147
        test_mode (bool, optional): If `test_mode=True`, it will not
148
149
            randomly sample sweeps but select the nearest N frames.
            Defaults to False.
zhangwenwei's avatar
zhangwenwei committed
150
151
152
153
154
    """

    def __init__(self,
                 sweeps_num=10,
                 load_dim=5,
155
156
157
158
159
                 use_dim=[0, 1, 2, 4],
                 file_client_args=dict(backend='disk'),
                 pad_empty_sweeps=False,
                 remove_close=False,
                 test_mode=False):
zhangwenwei's avatar
zhangwenwei committed
160
        self.load_dim = load_dim
zhangwenwei's avatar
zhangwenwei committed
161
        self.sweeps_num = sweeps_num
162
        self.use_dim = use_dim
zhangwenwei's avatar
zhangwenwei committed
163
164
        self.file_client_args = file_client_args.copy()
        self.file_client = None
165
166
167
        self.pad_empty_sweeps = pad_empty_sweeps
        self.remove_close = remove_close
        self.test_mode = test_mode
zhangwenwei's avatar
zhangwenwei committed
168
169

    def _load_points(self, pts_filename):
170
171
172
173
174
175
176
177
        """Private function to load point clouds data.

        Args:
            pts_filename (str): Filename of point clouds data.

        Returns:
            np.ndarray: An array containing point clouds data.
        """
zhangwenwei's avatar
zhangwenwei committed
178
179
180
181
182
183
184
185
186
187
188
189
        if self.file_client is None:
            self.file_client = mmcv.FileClient(**self.file_client_args)
        try:
            pts_bytes = self.file_client.get(pts_filename)
            points = np.frombuffer(pts_bytes, dtype=np.float32)
        except ConnectionError:
            mmcv.check_file_exist(pts_filename)
            if pts_filename.endswith('.npy'):
                points = np.load(pts_filename)
            else:
                points = np.fromfile(pts_filename, dtype=np.float32)
        return points
zhangwenwei's avatar
zhangwenwei committed
190

191
192
193
194
    def _remove_close(self, points, radius=1.0):
        """Removes point too close within a certain radius from origin.

        Args:
195
            points (np.ndarray | :obj:`BasePoints`): Sweep points.
196
            radius (float, optional): Radius below which points are removed.
197
198
199
200
201
                Defaults to 1.0.

        Returns:
            np.ndarray: Points after removing.
        """
202
203
204
205
206
207
208
209
        if isinstance(points, np.ndarray):
            points_numpy = points
        elif isinstance(points, BasePoints):
            points_numpy = points.tensor.numpy()
        else:
            raise NotImplementedError
        x_filt = np.abs(points_numpy[:, 0]) < radius
        y_filt = np.abs(points_numpy[:, 1]) < radius
210
        not_close = np.logical_not(np.logical_and(x_filt, y_filt))
211
        return points[not_close]
212

VVsssssk's avatar
VVsssssk committed
213
    def transform(self, results):
214
215
216
        """Call function to load multi-sweep point clouds from files.

        Args:
217
            results (dict): Result dict containing multi-sweep point cloud
218
219
220
                filenames.

        Returns:
221
            dict: The result dict containing the multi-sweep points data.
222
223
                Added key and value are described below.

224
                - points (np.ndarray | :obj:`BasePoints`): Multi-sweep point
225
                    cloud arrays.
226
        """
zhangwenwei's avatar
zhangwenwei committed
227
        points = results['points']
228
        points.tensor[:, 4] = 0
zhangwenwei's avatar
zhangwenwei committed
229
230
        sweep_points_list = [points]
        ts = results['timestamp']
VVsssssk's avatar
VVsssssk committed
231
232
233
234
235
236
237
        if 'lidar_sweeps' not in results:
            if self.pad_empty_sweeps:
                for i in range(self.sweeps_num):
                    if self.remove_close:
                        sweep_points_list.append(self._remove_close(points))
                    else:
                        sweep_points_list.append(points)
238
        else:
VVsssssk's avatar
VVsssssk committed
239
240
            if len(results['lidar_sweeps']) <= self.sweeps_num:
                choices = np.arange(len(results['lidar_sweeps']))
241
242
243
244
            elif self.test_mode:
                choices = np.arange(self.sweeps_num)
            else:
                choices = np.random.choice(
VVsssssk's avatar
VVsssssk committed
245
246
247
                    len(results['lidar_sweeps']),
                    self.sweeps_num,
                    replace=False)
248
            for idx in choices:
VVsssssk's avatar
VVsssssk committed
249
250
251
                sweep = results['lidar_sweeps'][idx]
                points_sweep = self._load_points(
                    sweep['lidar_points']['lidar_path'])
252
253
254
                points_sweep = np.copy(points_sweep).reshape(-1, self.load_dim)
                if self.remove_close:
                    points_sweep = self._remove_close(points_sweep)
VVsssssk's avatar
VVsssssk committed
255
256
257
258
259
                # bc-breaking: Timestamp has divided 1e6 in pkl infos.
                sweep_ts = sweep['timestamp']
                lidar2cam = np.array(sweep['lidar_points']['lidar2sensor'])
                points_sweep[:, :3] = points_sweep[:, :3] @ lidar2cam[:3, :3]
                points_sweep[:, :3] -= lidar2cam[:3, 3]
260
                points_sweep[:, 4] = ts - sweep_ts
261
                points_sweep = points.new_point(points_sweep)
262
263
                sweep_points_list.append(points_sweep)

264
265
        points = points.cat(sweep_points_list)
        points = points[:, self.use_dim]
zhangwenwei's avatar
zhangwenwei committed
266
267
268
269
        results['points'] = points
        return results

    def __repr__(self):
270
        """str: Return a string that describes the module."""
zhangwenwei's avatar
zhangwenwei committed
271
        return f'{self.__class__.__name__}(sweeps_num={self.sweeps_num})'
wuyuefeng's avatar
wuyuefeng committed
272
273


274
@TRANSFORMS.register_module()
275
class PointSegClassMapping(BaseTransform):
wuyuefeng's avatar
wuyuefeng committed
276
277
    """Map original semantic class to valid category ids.

278
279
    Required Keys:

280
281
    - seg_label_mapping (np.ndarray)
    - pts_semantic_mask (np.ndarray)
282
283
284
285
286

    Added Keys:

    - points (np.float32)

wuyuefeng's avatar
wuyuefeng committed
287
288
289
290
    Map valid classes as 0~len(valid_cat_ids)-1 and
    others as len(valid_cat_ids).
    """

291
    def transform(self, results: dict) -> None:
292
293
294
295
296
297
        """Call function to map original semantic class to valid category ids.

        Args:
            results (dict): Result dict containing point semantic masks.

        Returns:
298
            dict: The result dict containing the mapped category ids.
299
300
301
302
                Updated key and value are described below.

                - pts_semantic_mask (np.ndarray): Mapped semantic masks.
        """
wuyuefeng's avatar
wuyuefeng committed
303
304
305
        assert 'pts_semantic_mask' in results
        pts_semantic_mask = results['pts_semantic_mask']

306
307
308
        assert 'seg_label_mapping' in results
        label_mapping = results['seg_label_mapping']
        converted_pts_sem_mask = label_mapping[pts_semantic_mask]
wuyuefeng's avatar
wuyuefeng committed
309

310
        results['pts_semantic_mask'] = converted_pts_sem_mask
ZCMax's avatar
ZCMax committed
311
312
313
314
315
316
317

        # 'eval_ann_info' will be passed to evaluator
        if 'eval_ann_info' in results:
            assert 'pts_semantic_mask' in results['eval_ann_info']
            results['eval_ann_info']['pts_semantic_mask'] = \
                converted_pts_sem_mask

wuyuefeng's avatar
wuyuefeng committed
318
319
320
        return results

    def __repr__(self):
321
        """str: Return a string that describes the module."""
wuyuefeng's avatar
wuyuefeng committed
322
        repr_str = self.__class__.__name__
323
324
        repr_str += f'(valid_cat_ids={self.valid_cat_ids}, '
        repr_str += f'max_cat_id={self.max_cat_id})'
wuyuefeng's avatar
wuyuefeng committed
325
326
327
        return repr_str


328
@TRANSFORMS.register_module()
ZCMax's avatar
ZCMax committed
329
class NormalizePointsColor(BaseTransform):
zhangwenwei's avatar
zhangwenwei committed
330
    """Normalize color of points.
wuyuefeng's avatar
wuyuefeng committed
331
332
333
334
335

    Args:
        color_mean (list[float]): Mean color of the point cloud.
    """

ZCMax's avatar
ZCMax committed
336
    def __init__(self, color_mean: List[float]) -> None:
wuyuefeng's avatar
wuyuefeng committed
337
338
        self.color_mean = color_mean

ZCMax's avatar
ZCMax committed
339
    def transform(self, input_dict: dict) -> dict:
340
341
342
343
344
345
        """Call function to normalize color of points.

        Args:
            results (dict): Result dict containing point clouds data.

        Returns:
346
            dict: The result dict containing the normalized points.
347
348
                Updated key and value are described below.

349
                - points (:obj:`BasePoints`): Points after color normalization.
350
        """
ZCMax's avatar
ZCMax committed
351
        points = input_dict['points']
352
        assert points.attribute_dims is not None and \
353
354
               'color' in points.attribute_dims.keys(), \
               'Expect points have color attribute'
355
356
        if self.color_mean is not None:
            points.color = points.color - \
357
                           points.color.new_tensor(self.color_mean)
358
        points.color = points.color / 255.0
ZCMax's avatar
ZCMax committed
359
360
        input_dict['points'] = points
        return input_dict
wuyuefeng's avatar
wuyuefeng committed
361
362

    def __repr__(self):
363
        """str: Return a string that describes the module."""
wuyuefeng's avatar
wuyuefeng committed
364
        repr_str = self.__class__.__name__
365
        repr_str += f'(color_mean={self.color_mean})'
wuyuefeng's avatar
wuyuefeng committed
366
367
368
        return repr_str


369
@TRANSFORMS.register_module()
jshilong's avatar
jshilong committed
370
class LoadPointsFromFile(BaseTransform):
wuyuefeng's avatar
wuyuefeng committed
371
372
    """Load Points From File.

jshilong's avatar
jshilong committed
373
374
375
376
377
378
379
380
381
    Required Keys:

    - lidar_points (dict)

        - lidar_path (str)

    Added Keys:

    - points (np.float32)
wuyuefeng's avatar
wuyuefeng committed
382
383

    Args:
384
385
386
387
388
        coord_type (str): The type of coordinates of points cloud.
            Available options includes:
            - 'LIDAR': Points in LiDAR coordinates.
            - 'DEPTH': Points in depth coordinates, usually for indoor dataset.
            - 'CAMERA': Points in camera coordinates.
389
        load_dim (int, optional): The dimension of the loaded points.
390
            Defaults to 6.
391
        use_dim (list[int], optional): Which dimensions of the points to use.
liyinhao's avatar
liyinhao committed
392
393
            Defaults to [0, 1, 2]. For KITTI dataset, set use_dim=4
            or use_dim=[0, 1, 2, 3] to use the intensity dimension.
394
395
396
397
398
399
        shift_height (bool, optional): Whether to use shifted height.
            Defaults to False.
        use_color (bool, optional): Whether to use color features.
            Defaults to False.
        file_client_args (dict, optional): Config dict of file clients,
            refer to
wuyuefeng's avatar
wuyuefeng committed
400
            https://github.com/open-mmlab/mmcv/blob/master/mmcv/fileio/file_client.py
liyinhao's avatar
liyinhao committed
401
            for more details. Defaults to dict(backend='disk').
wuyuefeng's avatar
wuyuefeng committed
402
403
    """

jshilong's avatar
jshilong committed
404
405
406
407
408
409
410
411
412
    def __init__(
        self,
        coord_type: str,
        load_dim: int = 6,
        use_dim: list = [0, 1, 2],
        shift_height: bool = False,
        use_color: bool = False,
        file_client_args: dict = dict(backend='disk')
    ) -> None:
wuyuefeng's avatar
wuyuefeng committed
413
        self.shift_height = shift_height
414
        self.use_color = use_color
wuyuefeng's avatar
wuyuefeng committed
415
416
417
418
        if isinstance(use_dim, int):
            use_dim = list(range(use_dim))
        assert max(use_dim) < load_dim, \
            f'Expect all used dimensions < {load_dim}, got {use_dim}'
419
        assert coord_type in ['CAMERA', 'LIDAR', 'DEPTH']
wuyuefeng's avatar
wuyuefeng committed
420

421
        self.coord_type = coord_type
wuyuefeng's avatar
wuyuefeng committed
422
423
424
425
426
        self.load_dim = load_dim
        self.use_dim = use_dim
        self.file_client_args = file_client_args.copy()
        self.file_client = None

jshilong's avatar
jshilong committed
427
    def _load_points(self, pts_filename: str) -> np.ndarray:
428
429
430
431
432
433
434
435
        """Private function to load point clouds data.

        Args:
            pts_filename (str): Filename of point clouds data.

        Returns:
            np.ndarray: An array containing point clouds data.
        """
wuyuefeng's avatar
wuyuefeng committed
436
437
438
439
440
441
442
443
444
445
446
        if self.file_client is None:
            self.file_client = mmcv.FileClient(**self.file_client_args)
        try:
            pts_bytes = self.file_client.get(pts_filename)
            points = np.frombuffer(pts_bytes, dtype=np.float32)
        except ConnectionError:
            mmcv.check_file_exist(pts_filename)
            if pts_filename.endswith('.npy'):
                points = np.load(pts_filename)
            else:
                points = np.fromfile(pts_filename, dtype=np.float32)
447

wuyuefeng's avatar
wuyuefeng committed
448
449
        return points

jshilong's avatar
jshilong committed
450
451
    def transform(self, results: dict) -> dict:
        """Method to load points data from file.
452
453
454
455
456

        Args:
            results (dict): Result dict containing point clouds data.

        Returns:
457
            dict: The result dict containing the point clouds data.
458
459
                Added key and value are described below.

460
                - points (:obj:`BasePoints`): Point clouds data.
461
        """
jshilong's avatar
jshilong committed
462
463
        pts_file_path = results['lidar_points']['lidar_path']
        points = self._load_points(pts_file_path)
wuyuefeng's avatar
wuyuefeng committed
464
465
        points = points.reshape(-1, self.load_dim)
        points = points[:, self.use_dim]
466
        attribute_dims = None
wuyuefeng's avatar
wuyuefeng committed
467
468
469
470

        if self.shift_height:
            floor_height = np.percentile(points[:, 2], 0.99)
            height = points[:, 2] - floor_height
471
472
473
            points = np.concatenate(
                [points[:, :3],
                 np.expand_dims(height, 1), points[:, 3:]], 1)
474
475
            attribute_dims = dict(height=3)

476
477
478
479
480
481
482
483
484
485
486
        if self.use_color:
            assert len(self.use_dim) >= 6
            if attribute_dims is None:
                attribute_dims = dict()
            attribute_dims.update(
                dict(color=[
                    points.shape[1] - 3,
                    points.shape[1] - 2,
                    points.shape[1] - 1,
                ]))

487
488
489
        points_class = get_points_type(self.coord_type)
        points = points_class(
            points, points_dim=points.shape[-1], attribute_dims=attribute_dims)
wuyuefeng's avatar
wuyuefeng committed
490
        results['points'] = points
491

wuyuefeng's avatar
wuyuefeng committed
492
493
494
        return results

    def __repr__(self):
495
        """str: Return a string that describes the module."""
liyinhao's avatar
liyinhao committed
496
        repr_str = self.__class__.__name__ + '('
497
498
499
500
501
        repr_str += f'shift_height={self.shift_height}, '
        repr_str += f'use_color={self.use_color}, '
        repr_str += f'file_client_args={self.file_client_args}, '
        repr_str += f'load_dim={self.load_dim}, '
        repr_str += f'use_dim={self.use_dim})'
wuyuefeng's avatar
wuyuefeng committed
502
503
504
        return repr_str


505
@TRANSFORMS.register_module()
506
507
508
class LoadPointsFromDict(LoadPointsFromFile):
    """Load Points From Dict."""

ChaimZhu's avatar
ChaimZhu committed
509
    def transform(self, results: dict) -> dict:
510
511
512
513
        assert 'points' in results
        return results


514
@TRANSFORMS.register_module()
wuyuefeng's avatar
wuyuefeng committed
515
516
517
518
519
520
class LoadAnnotations3D(LoadAnnotations):
    """Load Annotations3D.

    Load instance mask and semantic mask of points and
    encapsulate the items into related fields.

jshilong's avatar
jshilong committed
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
    Required Keys:

    - ann_info (dict)
        - gt_bboxes_3d (:obj:`LiDARInstance3DBoxes` |
          :obj:`DepthInstance3DBoxes` | :obj:`CameraInstance3DBoxes`):
          3D ground truth bboxes. Only when `with_bbox_3d` is True
        - gt_labels_3d (np.int64): Labels of ground truths.
          Only when `with_label_3d` is True.
        - gt_bboxes (np.float32): 2D ground truth bboxes.
          Only when `with_bbox` is True.
        - gt_labels (np.ndarray): Labels of ground truths.
          Only when `with_label` is True.
        - depths (np.ndarray): Only when
          `with_bbox_depth` is True.
        - centers_2d (np.ndarray): Only when
          `with_bbox_depth` is True.
        - attr_labels (np.ndarray): Attribute labels of instances.
          Only when `with_attr_label` is True.

    - pts_instance_mask_path (str): Path of instance mask file.
      Only when `with_mask_3d` is True.
    - pts_semantic_mask_path (str): Path of semantic mask file.
      Only when

    Added Keys:

    - gt_bboxes_3d (:obj:`LiDARInstance3DBoxes` |
      :obj:`DepthInstance3DBoxes` | :obj:`CameraInstance3DBoxes`):
      3D ground truth bboxes. Only when `with_bbox_3d` is True
    - gt_labels_3d (np.int64): Labels of ground truths.
      Only when `with_label_3d` is True.
    - gt_bboxes (np.float32): 2D ground truth bboxes.
      Only when `with_bbox` is True.
    - gt_labels (np.int64): Labels of ground truths.
      Only when `with_label` is True.
    - depths (np.float32): Only when
      `with_bbox_depth` is True.
    - centers_2d (np.ndarray): Only when
      `with_bbox_depth` is True.
    - attr_labels (np.int64): Attribute labels of instances.
      Only when `with_attr_label` is True.
    - pts_instance_mask (np.int64): Instance mask of each point.
      Only when `with_mask_3d` is True.
    - pts_semantic_mask (np.int64): Semantic mask of each point.
      Only when `with_seg_3d` is True.

wuyuefeng's avatar
wuyuefeng committed
567
568
569
570
571
    Args:
        with_bbox_3d (bool, optional): Whether to load 3D boxes.
            Defaults to True.
        with_label_3d (bool, optional): Whether to load 3D labels.
            Defaults to True.
572
573
        with_attr_label (bool, optional): Whether to load attribute label.
            Defaults to False.
wuyuefeng's avatar
wuyuefeng committed
574
575
576
577
578
579
580
581
582
583
584
585
        with_mask_3d (bool, optional): Whether to load 3D instance masks.
            for points. Defaults to False.
        with_seg_3d (bool, optional): Whether to load 3D semantic masks.
            for points. Defaults to False.
        with_bbox (bool, optional): Whether to load 2D boxes.
            Defaults to False.
        with_label (bool, optional): Whether to load 2D labels.
            Defaults to False.
        with_mask (bool, optional): Whether to load 2D instance masks.
            Defaults to False.
        with_seg (bool, optional): Whether to load 2D semantic masks.
            Defaults to False.
586
587
        with_bbox_depth (bool, optional): Whether to load 2.5D boxes.
            Defaults to False.
wuyuefeng's avatar
wuyuefeng committed
588
589
        poly2mask (bool, optional): Whether to convert polygon annotations
            to bitmasks. Defaults to True.
590
        seg_3d_dtype (dtype, optional): Dtype of 3D semantic masks.
jshilong's avatar
jshilong committed
591
            Defaults to int64.
wuyuefeng's avatar
wuyuefeng committed
592
593
594
595
596
        file_client_args (dict): Config dict of file clients, refer to
            https://github.com/open-mmlab/mmcv/blob/master/mmcv/fileio/file_client.py
            for more details.
    """

jshilong's avatar
jshilong committed
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
    def __init__(
        self,
        with_bbox_3d: bool = True,
        with_label_3d: bool = True,
        with_attr_label: bool = False,
        with_mask_3d: bool = False,
        with_seg_3d: bool = False,
        with_bbox: bool = False,
        with_label: bool = False,
        with_mask: bool = False,
        with_seg: bool = False,
        with_bbox_depth: bool = False,
        poly2mask: bool = True,
        seg_3d_dtype: np.dtype = np.int64,
        file_client_args: dict = dict(backend='disk')
    ) -> None:
wuyuefeng's avatar
wuyuefeng committed
613
        super().__init__(
jshilong's avatar
jshilong committed
614
615
616
617
618
            with_bbox=with_bbox,
            with_label=with_label,
            with_mask=with_mask,
            with_seg=with_seg,
            poly2mask=poly2mask,
wuyuefeng's avatar
wuyuefeng committed
619
620
            file_client_args=file_client_args)
        self.with_bbox_3d = with_bbox_3d
621
        self.with_bbox_depth = with_bbox_depth
wuyuefeng's avatar
wuyuefeng committed
622
        self.with_label_3d = with_label_3d
623
        self.with_attr_label = with_attr_label
wuyuefeng's avatar
wuyuefeng committed
624
625
        self.with_mask_3d = with_mask_3d
        self.with_seg_3d = with_seg_3d
626
        self.seg_3d_dtype = seg_3d_dtype
wuyuefeng's avatar
wuyuefeng committed
627

jshilong's avatar
jshilong committed
628
629
630
    def _load_bboxes_3d(self, results: dict) -> dict:
        """Private function to move the 3D bounding box annotation from
        `ann_info` field to the root of `results`.
631
632
633
634
635
636
637

        Args:
            results (dict): Result dict from :obj:`mmdet3d.CustomDataset`.

        Returns:
            dict: The dict containing loaded 3D bounding box annotations.
        """
jshilong's avatar
jshilong committed
638

wuyuefeng's avatar
wuyuefeng committed
639
640
641
        results['gt_bboxes_3d'] = results['ann_info']['gt_bboxes_3d']
        return results

jshilong's avatar
jshilong committed
642
    def _load_bboxes_depth(self, results: dict) -> dict:
643
644
645
646
647
648
649
650
        """Private function to load 2.5D bounding box annotations.

        Args:
            results (dict): Result dict from :obj:`mmdet3d.CustomDataset`.

        Returns:
            dict: The dict containing loaded 2.5D bounding box annotations.
        """
jshilong's avatar
jshilong committed
651

652
        results['depths'] = results['ann_info']['depths']
jshilong's avatar
jshilong committed
653
        results['centers_2d'] = results['ann_info']['centers_2d']
654
655
        return results

jshilong's avatar
jshilong committed
656
    def _load_labels_3d(self, results: dict) -> dict:
657
658
659
660
661
662
663
664
        """Private function to load label annotations.

        Args:
            results (dict): Result dict from :obj:`mmdet3d.CustomDataset`.

        Returns:
            dict: The dict containing loaded label annotations.
        """
jshilong's avatar
jshilong committed
665

wuyuefeng's avatar
wuyuefeng committed
666
667
668
        results['gt_labels_3d'] = results['ann_info']['gt_labels_3d']
        return results

jshilong's avatar
jshilong committed
669
    def _load_attr_labels(self, results: dict) -> dict:
670
671
672
673
674
675
676
677
678
679
680
        """Private function to load label annotations.

        Args:
            results (dict): Result dict from :obj:`mmdet3d.CustomDataset`.

        Returns:
            dict: The dict containing loaded label annotations.
        """
        results['attr_labels'] = results['ann_info']['attr_labels']
        return results

jshilong's avatar
jshilong committed
681
    def _load_masks_3d(self, results: dict) -> dict:
682
683
684
685
686
687
688
689
        """Private function to load 3D mask annotations.

        Args:
            results (dict): Result dict from :obj:`mmdet3d.CustomDataset`.

        Returns:
            dict: The dict containing loaded 3D mask annotations.
        """
jshilong's avatar
jshilong committed
690
        pts_instance_mask_path = results['pts_instance_mask_path']
wuyuefeng's avatar
wuyuefeng committed
691
692
693
694
695

        if self.file_client is None:
            self.file_client = mmcv.FileClient(**self.file_client_args)
        try:
            mask_bytes = self.file_client.get(pts_instance_mask_path)
696
            pts_instance_mask = np.frombuffer(mask_bytes, dtype=np.int64)
wuyuefeng's avatar
wuyuefeng committed
697
698
699
        except ConnectionError:
            mmcv.check_file_exist(pts_instance_mask_path)
            pts_instance_mask = np.fromfile(
WRH's avatar
WRH committed
700
                pts_instance_mask_path, dtype=np.int64)
wuyuefeng's avatar
wuyuefeng committed
701
702

        results['pts_instance_mask'] = pts_instance_mask
jshilong's avatar
jshilong committed
703
704
705
        # 'eval_ann_info' will be passed to evaluator
        if 'eval_ann_info' in results:
            results['eval_ann_info']['pts_instance_mask'] = pts_instance_mask
wuyuefeng's avatar
wuyuefeng committed
706
707
        return results

jshilong's avatar
jshilong committed
708
    def _load_semantic_seg_3d(self, results: dict) -> dict:
709
710
711
712
713
714
715
716
        """Private function to load 3D semantic segmentation annotations.

        Args:
            results (dict): Result dict from :obj:`mmdet3d.CustomDataset`.

        Returns:
            dict: The dict containing the semantic segmentation annotations.
        """
jshilong's avatar
jshilong committed
717
        pts_semantic_mask_path = results['pts_semantic_mask_path']
wuyuefeng's avatar
wuyuefeng committed
718
719
720
721
722
723

        if self.file_client is None:
            self.file_client = mmcv.FileClient(**self.file_client_args)
        try:
            mask_bytes = self.file_client.get(pts_semantic_mask_path)
            # add .copy() to fix read-only bug
724
725
            pts_semantic_mask = np.frombuffer(
                mask_bytes, dtype=self.seg_3d_dtype).copy()
wuyuefeng's avatar
wuyuefeng committed
726
727
728
        except ConnectionError:
            mmcv.check_file_exist(pts_semantic_mask_path)
            pts_semantic_mask = np.fromfile(
WRH's avatar
WRH committed
729
                pts_semantic_mask_path, dtype=np.int64)
wuyuefeng's avatar
wuyuefeng committed
730
731

        results['pts_semantic_mask'] = pts_semantic_mask
jshilong's avatar
jshilong committed
732
733
734
        # 'eval_ann_info' will be passed to evaluator
        if 'eval_ann_info' in results:
            results['eval_ann_info']['pts_semantic_mask'] = pts_semantic_mask
wuyuefeng's avatar
wuyuefeng committed
735
736
        return results

zhangshilong's avatar
zhangshilong committed
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
    def _load_bboxes(self, results: dict) -> None:
        """Private function to load bounding box annotations.

        The only difference is it remove the proceess for
        `ignore_flag`

        Args:
            results (dict): Result dict from :obj:``mmcv.BaseDataset``.
        Returns:
            dict: The dict contains loaded bounding box annotations.
        """
        gt_bboxes = []
        for instance in results['instances']:
            gt_bboxes.append(instance['bbox'])
        if len(gt_bboxes) == 0:
            results['gt_bboxes'] = np.zeros((0, 4), dtype=np.float32)
        else:
            results['gt_bboxes'] = np.array(
                gt_bboxes, dtype=np.float32).reshape((-1, 4))

        if 'eval_ann_info' in results:
            results['eval_ann_info']['gt_bboxes'] = results['gt_bboxes']

    def _load_labels(self, results: dict) -> None:
        """Private function to load label annotations.

        Args:
            results (dict): Result dict from :obj :obj:``mmcv.BaseDataset``.

        Returns:
            dict: The dict contains loaded label annotations.
        """
        gt_bboxes_labels = []
        for instance in results['instances']:
            gt_bboxes_labels.append(instance['bbox_label'])
        if len(gt_bboxes_labels) == 0:
            results['gt_bboxes_labels'] = np.zeros((0, ), dtype=np.int64)
        else:
            results['gt_bboxes_labels'] = np.array(
                gt_bboxes_labels, dtype=np.int64)
        if 'eval_ann_info' in results:
            results['eval_ann_info']['gt_bboxes_labels'] = results[
                'gt_bboxes_labels']

jshilong's avatar
jshilong committed
781
782
    def transform(self, results: dict) -> dict:
        """Function to load multiple types annotations.
783
784
785
786
787
788

        Args:
            results (dict): Result dict from :obj:`mmdet3d.CustomDataset`.

        Returns:
            dict: The dict containing loaded 3D bounding box, label, mask and
jshilong's avatar
jshilong committed
789
            semantic segmentation annotations.
790
        """
jshilong's avatar
jshilong committed
791
        results = super().transform(results)
wuyuefeng's avatar
wuyuefeng committed
792
793
        if self.with_bbox_3d:
            results = self._load_bboxes_3d(results)
794
795
        if self.with_bbox_depth:
            results = self._load_bboxes_depth(results)
wuyuefeng's avatar
wuyuefeng committed
796
797
        if self.with_label_3d:
            results = self._load_labels_3d(results)
798
799
        if self.with_attr_label:
            results = self._load_attr_labels(results)
wuyuefeng's avatar
wuyuefeng committed
800
801
802
803
804
805
806
807
        if self.with_mask_3d:
            results = self._load_masks_3d(results)
        if self.with_seg_3d:
            results = self._load_semantic_seg_3d(results)

        return results

    def __repr__(self):
808
        """str: Return a string that describes the module."""
wuyuefeng's avatar
wuyuefeng committed
809
810
        indent_str = '    '
        repr_str = self.__class__.__name__ + '(\n'
liyinhao's avatar
liyinhao committed
811
812
        repr_str += f'{indent_str}with_bbox_3d={self.with_bbox_3d}, '
        repr_str += f'{indent_str}with_label_3d={self.with_label_3d}, '
813
        repr_str += f'{indent_str}with_attr_label={self.with_attr_label}, '
liyinhao's avatar
liyinhao committed
814
815
816
817
818
819
        repr_str += f'{indent_str}with_mask_3d={self.with_mask_3d}, '
        repr_str += f'{indent_str}with_seg_3d={self.with_seg_3d}, '
        repr_str += f'{indent_str}with_bbox={self.with_bbox}, '
        repr_str += f'{indent_str}with_label={self.with_label}, '
        repr_str += f'{indent_str}with_mask={self.with_mask}, '
        repr_str += f'{indent_str}with_seg={self.with_seg}, '
820
        repr_str += f'{indent_str}with_bbox_depth={self.with_bbox_depth}, '
wuyuefeng's avatar
wuyuefeng committed
821
822
        repr_str += f'{indent_str}poly2mask={self.poly2mask})'
        return repr_str