transforms_3d.py 99.8 KB
Newer Older
dingchang's avatar
dingchang committed
1
# Copyright (c) OpenMMLab. All rights reserved.
2
import random
3
import warnings
4
from typing import List, Optional, Sequence, Tuple, Union
5
6

import cv2
7
import mmcv
8
import numpy as np
9
import torch
10
from mmcv.transforms import BaseTransform, Compose, RandomResize, Resize
11
12
from mmdet.datasets.transforms import (PhotoMetricDistortion, RandomCrop,
                                       RandomFlip)
13
from mmengine import is_list_of, is_tuple_of
zhangwenwei's avatar
zhangwenwei committed
14

zhangshilong's avatar
zhangshilong committed
15
from mmdet3d.models.task_modules import VoxelGenerator
16
from mmdet3d.registry import TRANSFORMS
zhangshilong's avatar
zhangshilong committed
17
18
19
20
from mmdet3d.structures import (CameraInstance3DBoxes, DepthInstance3DBoxes,
                                LiDARInstance3DBoxes)
from mmdet3d.structures.ops import box_np_ops
from mmdet3d.structures.points import BasePoints
zhangwenwei's avatar
zhangwenwei committed
21
22
23
from .data_augment_utils import noise_per_object_v3_


24
@TRANSFORMS.register_module()
ZCMax's avatar
ZCMax committed
25
class RandomDropPointsColor(BaseTransform):
26
27
28
29
30
31
32
    r"""Randomly set the color of points to all zeros.

    Once this transform is executed, all the points' color will be dropped.
    Refer to `PAConv <https://github.com/CVMI-Lab/PAConv/blob/main/scene_seg/
    util/transform.py#L223>`_ for more details.

    Args:
33
        drop_ratio (float): The probability of dropping point colors.
34
35
36
            Defaults to 0.2.
    """

ZCMax's avatar
ZCMax committed
37
    def __init__(self, drop_ratio: float = 0.2) -> None:
38
39
40
41
        assert isinstance(drop_ratio, (int, float)) and 0 <= drop_ratio <= 1, \
            f'invalid drop_ratio value {drop_ratio}'
        self.drop_ratio = drop_ratio

ZCMax's avatar
ZCMax committed
42
    def transform(self, input_dict: dict) -> dict:
43
44
45
46
47
48
        """Call function to drop point colors.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
49
50
            dict: Results after color dropping, 'points' key is updated
            in the result dict.
51
52
53
54
55
56
        """
        points = input_dict['points']
        assert points.attribute_dims is not None and \
            'color' in points.attribute_dims, \
            'Expect points have color attribute'

57
58
59
60
61
62
63
        # this if-expression is a bit strange
        # `RandomDropPointsColor` is used in training 3D segmentor PAConv
        # we discovered in our experiments that, using
        # `if np.random.rand() > 1.0 - self.drop_ratio` consistently leads to
        # better results than using `if np.random.rand() < self.drop_ratio`
        # so we keep this hack in our codebase
        if np.random.rand() > 1.0 - self.drop_ratio:
64
65
66
            points.color = points.color * 0.0
        return input_dict

67
    def __repr__(self) -> str:
68
69
70
71
72
73
        """str: Return a string that describes the module."""
        repr_str = self.__class__.__name__
        repr_str += f'(drop_ratio={self.drop_ratio})'
        return repr_str


74
@TRANSFORMS.register_module()
zhangwenwei's avatar
zhangwenwei committed
75
76
77
78
79
80
81
class RandomFlip3D(RandomFlip):
    """Flip the points & bbox.

    If the input dict contains the key "flip", then the flag will be used,
    otherwise it will be randomly decided by a ratio specified in the init
    method.

jshilong's avatar
jshilong committed
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
    Required Keys:

    - points (np.float32)
    - gt_bboxes_3d (np.float32)

    Modified Keys:

    - points (np.float32)
    - gt_bboxes_3d (np.float32)

    Added Keys:

    - points (np.float32)
    - pcd_trans (np.float32)
    - pcd_rotation (np.float32)
    - pcd_rotation_angle (np.float32)
    - pcd_scale_factor (np.float32)

zhangwenwei's avatar
zhangwenwei committed
100
    Args:
101
        sync_2d (bool): Whether to apply flip according to the 2D
zhangwenwei's avatar
zhangwenwei committed
102
103
            images. If True, it will apply the same flip as that to 2D images.
            If False, it will decide whether to flip randomly and independently
liyinhao's avatar
liyinhao committed
104
            to that of 2D images. Defaults to True.
105
        flip_ratio_bev_horizontal (float): The flipping probability
liyinhao's avatar
liyinhao committed
106
            in horizontal direction. Defaults to 0.0.
107
        flip_ratio_bev_vertical (float): The flipping probability
liyinhao's avatar
liyinhao committed
108
            in vertical direction. Defaults to 0.0.
109
110
        flip_box3d (bool): Whether to flip bounding box. In most of the case,
            the box should be fliped. In cam-based bev detection, this is set
111
112
            to False, since the flip of 2D images does not influence the 3D
            box. Defaults to True.
zhangwenwei's avatar
zhangwenwei committed
113
114
    """

wuyuefeng's avatar
wuyuefeng committed
115
    def __init__(self,
jshilong's avatar
jshilong committed
116
117
118
                 sync_2d: bool = True,
                 flip_ratio_bev_horizontal: float = 0.0,
                 flip_ratio_bev_vertical: float = 0.0,
119
                 flip_box3d: bool = True,
jshilong's avatar
jshilong committed
120
121
122
123
                 **kwargs) -> None:
        # `flip_ratio_bev_horizontal` is equal to
        # for flip prob of 2d image when
        # `sync_2d` is True
wuyuefeng's avatar
wuyuefeng committed
124
        super(RandomFlip3D, self).__init__(
jshilong's avatar
jshilong committed
125
            prob=flip_ratio_bev_horizontal, direction='horizontal', **kwargs)
zhangwenwei's avatar
zhangwenwei committed
126
        self.sync_2d = sync_2d
jshilong's avatar
jshilong committed
127
        self.flip_ratio_bev_horizontal = flip_ratio_bev_horizontal
wuyuefeng's avatar
wuyuefeng committed
128
        self.flip_ratio_bev_vertical = flip_ratio_bev_vertical
129
        self.flip_box3d = flip_box3d
wuyuefeng's avatar
wuyuefeng committed
130
131
132
133
134
135
136
137
138
        if flip_ratio_bev_horizontal is not None:
            assert isinstance(
                flip_ratio_bev_horizontal,
                (int, float)) and 0 <= flip_ratio_bev_horizontal <= 1
        if flip_ratio_bev_vertical is not None:
            assert isinstance(
                flip_ratio_bev_vertical,
                (int, float)) and 0 <= flip_ratio_bev_vertical <= 1

jshilong's avatar
jshilong committed
139
140
141
    def random_flip_data_3d(self,
                            input_dict: dict,
                            direction: str = 'horizontal') -> None:
142
143
        """Flip 3D data randomly.

jshilong's avatar
jshilong committed
144
145
146
147
148
149
150
        `random_flip_data_3d` should take these situations into consideration:

        - 1. LIDAR-based 3d detection
        - 2. LIDAR-based 3d segmentation
        - 3. vision-only detection
        - 4. multi-modality 3d detection.

151
152
        Args:
            input_dict (dict): Result dict from loading pipeline.
153
            direction (str): Flip direction. Defaults to 'horizontal'.
154
155

        Returns:
156
            dict: Flipped results, 'points', 'bbox3d_fields' keys are
157
            updated in the result dict.
158
        """
wuyuefeng's avatar
wuyuefeng committed
159
        assert direction in ['horizontal', 'vertical']
160
161
162
163
164
165
166
167
        if self.flip_box3d:
            if 'gt_bboxes_3d' in input_dict:
                if 'points' in input_dict:
                    input_dict['points'] = input_dict['gt_bboxes_3d'].flip(
                        direction, points=input_dict['points'])
                else:
                    # vision-only detection
                    input_dict['gt_bboxes_3d'].flip(direction)
168
            else:
169
                input_dict['points'].flip(direction)
jshilong's avatar
jshilong committed
170
171

        if 'centers_2d' in input_dict:
172
173
            assert self.sync_2d is True and direction == 'horizontal', \
                'Only support sync_2d=True and horizontal flip with images'
174
            w = input_dict['img_shape'][1]
jshilong's avatar
jshilong committed
175
176
            input_dict['centers_2d'][..., 0] = \
                w - input_dict['centers_2d'][..., 0]
177
178
            # need to modify the horizontal position of camera center
            # along u-axis in the image (flip like centers2d)
179
            # ['cam2img'][0][2] = c_u
180
181
            # see more details and examples at
            # https://github.com/open-mmlab/mmdetection3d/pull/744
182
            input_dict['cam2img'][0][2] = w - input_dict['cam2img'][0][2]
zhangwenwei's avatar
zhangwenwei committed
183

184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
    def _flip_on_direction(self, results: dict) -> None:
        """Function to flip images, bounding boxes, semantic segmentation map
        and keypoints.

        Add the override feature that if 'flip' is already in results, use it
        to do the augmentation.
        """
        if 'flip' not in results:
            cur_dir = self._choose_direction()
        else:
            cur_dir = results['flip_direction']
        if cur_dir is None:
            results['flip'] = False
            results['flip_direction'] = None
        else:
            results['flip'] = True
            results['flip_direction'] = cur_dir
            self._flip(results)

jshilong's avatar
jshilong committed
203
    def transform(self, input_dict: dict) -> dict:
204
        """Call function to flip points, values in the ``bbox3d_fields`` and
205
206
207
208
209
210
        also flip 2D image and its annotations.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
211
            dict: Flipped results, 'flip', 'flip_direction',
212
213
            'pcd_horizontal_flip' and 'pcd_vertical_flip' keys are added
            into result dict.
214
        """
215
        # flip 2D image and its annotations
jshilong's avatar
jshilong committed
216
217
        if 'img' in input_dict:
            super(RandomFlip3D, self).transform(input_dict)
zhangwenwei's avatar
zhangwenwei committed
218

jshilong's avatar
jshilong committed
219
        if self.sync_2d and 'img' in input_dict:
wuyuefeng's avatar
wuyuefeng committed
220
221
            input_dict['pcd_horizontal_flip'] = input_dict['flip']
            input_dict['pcd_vertical_flip'] = False
zhangwenwei's avatar
zhangwenwei committed
222
        else:
wuyuefeng's avatar
wuyuefeng committed
223
224
            if 'pcd_horizontal_flip' not in input_dict:
                flip_horizontal = True if np.random.rand(
jshilong's avatar
jshilong committed
225
                ) < self.flip_ratio_bev_horizontal else False
wuyuefeng's avatar
wuyuefeng committed
226
227
228
229
230
231
                input_dict['pcd_horizontal_flip'] = flip_horizontal
            if 'pcd_vertical_flip' not in input_dict:
                flip_vertical = True if np.random.rand(
                ) < self.flip_ratio_bev_vertical else False
                input_dict['pcd_vertical_flip'] = flip_vertical

232
233
234
        if 'transformation_3d_flow' not in input_dict:
            input_dict['transformation_3d_flow'] = []

wuyuefeng's avatar
wuyuefeng committed
235
236
        if input_dict['pcd_horizontal_flip']:
            self.random_flip_data_3d(input_dict, 'horizontal')
237
            input_dict['transformation_3d_flow'].extend(['HF'])
wuyuefeng's avatar
wuyuefeng committed
238
239
        if input_dict['pcd_vertical_flip']:
            self.random_flip_data_3d(input_dict, 'vertical')
240
            input_dict['transformation_3d_flow'].extend(['VF'])
zhangwenwei's avatar
zhangwenwei committed
241
242
        return input_dict

243
    def __repr__(self) -> str:
244
        """str: Return a string that describes the module."""
wuyuefeng's avatar
wuyuefeng committed
245
        repr_str = self.__class__.__name__
246
        repr_str += f'(sync_2d={self.sync_2d},'
247
        repr_str += f' flip_ratio_bev_vertical={self.flip_ratio_bev_vertical})'
wuyuefeng's avatar
wuyuefeng committed
248
        return repr_str
zhangwenwei's avatar
zhangwenwei committed
249

zhangwenwei's avatar
zhangwenwei committed
250

251
@TRANSFORMS.register_module()
ZCMax's avatar
ZCMax committed
252
class RandomJitterPoints(BaseTransform):
253
254
    """Randomly jitter point coordinates.

255
    Different from the global translation in ``GlobalRotScaleTrans``, here we
256
    apply different noises to each point in a scene.
257
258
259

    Args:
        jitter_std (list[float]): The standard deviation of jittering noise.
260
261
            This applies random noise to all points in a 3D scene, which is
            sampled from a gaussian distribution whose standard deviation is
262
            set by ``jitter_std``. Defaults to [0.01, 0.01, 0.01]
263
        clip_range (list[float]): Clip the randomly generated jitter
264
265
266
267
            noise into this range. If None is given, don't perform clipping.
            Defaults to [-0.05, 0.05]

    Note:
268
        This transform should only be used in point cloud segmentation tasks
269
        because we don't transform ground-truth bboxes accordingly.
270
271
272
273
        For similar transform in detection task, please refer to `ObjectNoise`.
    """

    def __init__(self,
ZCMax's avatar
ZCMax committed
274
275
                 jitter_std: List[float] = [0.01, 0.01, 0.01],
                 clip_range: List[float] = [-0.05, 0.05]) -> None:
276
277
278
279
280
281
282
283
284
285
286
287
288
289
        seq_types = (list, tuple, np.ndarray)
        if not isinstance(jitter_std, seq_types):
            assert isinstance(jitter_std, (int, float)), \
                f'unsupported jitter_std type {type(jitter_std)}'
            jitter_std = [jitter_std, jitter_std, jitter_std]
        self.jitter_std = jitter_std

        if clip_range is not None:
            if not isinstance(clip_range, seq_types):
                assert isinstance(clip_range, (int, float)), \
                    f'unsupported clip_range type {type(clip_range)}'
                clip_range = [-clip_range, clip_range]
        self.clip_range = clip_range

ZCMax's avatar
ZCMax committed
290
    def transform(self, input_dict: dict) -> dict:
291
292
293
294
295
296
        """Call function to jitter all the points in the scene.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
297
            dict: Results after adding noise to each point,
298
            'points' key is updated in the result dict.
299
300
301
302
303
304
305
306
307
308
309
310
        """
        points = input_dict['points']
        jitter_std = np.array(self.jitter_std, dtype=np.float32)
        jitter_noise = \
            np.random.randn(points.shape[0], 3) * jitter_std[None, :]
        if self.clip_range is not None:
            jitter_noise = np.clip(jitter_noise, self.clip_range[0],
                                   self.clip_range[1])

        points.translate(jitter_noise)
        return input_dict

311
    def __repr__(self) -> str:
312
313
314
315
316
317
318
        """str: Return a string that describes the module."""
        repr_str = self.__class__.__name__
        repr_str += f'(jitter_std={self.jitter_std},'
        repr_str += f' clip_range={self.clip_range})'
        return repr_str


319
320
@TRANSFORMS.register_module()
class ObjectSample(BaseTransform):
zhangwenwei's avatar
zhangwenwei committed
321
    """Sample GT objects to the data.
zhangwenwei's avatar
zhangwenwei committed
322

323
324
325
326
327
328
329
330
331
332
    Required Keys:

    - points
    - ann_info
    - gt_bboxes_3d
    - gt_labels_3d
    - img (optional)
    - gt_bboxes (optional)

    Modified Keys:
333

334
335
336
337
338
339
340
341
342
343
    - points
    - gt_bboxes_3d
    - gt_labels_3d
    - img (optional)
    - gt_bboxes (optional)

    Added Keys:

    - plane (optional)

zhangwenwei's avatar
zhangwenwei committed
344
345
    Args:
        db_sampler (dict): Config dict of the database sampler.
346
        sample_2d (bool): Whether to also paste 2D image patch to the images.
zhangwenwei's avatar
zhangwenwei committed
347
            This should be true when applying multi-modality cut-and-paste.
liyinhao's avatar
liyinhao committed
348
            Defaults to False.
349
        use_ground_plane (bool): Whether to use ground plane to adjust the
350
            3D labels. Defaults to False.
zhangwenwei's avatar
zhangwenwei committed
351
    """
zhangwenwei's avatar
zhangwenwei committed
352

353
354
355
    def __init__(self,
                 db_sampler: dict,
                 sample_2d: bool = False,
356
                 use_ground_plane: bool = False) -> None:
zhangwenwei's avatar
zhangwenwei committed
357
358
359
360
        self.sampler_cfg = db_sampler
        self.sample_2d = sample_2d
        if 'type' not in db_sampler.keys():
            db_sampler['type'] = 'DataBaseSampler'
361
        self.db_sampler = TRANSFORMS.build(db_sampler)
362
        self.use_ground_plane = use_ground_plane
363
        self.disabled = False
zhangwenwei's avatar
zhangwenwei committed
364
365

    @staticmethod
366
367
    def remove_points_in_boxes(points: BasePoints,
                               boxes: np.ndarray) -> np.ndarray:
368
369
370
        """Remove the points in the sampled bounding boxes.

        Args:
371
            points (:obj:`BasePoints`): Input point cloud array.
372
373
374
375
376
            boxes (np.ndarray): Sampled ground truth boxes.

        Returns:
            np.ndarray: Points with those in the boxes removed.
        """
377
        masks = box_np_ops.points_in_rbbox(points.coord.numpy(), boxes)
zhangwenwei's avatar
zhangwenwei committed
378
379
380
        points = points[np.logical_not(masks.any(-1))]
        return points

381
382
    def transform(self, input_dict: dict) -> dict:
        """Transform function to sample ground truth objects to the data.
383
384
385
386
387

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
388
            dict: Results after object sampling augmentation,
389
390
            'points', 'gt_bboxes_3d', 'gt_labels_3d' keys are updated
            in the result dict.
391
        """
392
393
394
        if self.disabled:
            return input_dict

zhangwenwei's avatar
zhangwenwei committed
395
        gt_bboxes_3d = input_dict['gt_bboxes_3d']
zhangwenwei's avatar
zhangwenwei committed
396
397
        gt_labels_3d = input_dict['gt_labels_3d']

ChaimZhu's avatar
ChaimZhu committed
398
399
        if self.use_ground_plane:
            ground_plane = input_dict.get('plane', None)
400
401
            assert ground_plane is not None, '`use_ground_plane` is True ' \
                                             'but find plane is None'
402
403
        else:
            ground_plane = None
zhangwenwei's avatar
zhangwenwei committed
404
405
406
        # change to float for blending operation
        points = input_dict['points']
        if self.sample_2d:
wuyuefeng's avatar
wuyuefeng committed
407
            img = input_dict['img']
zhangwenwei's avatar
zhangwenwei committed
408
409
410
            gt_bboxes_2d = input_dict['gt_bboxes']
            # Assume for now 3D & 2D bboxes are the same
            sampled_dict = self.db_sampler.sample_all(
411
412
413
414
                gt_bboxes_3d.tensor.numpy(),
                gt_labels_3d,
                gt_bboxes_2d=gt_bboxes_2d,
                img=img)
zhangwenwei's avatar
zhangwenwei committed
415
416
        else:
            sampled_dict = self.db_sampler.sample_all(
417
418
419
420
                gt_bboxes_3d.tensor.numpy(),
                gt_labels_3d,
                img=None,
                ground_plane=ground_plane)
zhangwenwei's avatar
zhangwenwei committed
421
422
423
424

        if sampled_dict is not None:
            sampled_gt_bboxes_3d = sampled_dict['gt_bboxes_3d']
            sampled_points = sampled_dict['points']
zhangwenwei's avatar
zhangwenwei committed
425
            sampled_gt_labels = sampled_dict['gt_labels_3d']
zhangwenwei's avatar
zhangwenwei committed
426

zhangwenwei's avatar
zhangwenwei committed
427
428
            gt_labels_3d = np.concatenate([gt_labels_3d, sampled_gt_labels],
                                          axis=0)
429
430
431
            gt_bboxes_3d = gt_bboxes_3d.new_box(
                np.concatenate(
                    [gt_bboxes_3d.tensor.numpy(), sampled_gt_bboxes_3d]))
zhangwenwei's avatar
zhangwenwei committed
432

zhangwenwei's avatar
zhangwenwei committed
433
434
            points = self.remove_points_in_boxes(points, sampled_gt_bboxes_3d)
            # check the points dimension
435
            points = points.cat([sampled_points, points])
zhangwenwei's avatar
zhangwenwei committed
436
437
438
439
440

            if self.sample_2d:
                sampled_gt_bboxes_2d = sampled_dict['gt_bboxes_2d']
                gt_bboxes_2d = np.concatenate(
                    [gt_bboxes_2d, sampled_gt_bboxes_2d]).astype(np.float32)
zhangwenwei's avatar
zhangwenwei committed
441

zhangwenwei's avatar
zhangwenwei committed
442
                input_dict['gt_bboxes'] = gt_bboxes_2d
wuyuefeng's avatar
wuyuefeng committed
443
                input_dict['img'] = sampled_dict['img']
zhangwenwei's avatar
zhangwenwei committed
444
445

        input_dict['gt_bboxes_3d'] = gt_bboxes_3d
WRH's avatar
WRH committed
446
        input_dict['gt_labels_3d'] = gt_labels_3d.astype(np.int64)
zhangwenwei's avatar
zhangwenwei committed
447
        input_dict['points'] = points
zhangwenwei's avatar
zhangwenwei committed
448

zhangwenwei's avatar
zhangwenwei committed
449
450
        return input_dict

451
    def __repr__(self) -> str:
452
        """str: Return a string that describes the module."""
453
        repr_str = self.__class__.__name__
454
        repr_str += f'(db_sampler={self.db_sampler},'
455
        repr_str += f' sample_2d={self.sample_2d},'
456
        repr_str += f' use_ground_plane={self.use_ground_plane})'
457
        return repr_str
zhangwenwei's avatar
zhangwenwei committed
458
459


460
461
@TRANSFORMS.register_module()
class ObjectNoise(BaseTransform):
zhangwenwei's avatar
zhangwenwei committed
462
    """Apply noise to each GT objects in the scene.
zhangwenwei's avatar
zhangwenwei committed
463

464
465
466
467
468
469
470
471
472
473
    Required Keys:

    - points
    - gt_bboxes_3d

    Modified Keys:

    - points
    - gt_bboxes_3d

zhangwenwei's avatar
zhangwenwei committed
474
    Args:
475
        translation_std (list[float]): Standard deviation of the
zhangwenwei's avatar
zhangwenwei committed
476
477
            distribution where translation noise are sampled from.
            Defaults to [0.25, 0.25, 0.25].
478
        global_rot_range (list[float]): Global rotation to the scene.
zhangwenwei's avatar
zhangwenwei committed
479
            Defaults to [0.0, 0.0].
480
        rot_range (list[float]): Object rotation range.
zhangwenwei's avatar
zhangwenwei committed
481
            Defaults to [-0.15707963267, 0.15707963267].
482
483
        num_try (int): Number of times to try if the noise applied is invalid.
            Defaults to 100.
zhangwenwei's avatar
zhangwenwei committed
484
    """
zhangwenwei's avatar
zhangwenwei committed
485
486

    def __init__(self,
487
488
489
490
                 translation_std: List[float] = [0.25, 0.25, 0.25],
                 global_rot_range: List[float] = [0.0, 0.0],
                 rot_range: List[float] = [-0.15707963267, 0.15707963267],
                 num_try: int = 100) -> None:
zhangwenwei's avatar
zhangwenwei committed
491
        self.translation_std = translation_std
zhangwenwei's avatar
zhangwenwei committed
492
        self.global_rot_range = global_rot_range
zhangwenwei's avatar
zhangwenwei committed
493
        self.rot_range = rot_range
zhangwenwei's avatar
zhangwenwei committed
494
495
        self.num_try = num_try

496
497
    def transform(self, input_dict: dict) -> dict:
        """Transform function to apply noise to each ground truth in the scene.
498
499
500
501
502

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
503
            dict: Results after adding noise to each object,
504
            'points', 'gt_bboxes_3d' keys are updated in the result dict.
505
        """
zhangwenwei's avatar
zhangwenwei committed
506
507
        gt_bboxes_3d = input_dict['gt_bboxes_3d']
        points = input_dict['points']
zhangwenwei's avatar
zhangwenwei committed
508

509
        # TODO: this is inplace operation
510
        numpy_box = gt_bboxes_3d.tensor.numpy()
511
512
        numpy_points = points.tensor.numpy()

zhangwenwei's avatar
zhangwenwei committed
513
        noise_per_object_v3_(
514
            numpy_box,
515
            numpy_points,
zhangwenwei's avatar
zhangwenwei committed
516
517
            rotation_perturb=self.rot_range,
            center_noise_std=self.translation_std,
zhangwenwei's avatar
zhangwenwei committed
518
519
            global_random_rot_range=self.global_rot_range,
            num_try=self.num_try)
520
521

        input_dict['gt_bboxes_3d'] = gt_bboxes_3d.new_box(numpy_box)
522
        input_dict['points'] = points.new_point(numpy_points)
zhangwenwei's avatar
zhangwenwei committed
523
524
        return input_dict

525
    def __repr__(self) -> str:
526
        """str: Return a string that describes the module."""
zhangwenwei's avatar
zhangwenwei committed
527
        repr_str = self.__class__.__name__
528
529
530
531
        repr_str += f'(num_try={self.num_try},'
        repr_str += f' translation_std={self.translation_std},'
        repr_str += f' global_rot_range={self.global_rot_range},'
        repr_str += f' rot_range={self.rot_range})'
zhangwenwei's avatar
zhangwenwei committed
532
533
534
        return repr_str


535
@TRANSFORMS.register_module()
536
class GlobalAlignment(BaseTransform):
537
538
539
540
541
542
    """Apply global alignment to 3D scene points by rotation and translation.

    Args:
        rotation_axis (int): Rotation axis for points and bboxes rotation.

    Note:
543
        We do not record the applied rotation and translation as in
544
545
        GlobalRotScaleTrans. Because usually, we do not need to reverse
        the alignment step.
546
        For example, ScanNet 3D detection task uses aligned ground-truth
547
        bounding boxes for evaluation.
548
549
    """

550
    def __init__(self, rotation_axis: int) -> None:
551
552
        self.rotation_axis = rotation_axis

553
    def _trans_points(self, results: dict, trans_factor: np.ndarray) -> None:
554
555
556
557
558
559
560
561
562
        """Private function to translate points.

        Args:
            input_dict (dict): Result dict from loading pipeline.
            trans_factor (np.ndarray): Translation vector to be applied.

        Returns:
            dict: Results after translation, 'points' is updated in the dict.
        """
563
        results['points'].translate(trans_factor)
564

565
    def _rot_points(self, results: dict, rot_mat: np.ndarray) -> None:
566
567
568
569
570
571
572
573
574
575
        """Private function to rotate bounding boxes and points.

        Args:
            input_dict (dict): Result dict from loading pipeline.
            rot_mat (np.ndarray): Rotation matrix to be applied.

        Returns:
            dict: Results after rotation, 'points' is updated in the dict.
        """
        # input should be rot_mat_T so I transpose it here
576
        results['points'].rotate(rot_mat.T)
577

578
    def _check_rot_mat(self, rot_mat: np.ndarray) -> None:
579
580
581
582
583
584
585
586
587
588
589
590
        """Check if rotation matrix is valid for self.rotation_axis.

        Args:
            rot_mat (np.ndarray): Rotation matrix to be applied.
        """
        is_valid = np.allclose(np.linalg.det(rot_mat), 1.0)
        valid_array = np.zeros(3)
        valid_array[self.rotation_axis] = 1.0
        is_valid &= (rot_mat[self.rotation_axis, :] == valid_array).all()
        is_valid &= (rot_mat[:, self.rotation_axis] == valid_array).all()
        assert is_valid, f'invalid rotation matrix {rot_mat}'

591
    def transform(self, results: dict) -> dict:
592
593
594
595
596
597
        """Call function to shuffle points.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
598
            dict: Results after global alignment, 'points' and keys in
599
            input_dict['bbox3d_fields'] are updated in the result dict.
600
        """
601
        assert 'axis_align_matrix' in results, \
602
603
            'axis_align_matrix is not provided in GlobalAlignment'

604
        axis_align_matrix = results['axis_align_matrix']
605
606
607
608
609
610
        assert axis_align_matrix.shape == (4, 4), \
            f'invalid shape {axis_align_matrix.shape} for axis_align_matrix'
        rot_mat = axis_align_matrix[:3, :3]
        trans_vec = axis_align_matrix[:3, -1]

        self._check_rot_mat(rot_mat)
611
612
        self._rot_points(results, rot_mat)
        self._trans_points(results, trans_vec)
613

614
        return results
615

616
    def __repr__(self) -> str:
617
        """str: Return a string that describes the module."""
618
619
620
621
622
        repr_str = self.__class__.__name__
        repr_str += f'(rotation_axis={self.rotation_axis})'
        return repr_str


623
@TRANSFORMS.register_module()
jshilong's avatar
jshilong committed
624
class GlobalRotScaleTrans(BaseTransform):
zhangwenwei's avatar
zhangwenwei committed
625
    """Apply global rotation, scaling and translation to a 3D scene.
zhangwenwei's avatar
zhangwenwei committed
626

jshilong's avatar
jshilong committed
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
    Required Keys:

    - points (np.float32)
    - gt_bboxes_3d (np.float32)

    Modified Keys:

    - points (np.float32)
    - gt_bboxes_3d (np.float32)

    Added Keys:

    - points (np.float32)
    - pcd_trans (np.float32)
    - pcd_rotation (np.float32)
    - pcd_rotation_angle (np.float32)
    - pcd_scale_factor (np.float32)

zhangwenwei's avatar
zhangwenwei committed
645
    Args:
646
        rot_range (list[float]): Range of rotation angle.
liyinhao's avatar
liyinhao committed
647
            Defaults to [-0.78539816, 0.78539816] (close to [-pi/4, pi/4]).
648
        scale_ratio_range (list[float]): Range of scale ratio.
liyinhao's avatar
liyinhao committed
649
            Defaults to [0.95, 1.05].
650
        translation_std (list[float]): The standard deviation of
651
            translation noise applied to a scene, which
zhangwenwei's avatar
zhangwenwei committed
652
            is sampled from a gaussian distribution whose standard deviation
653
654
            is set by ``translation_std``. Defaults to [0, 0, 0].
        shift_height (bool): Whether to shift height.
wuyuefeng's avatar
wuyuefeng committed
655
            (the fourth dimension of indoor points) when scaling.
liyinhao's avatar
liyinhao committed
656
            Defaults to False.
zhangwenwei's avatar
zhangwenwei committed
657
    """
zhangwenwei's avatar
zhangwenwei committed
658
659

    def __init__(self,
jshilong's avatar
jshilong committed
660
661
662
663
                 rot_range: List[float] = [-0.78539816, 0.78539816],
                 scale_ratio_range: List[float] = [0.95, 1.05],
                 translation_std: List[int] = [0, 0, 0],
                 shift_height: bool = False) -> None:
664
665
666
667
668
        seq_types = (list, tuple, np.ndarray)
        if not isinstance(rot_range, seq_types):
            assert isinstance(rot_range, (int, float)), \
                f'unsupported rot_range type {type(rot_range)}'
            rot_range = [-rot_range, rot_range]
zhangwenwei's avatar
zhangwenwei committed
669
        self.rot_range = rot_range
670
671
672

        assert isinstance(scale_ratio_range, seq_types), \
            f'unsupported scale_ratio_range type {type(scale_ratio_range)}'
jshilong's avatar
jshilong committed
673

zhangwenwei's avatar
zhangwenwei committed
674
        self.scale_ratio_range = scale_ratio_range
675
676
677
678
679
680
681

        if not isinstance(translation_std, seq_types):
            assert isinstance(translation_std, (int, float)), \
                f'unsupported translation_std type {type(translation_std)}'
            translation_std = [
                translation_std, translation_std, translation_std
            ]
682
683
        assert all([std >= 0 for std in translation_std]), \
            'translation_std should be positive'
zhangwenwei's avatar
zhangwenwei committed
684
        self.translation_std = translation_std
wuyuefeng's avatar
wuyuefeng committed
685
        self.shift_height = shift_height
zhangwenwei's avatar
zhangwenwei committed
686

jshilong's avatar
jshilong committed
687
    def _trans_bbox_points(self, input_dict: dict) -> None:
688
689
690
691
692
693
        """Private function to translate bounding boxes and points.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
694
            dict: Results after translation, 'points', 'pcd_trans'
695
            and `gt_bboxes_3d` is updated in the result dict.
696
        """
697
        translation_std = np.array(self.translation_std, dtype=np.float32)
zhangwenwei's avatar
zhangwenwei committed
698
699
        trans_factor = np.random.normal(scale=translation_std, size=3).T

700
        input_dict['points'].translate(trans_factor)
zhangwenwei's avatar
zhangwenwei committed
701
        input_dict['pcd_trans'] = trans_factor
jshilong's avatar
jshilong committed
702
703
        if 'gt_bboxes_3d' in input_dict:
            input_dict['gt_bboxes_3d'].translate(trans_factor)
zhangwenwei's avatar
zhangwenwei committed
704

jshilong's avatar
jshilong committed
705
    def _rot_bbox_points(self, input_dict: dict) -> None:
706
707
708
709
710
711
        """Private function to rotate bounding boxes and points.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
712
            dict: Results after rotation, 'points', 'pcd_rotation'
713
            and `gt_bboxes_3d` is updated in the result dict.
714
        """
zhangwenwei's avatar
zhangwenwei committed
715
        rotation = self.rot_range
zhangwenwei's avatar
zhangwenwei committed
716
        noise_rotation = np.random.uniform(rotation[0], rotation[1])
zhangwenwei's avatar
zhangwenwei committed
717

jshilong's avatar
jshilong committed
718
719
720
721
722
723
724
725
        if 'gt_bboxes_3d' in input_dict and \
                len(input_dict['gt_bboxes_3d'].tensor) != 0:
            # rotate points with bboxes
            points, rot_mat_T = input_dict['gt_bboxes_3d'].rotate(
                noise_rotation, input_dict['points'])
            input_dict['points'] = points
        else:
            # if no bbox in input_dict, only rotate points
726
            rot_mat_T = input_dict['points'].rotate(noise_rotation)
jshilong's avatar
jshilong committed
727
728
729
730
731

        input_dict['pcd_rotation'] = rot_mat_T
        input_dict['pcd_rotation_angle'] = noise_rotation

    def _scale_bbox_points(self, input_dict: dict) -> None:
732
733
734
735
736
737
        """Private function to scale bounding boxes and points.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
jshilong's avatar
jshilong committed
738
            dict: Results after scaling, 'points' and
739
            `gt_bboxes_3d` is updated in the result dict.
740
        """
zhangwenwei's avatar
zhangwenwei committed
741
        scale = input_dict['pcd_scale_factor']
742
743
        points = input_dict['points']
        points.scale(scale)
wuyuefeng's avatar
wuyuefeng committed
744
        if self.shift_height:
745
746
            assert 'height' in points.attribute_dims.keys(), \
                'setting shift_height=True but points have no height attribute'
747
748
            points.tensor[:, points.attribute_dims['height']] *= scale
        input_dict['points'] = points
wuyuefeng's avatar
wuyuefeng committed
749

jshilong's avatar
jshilong committed
750
751
752
        if 'gt_bboxes_3d' in input_dict and \
                len(input_dict['gt_bboxes_3d'].tensor) != 0:
            input_dict['gt_bboxes_3d'].scale(scale)
zhangwenwei's avatar
zhangwenwei committed
753

jshilong's avatar
jshilong committed
754
    def _random_scale(self, input_dict: dict) -> None:
755
756
757
758
759
760
        """Private function to randomly set the scale factor.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
jshilong's avatar
jshilong committed
761
762
            dict: Results after scaling, 'pcd_scale_factor'
            are updated in the result dict.
763
        """
zhangwenwei's avatar
zhangwenwei committed
764
765
766
        scale_factor = np.random.uniform(self.scale_ratio_range[0],
                                         self.scale_ratio_range[1])
        input_dict['pcd_scale_factor'] = scale_factor
zhangwenwei's avatar
zhangwenwei committed
767

jshilong's avatar
jshilong committed
768
    def transform(self, input_dict: dict) -> dict:
769
        """Private function to rotate, scale and translate bounding boxes and
770
771
772
773
774
775
776
        points.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after scaling, 'points', 'pcd_rotation',
777
            'pcd_scale_factor', 'pcd_trans' and `gt_bboxes_3d` are updated
jshilong's avatar
jshilong committed
778
            in the result dict.
779
        """
780
781
782
        if 'transformation_3d_flow' not in input_dict:
            input_dict['transformation_3d_flow'] = []

zhangwenwei's avatar
zhangwenwei committed
783
        self._rot_bbox_points(input_dict)
zhangwenwei's avatar
zhangwenwei committed
784

zhangwenwei's avatar
zhangwenwei committed
785
786
787
        if 'pcd_scale_factor' not in input_dict:
            self._random_scale(input_dict)
        self._scale_bbox_points(input_dict)
zhangwenwei's avatar
zhangwenwei committed
788

zhangwenwei's avatar
zhangwenwei committed
789
        self._trans_bbox_points(input_dict)
790
791

        input_dict['transformation_3d_flow'].extend(['R', 'S', 'T'])
zhangwenwei's avatar
zhangwenwei committed
792
793
        return input_dict

794
    def __repr__(self) -> str:
795
        """str: Return a string that describes the module."""
zhangwenwei's avatar
zhangwenwei committed
796
        repr_str = self.__class__.__name__
797
798
799
800
        repr_str += f'(rot_range={self.rot_range},'
        repr_str += f' scale_ratio_range={self.scale_ratio_range},'
        repr_str += f' translation_std={self.translation_std},'
        repr_str += f' shift_height={self.shift_height})'
zhangwenwei's avatar
zhangwenwei committed
801
802
803
        return repr_str


804
@TRANSFORMS.register_module()
ZCMax's avatar
ZCMax committed
805
class PointShuffle(BaseTransform):
806
    """Shuffle input points."""
zhangwenwei's avatar
zhangwenwei committed
807

ZCMax's avatar
ZCMax committed
808
    def transform(self, input_dict: dict) -> dict:
809
810
811
812
813
814
        """Call function to shuffle points.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
815
            dict: Results after filtering, 'points', 'pts_instance_mask'
816
            and 'pts_semantic_mask' keys are updated in the result dict.
817
        """
818
819
820
821
822
823
824
825
826
827
828
829
        idx = input_dict['points'].shuffle()
        idx = idx.numpy()

        pts_instance_mask = input_dict.get('pts_instance_mask', None)
        pts_semantic_mask = input_dict.get('pts_semantic_mask', None)

        if pts_instance_mask is not None:
            input_dict['pts_instance_mask'] = pts_instance_mask[idx]

        if pts_semantic_mask is not None:
            input_dict['pts_semantic_mask'] = pts_semantic_mask[idx]

zhangwenwei's avatar
zhangwenwei committed
830
831
        return input_dict

832
    def __repr__(self) -> str:
833
        """str: Return a string that describes the module."""
zhangwenwei's avatar
zhangwenwei committed
834
835
836
        return self.__class__.__name__


837
@TRANSFORMS.register_module()
838
class ObjectRangeFilter(BaseTransform):
839
840
    """Filter objects by the range.

841
842
843
844
845
846
847
848
    Required Keys:

    - gt_bboxes_3d

    Modified Keys:

    - gt_bboxes_3d

849
850
851
    Args:
        point_cloud_range (list[float]): Point cloud range.
    """
zhangwenwei's avatar
zhangwenwei committed
852

853
    def __init__(self, point_cloud_range: List[float]) -> None:
zhangwenwei's avatar
zhangwenwei committed
854
855
        self.pcd_range = np.array(point_cloud_range, dtype=np.float32)

856
857
    def transform(self, input_dict: dict) -> dict:
        """Transform function to filter objects by the range.
858
859
860
861
862

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
863
            dict: Results after filtering, 'gt_bboxes_3d', 'gt_labels_3d'
864
            keys are updated in the result dict.
865
        """
866
867
868
869
870
871
872
        # Check points instance type and initialise bev_range
        if isinstance(input_dict['gt_bboxes_3d'],
                      (LiDARInstance3DBoxes, DepthInstance3DBoxes)):
            bev_range = self.pcd_range[[0, 1, 3, 4]]
        elif isinstance(input_dict['gt_bboxes_3d'], CameraInstance3DBoxes):
            bev_range = self.pcd_range[[0, 2, 3, 5]]

zhangwenwei's avatar
zhangwenwei committed
873
        gt_bboxes_3d = input_dict['gt_bboxes_3d']
zhangwenwei's avatar
zhangwenwei committed
874
        gt_labels_3d = input_dict['gt_labels_3d']
875
        mask = gt_bboxes_3d.in_range_bev(bev_range)
zhangwenwei's avatar
zhangwenwei committed
876
        gt_bboxes_3d = gt_bboxes_3d[mask]
ZwwWayne's avatar
ZwwWayne committed
877
878
879
880
881
        # mask is a torch tensor but gt_labels_3d is still numpy array
        # using mask to index gt_labels_3d will cause bug when
        # len(gt_labels_3d) == 1, where mask=1 will be interpreted
        # as gt_labels_3d[1] and cause out of index error
        gt_labels_3d = gt_labels_3d[mask.numpy().astype(np.bool)]
zhangwenwei's avatar
zhangwenwei committed
882
883

        # limit rad to [-pi, pi]
884
885
        gt_bboxes_3d.limit_yaw(offset=0.5, period=2 * np.pi)
        input_dict['gt_bboxes_3d'] = gt_bboxes_3d
zhangwenwei's avatar
zhangwenwei committed
886
887
        input_dict['gt_labels_3d'] = gt_labels_3d

zhangwenwei's avatar
zhangwenwei committed
888
889
        return input_dict

890
    def __repr__(self) -> str:
891
        """str: Return a string that describes the module."""
zhangwenwei's avatar
zhangwenwei committed
892
        repr_str = self.__class__.__name__
893
        repr_str += f'(point_cloud_range={self.pcd_range.tolist()})'
zhangwenwei's avatar
zhangwenwei committed
894
895
896
        return repr_str


897
@TRANSFORMS.register_module()
898
class PointsRangeFilter(BaseTransform):
899
900
    """Filter points by the range.

901
902
903
904
905
906
907
908
909
910
    Required Keys:

    - points
    - pts_instance_mask (optional)

    Modified Keys:

    - points
    - pts_instance_mask (optional)

911
912
913
    Args:
        point_cloud_range (list[float]): Point cloud range.
    """
zhangwenwei's avatar
zhangwenwei committed
914

915
    def __init__(self, point_cloud_range: List[float]) -> None:
916
        self.pcd_range = np.array(point_cloud_range, dtype=np.float32)
zhangwenwei's avatar
zhangwenwei committed
917

918
919
    def transform(self, input_dict: dict) -> dict:
        """Transform function to filter points by the range.
920
921
922
923
924

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
925
            dict: Results after filtering, 'points', 'pts_instance_mask'
926
            and 'pts_semantic_mask' keys are updated in the result dict.
927
        """
zhangwenwei's avatar
zhangwenwei committed
928
        points = input_dict['points']
929
930
        points_mask = points.in_range_3d(self.pcd_range)
        clean_points = points[points_mask]
zhangwenwei's avatar
zhangwenwei committed
931
        input_dict['points'] = clean_points
932
933
934
935
936
937
938
939
940
941
942
        points_mask = points_mask.numpy()

        pts_instance_mask = input_dict.get('pts_instance_mask', None)
        pts_semantic_mask = input_dict.get('pts_semantic_mask', None)

        if pts_instance_mask is not None:
            input_dict['pts_instance_mask'] = pts_instance_mask[points_mask]

        if pts_semantic_mask is not None:
            input_dict['pts_semantic_mask'] = pts_semantic_mask[points_mask]

zhangwenwei's avatar
zhangwenwei committed
943
944
        return input_dict

945
    def __repr__(self) -> str:
946
        """str: Return a string that describes the module."""
zhangwenwei's avatar
zhangwenwei committed
947
        repr_str = self.__class__.__name__
948
        repr_str += f'(point_cloud_range={self.pcd_range.tolist()})'
zhangwenwei's avatar
zhangwenwei committed
949
        return repr_str
zhangwenwei's avatar
zhangwenwei committed
950
951


952
@TRANSFORMS.register_module()
953
class ObjectNameFilter(BaseTransform):
zhangwenwei's avatar
zhangwenwei committed
954
    """Filter GT objects by their names.
zhangwenwei's avatar
zhangwenwei committed
955

956
957
958
959
960
961
962
963
    Required Keys:

    - gt_labels_3d

    Modified Keys:

    - gt_labels_3d

zhangwenwei's avatar
zhangwenwei committed
964
    Args:
liyinhao's avatar
liyinhao committed
965
        classes (list[str]): List of class names to be kept for training.
zhangwenwei's avatar
zhangwenwei committed
966
967
    """

968
    def __init__(self, classes: List[str]) -> None:
zhangwenwei's avatar
zhangwenwei committed
969
970
971
        self.classes = classes
        self.labels = list(range(len(self.classes)))

972
973
    def transform(self, input_dict: dict) -> dict:
        """Transform function to filter objects by their names.
974
975
976
977
978

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
979
            dict: Results after filtering, 'gt_bboxes_3d', 'gt_labels_3d'
980
            keys are updated in the result dict.
981
        """
zhangwenwei's avatar
zhangwenwei committed
982
983
984
985
986
987
988
989
        gt_labels_3d = input_dict['gt_labels_3d']
        gt_bboxes_mask = np.array([n in self.labels for n in gt_labels_3d],
                                  dtype=np.bool_)
        input_dict['gt_bboxes_3d'] = input_dict['gt_bboxes_3d'][gt_bboxes_mask]
        input_dict['gt_labels_3d'] = input_dict['gt_labels_3d'][gt_bboxes_mask]

        return input_dict

990
    def __repr__(self) -> str:
991
        """str: Return a string that describes the module."""
zhangwenwei's avatar
zhangwenwei committed
992
993
994
        repr_str = self.__class__.__name__
        repr_str += f'(classes={self.classes})'
        return repr_str
wuyuefeng's avatar
wuyuefeng committed
995
996


997
998
@TRANSFORMS.register_module()
class PointSample(BaseTransform):
999
    """Point sample.
wuyuefeng's avatar
wuyuefeng committed
1000
1001
1002

    Sampling data to a certain number.

1003
    Required Keys:
1004

1005
1006
1007
1008
1009
    - points
    - pts_instance_mask (optional)
    - pts_semantic_mask (optional)

    Modified Keys:
1010

1011
1012
1013
1014
    - points
    - pts_instance_mask (optional)
    - pts_semantic_mask (optional)

wuyuefeng's avatar
wuyuefeng committed
1015
1016
    Args:
        num_points (int): Number of points to be sampled.
1017
        sample_range (float, optional): The range where to sample points.
1018
1019
            If not None, the points with depth larger than `sample_range` are
            prior to be sampled. Defaults to None.
1020
1021
        replace (bool): Whether the sampling is with or without replacement.
            Defaults to False.
wuyuefeng's avatar
wuyuefeng committed
1022
1023
    """

1024
1025
    def __init__(self,
                 num_points: int,
1026
1027
                 sample_range: Optional[float] = None,
                 replace: bool = False) -> None:
wuyuefeng's avatar
wuyuefeng committed
1028
        self.num_points = num_points
1029
1030
1031
        self.sample_range = sample_range
        self.replace = replace

1032
1033
1034
1035
1036
1037
1038
1039
    def _points_random_sampling(
        self,
        points: BasePoints,
        num_samples: int,
        sample_range: Optional[float] = None,
        replace: bool = False,
        return_choices: bool = False
    ) -> Union[Tuple[BasePoints, np.ndarray], BasePoints]:
wuyuefeng's avatar
wuyuefeng committed
1040
1041
1042
1043
1044
        """Points random sampling.

        Sample points to a certain number.

        Args:
1045
            points (:obj:`BasePoints`): 3D Points.
wuyuefeng's avatar
wuyuefeng committed
1046
            num_samples (int): Number of samples to be sampled.
1047
            sample_range (float, optional): Indicating the range where the
1048
                points will be sampled. Defaults to None.
1049
            replace (bool): Sampling with or without replacement.
1050
                Defaults to False.
1051
            return_choices (bool): Whether return choice. Defaults to False.
1052

wuyuefeng's avatar
wuyuefeng committed
1053
        Returns:
1054
1055
1056
            tuple[:obj:`BasePoints`, np.ndarray] | :obj:`BasePoints`:

                - points (:obj:`BasePoints`): 3D Points.
1057
                - choices (np.ndarray, optional): The generated random samples.
wuyuefeng's avatar
wuyuefeng committed
1058
        """
1059
        if not replace:
wuyuefeng's avatar
wuyuefeng committed
1060
            replace = (points.shape[0] < num_samples)
1061
1062
1063
        point_range = range(len(points))
        if sample_range is not None and not replace:
            # Only sampling the near points when len(points) >= num_samples
1064
            dist = np.linalg.norm(points.coord.numpy(), axis=1)
1065
1066
            far_inds = np.where(dist >= sample_range)[0]
            near_inds = np.where(dist < sample_range)[0]
1067
1068
1069
1070
            # in case there are too many far points
            if len(far_inds) > num_samples:
                far_inds = np.random.choice(
                    far_inds, num_samples, replace=False)
1071
1072
1073
1074
1075
1076
1077
            point_range = near_inds
            num_samples -= len(far_inds)
        choices = np.random.choice(point_range, num_samples, replace=replace)
        if sample_range is not None and not replace:
            choices = np.concatenate((far_inds, choices))
            # Shuffle points after sampling
            np.random.shuffle(choices)
wuyuefeng's avatar
wuyuefeng committed
1078
1079
1080
1081
1082
        if return_choices:
            return points[choices], choices
        else:
            return points[choices]

1083
    def transform(self, input_dict: dict) -> dict:
1084
        """Transform function to sample points to in indoor scenes.
1085
1086
1087

        Args:
            input_dict (dict): Result dict from loading pipeline.
1088

1089
        Returns:
1090
            dict: Results after sampling, 'points', 'pts_instance_mask'
1091
            and 'pts_semantic_mask' keys are updated in the result dict.
1092
        """
1093
        points = input_dict['points']
1094
1095
1096
1097
1098
1099
        points, choices = self._points_random_sampling(
            points,
            self.num_points,
            self.sample_range,
            self.replace,
            return_choices=True)
1100
        input_dict['points'] = points
1101

1102
1103
        pts_instance_mask = input_dict.get('pts_instance_mask', None)
        pts_semantic_mask = input_dict.get('pts_semantic_mask', None)
wuyuefeng's avatar
wuyuefeng committed
1104

1105
        if pts_instance_mask is not None:
wuyuefeng's avatar
wuyuefeng committed
1106
            pts_instance_mask = pts_instance_mask[choices]
1107
            input_dict['pts_instance_mask'] = pts_instance_mask
1108
1109
1110

        if pts_semantic_mask is not None:
            pts_semantic_mask = pts_semantic_mask[choices]
1111
            input_dict['pts_semantic_mask'] = pts_semantic_mask
wuyuefeng's avatar
wuyuefeng committed
1112

1113
        return input_dict
wuyuefeng's avatar
wuyuefeng committed
1114

1115
    def __repr__(self) -> str:
1116
        """str: Return a string that describes the module."""
wuyuefeng's avatar
wuyuefeng committed
1117
        repr_str = self.__class__.__name__
1118
        repr_str += f'(num_points={self.num_points},'
1119
1120
        repr_str += f' sample_range={self.sample_range},'
        repr_str += f' replace={self.replace})'
1121

1122
1123
1124
        return repr_str


1125
@TRANSFORMS.register_module()
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
class IndoorPointSample(PointSample):
    """Indoor point sample.

    Sampling data to a certain number.
    NOTE: IndoorPointSample is deprecated in favor of PointSample

    Args:
        num_points (int): Number of points to be sampled.
    """

    def __init__(self, *args, **kwargs):
        warnings.warn(
            'IndoorPointSample is deprecated in favor of PointSample')
        super(IndoorPointSample, self).__init__(*args, **kwargs)


1142
@TRANSFORMS.register_module()
ZCMax's avatar
ZCMax committed
1143
class IndoorPatchPointSample(BaseTransform):
1144
1145
1146
1147
1148
1149
1150
    r"""Indoor point sample within a patch. Modified from `PointNet++ <https://
    github.com/charlesq34/pointnet2/blob/master/scannet/scannet_dataset.py>`_.

    Sampling data to a certain number for semantic segmentation.

    Args:
        num_points (int): Number of points to be sampled.
1151
        block_size (float): Size of a block to sample points from.
1152
1153
            Defaults to 1.5.
        sample_rate (float, optional): Stride used in sliding patch generation.
1154
1155
1156
            This parameter is unused in `IndoorPatchPointSample` and thus has
            been deprecated. We plan to remove it in the future.
            Defaults to None.
1157
1158
        ignore_index (int, optional): Label index that won't be used for the
            segmentation task. This is set in PointSegClassMapping as neg_cls.
1159
            If not None, will be used as a patch selection criterion.
1160
            Defaults to None.
1161
        use_normalized_coord (bool): Whether to use normalized xyz as
1162
            additional features. Defaults to False.
1163
1164
1165
        num_try (int): Number of times to try if the patch selected is invalid.
            Defaults to 10.
        enlarge_size (float): Enlarge the sampled patch to
1166
            [-block_size / 2 - enlarge_size, block_size / 2 + enlarge_size] as
1167
            an augmentation. If None, set it as 0. Defaults to 0.2.
1168
        min_unique_num (int, optional): Minimum number of unique points
1169
1170
            the sampled patch should contain. If None, use PointNet++'s method
            to judge uniqueness. Defaults to None.
1171
        eps (float): A value added to patch boundary to guarantee
1172
            points coverage. Defaults to 1e-2.
1173
1174
1175

    Note:
        This transform should only be used in the training process of point
1176
1177
1178
        cloud segmentation tasks. For the sliding patch generation and
        inference process in testing, please refer to the `slide_inference`
        function of `EncoderDecoder3D` class.
1179
1180
1181
    """

    def __init__(self,
ZCMax's avatar
ZCMax committed
1182
1183
1184
1185
1186
1187
1188
1189
1190
                 num_points: int,
                 block_size: float = 1.5,
                 sample_rate: Optional[float] = None,
                 ignore_index: Optional[int] = None,
                 use_normalized_coord: bool = False,
                 num_try: int = 10,
                 enlarge_size: float = 0.2,
                 min_unique_num: Optional[int] = None,
                 eps: float = 1e-2) -> None:
1191
1192
1193
1194
1195
        self.num_points = num_points
        self.block_size = block_size
        self.ignore_index = ignore_index
        self.use_normalized_coord = use_normalized_coord
        self.num_try = num_try
1196
        self.enlarge_size = enlarge_size if enlarge_size is not None else 0.0
1197
        self.min_unique_num = min_unique_num
1198
        self.eps = eps
1199
1200
1201
1202
1203

        if sample_rate is not None:
            warnings.warn(
                "'sample_rate' has been deprecated and will be removed in "
                'the future. Please remove them from your code.')
1204

ZCMax's avatar
ZCMax committed
1205
1206
1207
1208
    def _input_generation(self, coords: np.ndarray, patch_center: np.ndarray,
                          coord_max: np.ndarray, attributes: np.ndarray,
                          attribute_dims: dict,
                          point_type: type) -> BasePoints:
1209
1210
        """Generating model input.

1211
        Generate input by subtracting patch center and adding additional
1212
1213
1214
1215
1216
1217
1218
1219
1220
            features. Currently support colors and normalized xyz as features.

        Args:
            coords (np.ndarray): Sampled 3D Points.
            patch_center (np.ndarray): Center coordinate of the selected patch.
            coord_max (np.ndarray): Max coordinate of all 3D Points.
            attributes (np.ndarray): features of input points.
            attribute_dims (dict): Dictionary to indicate the meaning of extra
                dimension.
1221
            point_type (type): class of input points inherited from BasePoints.
1222
1223

        Returns:
1224
            :obj:`BasePoints`: The generated input data.
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
        """
        # subtract patch center, the z dimension is not centered
        centered_coords = coords.copy()
        centered_coords[:, 0] -= patch_center[0]
        centered_coords[:, 1] -= patch_center[1]

        if self.use_normalized_coord:
            normalized_coord = coords / coord_max
            attributes = np.concatenate([attributes, normalized_coord], axis=1)
            if attribute_dims is None:
                attribute_dims = dict()
            attribute_dims.update(
                dict(normalized_coord=[
                    attributes.shape[1], attributes.shape[1] +
                    1, attributes.shape[1] + 2
                ]))

        points = np.concatenate([centered_coords, attributes], axis=1)
        points = point_type(
            points, points_dim=points.shape[1], attribute_dims=attribute_dims)

        return points

1248
    def _patch_points_sampling(
1249
1250
            self, points: BasePoints,
            sem_mask: np.ndarray) -> Tuple[BasePoints, np.ndarray]:
1251
1252
1253
1254
1255
1256
        """Patch points sampling.

        First sample a valid patch.
        Then sample points within that patch to a certain number.

        Args:
1257
            points (:obj:`BasePoints`): 3D Points.
1258
1259
1260
            sem_mask (np.ndarray): semantic segmentation mask for input points.

        Returns:
1261
            tuple[:obj:`BasePoints`, np.ndarray]:
1262

1263
                - points (:obj:`BasePoints`): 3D Points.
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
                - choices (np.ndarray): The generated random samples.
        """
        coords = points.coord.numpy()
        attributes = points.tensor[:, 3:].numpy()
        attribute_dims = points.attribute_dims
        point_type = type(points)

        coord_max = np.amax(coords, axis=0)
        coord_min = np.amin(coords, axis=0)

1274
        for _ in range(self.num_try):
1275
1276
1277
            # random sample a point as patch center
            cur_center = coords[np.random.choice(coords.shape[0])]

1278
1279
            # boundary of a patch, which would be enlarged by
            # `self.enlarge_size` as an augmentation
1280
1281
1282
1283
1284
1285
1286
            cur_max = cur_center + np.array(
                [self.block_size / 2.0, self.block_size / 2.0, 0.0])
            cur_min = cur_center - np.array(
                [self.block_size / 2.0, self.block_size / 2.0, 0.0])
            cur_max[2] = coord_max[2]
            cur_min[2] = coord_min[2]
            cur_choice = np.sum(
1287
1288
                (coords >= (cur_min - self.enlarge_size)) *
                (coords <= (cur_max + self.enlarge_size)),
1289
1290
1291
1292
1293
1294
1295
                axis=1) == 3

            if not cur_choice.any():  # no points in this patch
                continue

            cur_coords = coords[cur_choice, :]
            cur_sem_mask = sem_mask[cur_choice]
1296
            point_idxs = np.where(cur_choice)[0]
1297
            mask = np.sum(
1298
1299
                (cur_coords >= (cur_min - self.eps)) * (cur_coords <=
                                                        (cur_max + self.eps)),
1300
                axis=1) == 3
1301

1302
1303
            # two criteria for patch sampling, adopted from PointNet++
            # 1. selected patch should contain enough unique points
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
            if self.min_unique_num is None:
                # use PointNet++'s method as default
                # [31, 31, 62] are just some big values used to transform
                # coords from 3d array to 1d and then check their uniqueness
                # this is used in all the ScanNet code following PointNet++
                vidx = np.ceil(
                    (cur_coords[mask, :] - cur_min) / (cur_max - cur_min) *
                    np.array([31.0, 31.0, 62.0]))
                vidx = np.unique(vidx[:, 0] * 31.0 * 62.0 + vidx[:, 1] * 62.0 +
                                 vidx[:, 2])
                flag1 = len(vidx) / 31.0 / 31.0 / 62.0 >= 0.02
            else:
1316
                # if `min_unique_num` is provided, directly compare with it
1317
                flag1 = mask.sum() >= self.min_unique_num
1318

1319
            # 2. selected patch should contain enough annotated points
1320
1321
1322
1323
1324
1325
1326
1327
1328
            if self.ignore_index is None:
                flag2 = True
            else:
                flag2 = np.sum(cur_sem_mask != self.ignore_index) / \
                               len(cur_sem_mask) >= 0.7

            if flag1 and flag2:
                break

1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
        # sample idx to `self.num_points`
        if point_idxs.size >= self.num_points:
            # no duplicate in sub-sampling
            choices = np.random.choice(
                point_idxs, self.num_points, replace=False)
        else:
            # do not use random choice here to avoid some points not counted
            dup = np.random.choice(point_idxs.size,
                                   self.num_points - point_idxs.size)
            idx_dup = np.concatenate(
                [np.arange(point_idxs.size),
                 np.array(dup)], 0)
            choices = point_idxs[idx_dup]
1342
1343
1344
1345
1346
1347
1348
1349

        # construct model input
        points = self._input_generation(coords[choices], cur_center, coord_max,
                                        attributes[choices], attribute_dims,
                                        point_type)

        return points, choices

ZCMax's avatar
ZCMax committed
1350
    def transform(self, input_dict: dict) -> dict:
1351
1352
1353
1354
1355
1356
        """Call function to sample points to in indoor scenes.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
1357
            dict: Results after sampling, 'points', 'pts_instance_mask'
1358
            and 'pts_semantic_mask' keys are updated in the result dict.
1359
        """
ZCMax's avatar
ZCMax committed
1360
        points = input_dict['points']
1361

ZCMax's avatar
ZCMax committed
1362
        assert 'pts_semantic_mask' in input_dict.keys(), \
1363
            'semantic mask should be provided in training and evaluation'
ZCMax's avatar
ZCMax committed
1364
        pts_semantic_mask = input_dict['pts_semantic_mask']
1365
1366
1367
1368

        points, choices = self._patch_points_sampling(points,
                                                      pts_semantic_mask)

ZCMax's avatar
ZCMax committed
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
        input_dict['points'] = points
        input_dict['pts_semantic_mask'] = pts_semantic_mask[choices]

        # 'eval_ann_info' will be passed to evaluator
        if 'eval_ann_info' in input_dict:
            input_dict['eval_ann_info']['pts_semantic_mask'] = \
                pts_semantic_mask[choices]

        pts_instance_mask = input_dict.get('pts_instance_mask', None)

1379
        if pts_instance_mask is not None:
ZCMax's avatar
ZCMax committed
1380
1381
1382
1383
1384
            input_dict['pts_instance_mask'] = pts_instance_mask[choices]
            # 'eval_ann_info' will be passed to evaluator
            if 'eval_ann_info' in input_dict:
                input_dict['eval_ann_info']['pts_instance_mask'] = \
                    pts_instance_mask[choices]
1385

ZCMax's avatar
ZCMax committed
1386
        return input_dict
1387

1388
    def __repr__(self) -> str:
1389
1390
1391
1392
1393
1394
        """str: Return a string that describes the module."""
        repr_str = self.__class__.__name__
        repr_str += f'(num_points={self.num_points},'
        repr_str += f' block_size={self.block_size},'
        repr_str += f' ignore_index={self.ignore_index},'
        repr_str += f' use_normalized_coord={self.use_normalized_coord},'
1395
1396
        repr_str += f' num_try={self.num_try},'
        repr_str += f' enlarge_size={self.enlarge_size},'
1397
1398
        repr_str += f' min_unique_num={self.min_unique_num},'
        repr_str += f' eps={self.eps})'
wuyuefeng's avatar
wuyuefeng committed
1399
        return repr_str
1400
1401


1402
@TRANSFORMS.register_module()
ZCMax's avatar
ZCMax committed
1403
class BackgroundPointsFilter(BaseTransform):
1404
1405
1406
    """Filter background points near the bounding box.

    Args:
1407
        bbox_enlarge_range (tuple[float] | float): Bbox enlarge range.
1408
1409
    """

ZCMax's avatar
ZCMax committed
1410
    def __init__(self, bbox_enlarge_range: Union[Tuple[float], float]) -> None:
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
        assert (is_tuple_of(bbox_enlarge_range, float)
                and len(bbox_enlarge_range) == 3) \
            or isinstance(bbox_enlarge_range, float), \
            f'Invalid arguments bbox_enlarge_range {bbox_enlarge_range}'

        if isinstance(bbox_enlarge_range, float):
            bbox_enlarge_range = [bbox_enlarge_range] * 3
        self.bbox_enlarge_range = np.array(
            bbox_enlarge_range, dtype=np.float32)[np.newaxis, :]

ZCMax's avatar
ZCMax committed
1421
    def transform(self, input_dict: dict) -> dict:
1422
1423
1424
1425
1426
1427
        """Call function to filter points by the range.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
1428
            dict: Results after filtering, 'points', 'pts_instance_mask'
1429
            and 'pts_semantic_mask' keys are updated in the result dict.
1430
1431
1432
1433
        """
        points = input_dict['points']
        gt_bboxes_3d = input_dict['gt_bboxes_3d']

xiliu8006's avatar
xiliu8006 committed
1434
1435
1436
1437
        # avoid groundtruth being modified
        gt_bboxes_3d_np = gt_bboxes_3d.tensor.clone().numpy()
        gt_bboxes_3d_np[:, :3] = gt_bboxes_3d.gravity_center.clone().numpy()

1438
1439
        enlarged_gt_bboxes_3d = gt_bboxes_3d_np.copy()
        enlarged_gt_bboxes_3d[:, 3:6] += self.bbox_enlarge_range
xiliu8006's avatar
xiliu8006 committed
1440
        points_numpy = points.tensor.clone().numpy()
1441
1442
        foreground_masks = box_np_ops.points_in_rbbox(
            points_numpy, gt_bboxes_3d_np, origin=(0.5, 0.5, 0.5))
1443
        enlarge_foreground_masks = box_np_ops.points_in_rbbox(
1444
            points_numpy, enlarged_gt_bboxes_3d, origin=(0.5, 0.5, 0.5))
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
        foreground_masks = foreground_masks.max(1)
        enlarge_foreground_masks = enlarge_foreground_masks.max(1)
        valid_masks = ~np.logical_and(~foreground_masks,
                                      enlarge_foreground_masks)

        input_dict['points'] = points[valid_masks]
        pts_instance_mask = input_dict.get('pts_instance_mask', None)
        if pts_instance_mask is not None:
            input_dict['pts_instance_mask'] = pts_instance_mask[valid_masks]

        pts_semantic_mask = input_dict.get('pts_semantic_mask', None)
        if pts_semantic_mask is not None:
            input_dict['pts_semantic_mask'] = pts_semantic_mask[valid_masks]
        return input_dict

1460
    def __repr__(self) -> str:
1461
1462
        """str: Return a string that describes the module."""
        repr_str = self.__class__.__name__
1463
        repr_str += f'(bbox_enlarge_range={self.bbox_enlarge_range.tolist()})'
1464
        return repr_str
1465
1466


1467
@TRANSFORMS.register_module()
1468
class VoxelBasedPointSampler(BaseTransform):
1469
1470
1471
1472
1473
1474
    """Voxel based point sampler.

    Apply voxel sampling to multiple sweep points.

    Args:
        cur_sweep_cfg (dict): Config for sampling current points.
1475
1476
        prev_sweep_cfg (dict, optional): Config for sampling previous points.
            Defaults to None.
1477
        time_dim (int): Index that indicate the time dimension
1478
            for input points. Defaults to 3.
1479
1480
    """

1481
1482
1483
1484
    def __init__(self,
                 cur_sweep_cfg: dict,
                 prev_sweep_cfg: Optional[dict] = None,
                 time_dim: int = 3) -> None:
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
        self.cur_voxel_generator = VoxelGenerator(**cur_sweep_cfg)
        self.cur_voxel_num = self.cur_voxel_generator._max_voxels
        self.time_dim = time_dim
        if prev_sweep_cfg is not None:
            assert prev_sweep_cfg['max_num_points'] == \
                cur_sweep_cfg['max_num_points']
            self.prev_voxel_generator = VoxelGenerator(**prev_sweep_cfg)
            self.prev_voxel_num = self.prev_voxel_generator._max_voxels
        else:
            self.prev_voxel_generator = None
            self.prev_voxel_num = 0

1497
    def _sample_points(self, points: np.ndarray, sampler: VoxelGenerator,
1498
                       point_dim: int) -> np.ndarray:
1499
1500
1501
1502
1503
1504
        """Sample points for each points subset.

        Args:
            points (np.ndarray): Points subset to be sampled.
            sampler (VoxelGenerator): Voxel based sampler for
                each points subset.
1505
            point_dim (int): The dimension of each points.
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523

        Returns:
            np.ndarray: Sampled points.
        """
        voxels, coors, num_points_per_voxel = sampler.generate(points)
        if voxels.shape[0] < sampler._max_voxels:
            padding_points = np.zeros([
                sampler._max_voxels - voxels.shape[0], sampler._max_num_points,
                point_dim
            ],
                                      dtype=points.dtype)
            padding_points[:] = voxels[0]
            sample_points = np.concatenate([voxels, padding_points], axis=0)
        else:
            sample_points = voxels

        return sample_points

1524
    def transform(self, results: dict) -> dict:
1525
1526
1527
1528
1529
1530
        """Call function to sample points from multiple sweeps.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
1531
            dict: Results after sampling, 'points', 'pts_instance_mask'
1532
            and 'pts_semantic_mask' keys are updated in the result dict.
1533
1534
1535
1536
1537
1538
1539
1540
1541
        """
        points = results['points']
        original_dim = points.shape[1]

        # TODO: process instance and semantic mask while _max_num_points
        # is larger than 1
        # Extend points with seg and mask fields
        map_fields2dim = []
        start_dim = original_dim
1542
1543
        points_numpy = points.tensor.numpy()
        extra_channel = [points_numpy]
1544
1545
1546
1547
1548
1549
1550
1551
1552
        for idx, key in enumerate(results['pts_mask_fields']):
            map_fields2dim.append((key, idx + start_dim))
            extra_channel.append(results[key][..., None])

        start_dim += len(results['pts_mask_fields'])
        for idx, key in enumerate(results['pts_seg_fields']):
            map_fields2dim.append((key, idx + start_dim))
            extra_channel.append(results[key][..., None])

1553
        points_numpy = np.concatenate(extra_channel, axis=-1)
1554
1555
1556
1557
1558

        # Split points into two part, current sweep points and
        # previous sweeps points.
        # TODO: support different sampling methods for next sweeps points
        # and previous sweeps points.
1559
1560
1561
        cur_points_flag = (points_numpy[:, self.time_dim] == 0)
        cur_sweep_points = points_numpy[cur_points_flag]
        prev_sweeps_points = points_numpy[~cur_points_flag]
1562
1563
1564
1565
1566
1567
1568
1569
1570
        if prev_sweeps_points.shape[0] == 0:
            prev_sweeps_points = cur_sweep_points

        # Shuffle points before sampling
        np.random.shuffle(cur_sweep_points)
        np.random.shuffle(prev_sweeps_points)

        cur_sweep_points = self._sample_points(cur_sweep_points,
                                               self.cur_voxel_generator,
1571
                                               points_numpy.shape[1])
1572
1573
1574
        if self.prev_voxel_generator is not None:
            prev_sweeps_points = self._sample_points(prev_sweeps_points,
                                                     self.prev_voxel_generator,
1575
                                                     points_numpy.shape[1])
1576

1577
1578
            points_numpy = np.concatenate(
                [cur_sweep_points, prev_sweeps_points], 0)
1579
        else:
1580
            points_numpy = cur_sweep_points
1581
1582

        if self.cur_voxel_generator._max_num_points == 1:
1583
1584
            points_numpy = points_numpy.squeeze(1)
        results['points'] = points.new_point(points_numpy[..., :original_dim])
1585

1586
        # Restore the corresponding seg and mask fields
1587
        for key, dim_index in map_fields2dim:
1588
            results[key] = points_numpy[..., dim_index]
1589
1590
1591

        return results

1592
    def __repr__(self) -> str:
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
        """str: Return a string that describes the module."""

        def _auto_indent(repr_str, indent):
            repr_str = repr_str.split('\n')
            repr_str = [' ' * indent + t + '\n' for t in repr_str]
            repr_str = ''.join(repr_str)[:-1]
            return repr_str

        repr_str = self.__class__.__name__
        indent = 4
        repr_str += '(\n'
        repr_str += ' ' * indent + f'num_cur_sweep={self.cur_voxel_num},\n'
        repr_str += ' ' * indent + f'num_prev_sweep={self.prev_voxel_num},\n'
        repr_str += ' ' * indent + f'time_dim={self.time_dim},\n'
        repr_str += ' ' * indent + 'cur_voxel_generator=\n'
        repr_str += f'{_auto_indent(repr(self.cur_voxel_generator), 8)},\n'
        repr_str += ' ' * indent + 'prev_voxel_generator=\n'
        repr_str += f'{_auto_indent(repr(self.prev_voxel_generator), 8)})'
        return repr_str
1612
1613


1614
@TRANSFORMS.register_module()
ZCMax's avatar
ZCMax committed
1615
class AffineResize(BaseTransform):
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
    """Get the affine transform matrices to the target size.

    Different from :class:`RandomAffine` in MMDetection, this class can
    calculate the affine transform matrices while resizing the input image
    to a fixed size. The affine transform matrices include: 1) matrix
    transforming original image to the network input image size. 2) matrix
    transforming original image to the network output feature map size.

    Args:
        img_scale (tuple): Images scales for resizing.
        down_ratio (int): The down ratio of feature map.
            Actually the arg should be >= 1.
1628
        bbox_clip_border (bool): Whether clip the objects
1629
1630
1631
            outside the border of the image. Defaults to True.
    """

ZCMax's avatar
ZCMax committed
1632
1633
1634
1635
    def __init__(self,
                 img_scale: Tuple,
                 down_ratio: int,
                 bbox_clip_border: bool = True) -> None:
1636
1637
1638
1639
1640

        self.img_scale = img_scale
        self.down_ratio = down_ratio
        self.bbox_clip_border = bbox_clip_border

ZCMax's avatar
ZCMax committed
1641
    def transform(self, results: dict) -> dict:
1642
1643
1644
1645
1646
1647
1648
        """Call function to do affine transform to input image and labels.

        Args:
            results (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after affine resize, 'affine_aug', 'trans_mat'
1649
            keys are added in the result dict.
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
        """
        # The results have gone through RandomShiftScale before AffineResize
        if 'center' not in results:
            img = results['img']
            height, width = img.shape[:2]
            center = np.array([width / 2, height / 2], dtype=np.float32)
            size = np.array([width, height], dtype=np.float32)
            results['affine_aug'] = False
        else:
            # The results did not go through RandomShiftScale before
            # AffineResize
            img = results['img']
            center = results['center']
            size = results['size']

        trans_affine = self._get_transform_matrix(center, size, self.img_scale)

        img = cv2.warpAffine(img, trans_affine[:2, :], self.img_scale)

        if isinstance(self.down_ratio, tuple):
            trans_mat = [
                self._get_transform_matrix(
                    center, size,
                    (self.img_scale[0] // ratio, self.img_scale[1] // ratio))
                for ratio in self.down_ratio
            ]  # (3, 3)
        else:
            trans_mat = self._get_transform_matrix(
                center, size, (self.img_scale[0] // self.down_ratio,
                               self.img_scale[1] // self.down_ratio))

        results['img'] = img
        results['img_shape'] = img.shape
        results['pad_shape'] = img.shape
        results['trans_mat'] = trans_mat

ZCMax's avatar
ZCMax committed
1686
1687
        if 'gt_bboxes' in results:
            self._affine_bboxes(results, trans_affine)
1688

ZCMax's avatar
ZCMax committed
1689
1690
        if 'centers_2d' in results:
            centers2d = self._affine_transform(results['centers_2d'],
1691
1692
1693
1694
1695
                                               trans_affine)
            valid_index = (centers2d[:, 0] >
                           0) & (centers2d[:, 0] <
                                 self.img_scale[0]) & (centers2d[:, 1] > 0) & (
                                     centers2d[:, 1] < self.img_scale[1])
ZCMax's avatar
ZCMax committed
1696
1697
1698
1699
            results['centers_2d'] = centers2d[valid_index]

            if 'gt_bboxes' in results:
                results['gt_bboxes'] = results['gt_bboxes'][valid_index]
1700
1701
1702
                if 'gt_bboxes_labels' in results:
                    results['gt_bboxes_labels'] = results['gt_bboxes_labels'][
                        valid_index]
ZCMax's avatar
ZCMax committed
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
                if 'gt_masks' in results:
                    raise NotImplementedError(
                        'AffineResize only supports bbox.')

            if 'gt_bboxes_3d' in results:
                results['gt_bboxes_3d'].tensor = results[
                    'gt_bboxes_3d'].tensor[valid_index]
                if 'gt_labels_3d' in results:
                    results['gt_labels_3d'] = results['gt_labels_3d'][
                        valid_index]
1713
1714
1715
1716
1717

            results['depths'] = results['depths'][valid_index]

        return results

ZCMax's avatar
ZCMax committed
1718
    def _affine_bboxes(self, results: dict, matrix: np.ndarray) -> None:
1719
1720
1721
1722
1723
1724
1725
1726
1727
        """Affine transform bboxes to input image.

        Args:
            results (dict): Result dict from loading pipeline.
            matrix (np.ndarray): Matrix transforming original
                image to the network input image size.
                shape: (3, 3)
        """

ZCMax's avatar
ZCMax committed
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
        bboxes = results['gt_bboxes']
        bboxes[:, :2] = self._affine_transform(bboxes[:, :2], matrix)
        bboxes[:, 2:] = self._affine_transform(bboxes[:, 2:], matrix)
        if self.bbox_clip_border:
            bboxes[:, [0, 2]] = bboxes[:, [0, 2]].clip(0,
                                                       self.img_scale[0] - 1)
            bboxes[:, [1, 3]] = bboxes[:, [1, 3]].clip(0,
                                                       self.img_scale[1] - 1)
        results['gt_bboxes'] = bboxes

    def _affine_transform(self, points: np.ndarray,
                          matrix: np.ndarray) -> np.ndarray:
1740
        """Affine transform bbox points to input image.
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757

        Args:
            points (np.ndarray): Points to be transformed.
                shape: (N, 2)
            matrix (np.ndarray): Affine transform matrix.
                shape: (3, 3)

        Returns:
            np.ndarray: Transformed points.
        """
        num_points = points.shape[0]
        hom_points_2d = np.concatenate((points, np.ones((num_points, 1))),
                                       axis=1)
        hom_points_2d = hom_points_2d.T
        affined_points = np.matmul(matrix, hom_points_2d).T
        return affined_points[:, :2]

ZCMax's avatar
ZCMax committed
1758
1759
    def _get_transform_matrix(self, center: Tuple, scale: Tuple,
                              output_scale: Tuple[float]) -> np.ndarray:
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
        """Get affine transform matrix.

        Args:
            center (tuple): Center of current image.
            scale (tuple): Scale of current image.
            output_scale (tuple[float]): The transform target image scales.

        Returns:
            np.ndarray: Affine transform matrix.
        """
        # TODO: further add rot and shift here.
        src_w = scale[0]
        dst_w = output_scale[0]
        dst_h = output_scale[1]

        src_dir = np.array([0, src_w * -0.5])
        dst_dir = np.array([0, dst_w * -0.5])

        src = np.zeros((3, 2), dtype=np.float32)
        dst = np.zeros((3, 2), dtype=np.float32)
        src[0, :] = center
        src[1, :] = center + src_dir
        dst[0, :] = np.array([dst_w * 0.5, dst_h * 0.5])
        dst[1, :] = np.array([dst_w * 0.5, dst_h * 0.5]) + dst_dir

        src[2, :] = self._get_ref_point(src[0, :], src[1, :])
        dst[2, :] = self._get_ref_point(dst[0, :], dst[1, :])

        get_matrix = cv2.getAffineTransform(src, dst)

        matrix = np.concatenate((get_matrix, [[0., 0., 1.]]))

        return matrix.astype(np.float32)

ZCMax's avatar
ZCMax committed
1794
1795
    def _get_ref_point(self, ref_point1: np.ndarray,
                       ref_point2: np.ndarray) -> np.ndarray:
1796
        """Get reference point to calculate affine transform matrix.
1797
1798

        While using opencv to calculate the affine matrix, we need at least
1799
        three corresponding points separately on original image and target
1800
1801
1802
1803
1804
1805
        image. Here we use two points to get the the third reference point.
        """
        d = ref_point1 - ref_point2
        ref_point3 = ref_point2 + np.array([-d[1], d[0]])
        return ref_point3

1806
    def __repr__(self) -> str:
1807
        """str: Return a string that describes the module."""
1808
1809
1810
1811
1812
1813
        repr_str = self.__class__.__name__
        repr_str += f'(img_scale={self.img_scale}, '
        repr_str += f'down_ratio={self.down_ratio}) '
        return repr_str


1814
@TRANSFORMS.register_module()
ZCMax's avatar
ZCMax committed
1815
class RandomShiftScale(BaseTransform):
1816
1817
1818
1819
    """Random shift scale.

    Different from the normal shift and scale function, it doesn't
    directly shift or scale image. It can record the shift and scale
1820
    infos into loading TRANSFORMS. It's designed to be used with
1821
1822
1823
1824
1825
1826
1827
    AffineResize together.

    Args:
        shift_scale (tuple[float]): Shift and scale range.
        aug_prob (float): The shifting and scaling probability.
    """

1828
    def __init__(self, shift_scale: Tuple[float], aug_prob: float) -> None:
1829
1830
1831
1832

        self.shift_scale = shift_scale
        self.aug_prob = aug_prob

ZCMax's avatar
ZCMax committed
1833
    def transform(self, results: dict) -> dict:
1834
1835
1836
1837
1838
1839
1840
        """Call function to record random shift and scale infos.

        Args:
            results (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after random shift and scale, 'center', 'size'
1841
            and 'affine_aug' keys are added in the result dict.
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
        """
        img = results['img']

        height, width = img.shape[:2]

        center = np.array([width / 2, height / 2], dtype=np.float32)
        size = np.array([width, height], dtype=np.float32)

        if random.random() < self.aug_prob:
            shift, scale = self.shift_scale[0], self.shift_scale[1]
            shift_ranges = np.arange(-shift, shift + 0.1, 0.1)
            center[0] += size[0] * random.choice(shift_ranges)
            center[1] += size[1] * random.choice(shift_ranges)
            scale_ranges = np.arange(1 - scale, 1 + scale + 0.1, 0.1)
            size *= random.choice(scale_ranges)
            results['affine_aug'] = True
        else:
            results['affine_aug'] = False

        results['center'] = center
        results['size'] = size

        return results

1866
    def __repr__(self) -> str:
1867
        """str: Return a string that describes the module."""
1868
1869
1870
1871
        repr_str = self.__class__.__name__
        repr_str += f'(shift_scale={self.shift_scale}, '
        repr_str += f'aug_prob={self.aug_prob}) '
        return repr_str
1872
1873
1874
1875
1876


@TRANSFORMS.register_module()
class Resize3D(Resize):

1877
    def _resize_3d(self, results: dict) -> None:
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
        """Resize centers_2d and modify camera intrinisc with
        ``results['scale']``."""
        if 'centers_2d' in results:
            results['centers_2d'] *= results['scale_factor'][:2]
        results['cam2img'][0] *= np.array(results['scale_factor'][0])
        results['cam2img'][1] *= np.array(results['scale_factor'][1])

    def transform(self, results: dict) -> dict:
        """Transform function to resize images, bounding boxes, semantic
        segmentation map and keypoints.

        Args:
            results (dict): Result dict from loading pipeline.
1891

1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
        Returns:
            dict: Resized results, 'img', 'gt_bboxes', 'gt_seg_map',
            'gt_keypoints', 'scale', 'scale_factor', 'img_shape',
            and 'keep_ratio' keys are updated in result dict.
        """

        super(Resize3D, self).transform(results)
        self._resize_3d(results)
        return results


@TRANSFORMS.register_module()
class RandomResize3D(RandomResize):
    """The difference between RandomResize3D and RandomResize:

    1. Compared to RandomResize, this class would further
        check if scale is already set in results.
    2. During resizing, this class would modify the centers_2d
        and cam2img with ``results['scale']``.
    """

1913
    def _resize_3d(self, results: dict) -> None:
1914
1915
1916
1917
1918
1919
1920
        """Resize centers_2d and modify camera intrinisc with
        ``results['scale']``."""
        if 'centers_2d' in results:
            results['centers_2d'] *= results['scale_factor'][:2]
        results['cam2img'][0] *= np.array(results['scale_factor'][0])
        results['cam2img'][1] *= np.array(results['scale_factor'][1])

1921
    def transform(self, results: dict) -> dict:
1922
1923
        """Transform function to resize images, bounding boxes, masks, semantic
        segmentation map. Compared to RandomResize, this function would further
1924
1925
1926
1927
        check if scale is already set in results.

        Args:
            results (dict): Result dict from loading pipeline.
1928

1929
        Returns:
1930
1931
            dict: Resized results, 'img_shape', 'pad_shape', 'scale_factor',
            'keep_ratio' keys are added into result dict.
1932
1933
1934
1935
1936
1937
1938
1939
        """
        if 'scale' not in results:
            results['scale'] = self._random_scale()
        self.resize.scale = results['scale']
        results = self.resize(results)
        self._resize_3d(results)

        return results
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992


@TRANSFORMS.register_module()
class RandomCrop3D(RandomCrop):
    """3D version of RandomCrop. RamdomCrop3D supports the modifications of
    camera intrinsic matrix and using predefined randomness variable to do the
    augmentation.

    The absolute ``crop_size`` is sampled based on ``crop_type`` and
    ``image_size``, then the cropped results are generated.

    Required Keys:

    - img
    - gt_bboxes (np.float32) (optional)
    - gt_bboxes_labels (np.int64) (optional)
    - gt_masks (BitmapMasks | PolygonMasks) (optional)
    - gt_ignore_flags (np.bool) (optional)
    - gt_seg_map (np.uint8) (optional)

    Modified Keys:

    - img
    - img_shape
    - gt_bboxes (optional)
    - gt_bboxes_labels (optional)
    - gt_masks (optional)
    - gt_ignore_flags (optional)
    - gt_seg_map (optional)

    Added Keys:

    - homography_matrix

    Args:
        crop_size (tuple): The relative ratio or absolute pixels of
            height and width.
        crop_type (str): One of "relative_range", "relative",
            "absolute", "absolute_range". "relative" randomly crops
            (h * crop_size[0], w * crop_size[1]) part from an input of size
            (h, w). "relative_range" uniformly samples relative crop size from
            range [crop_size[0], 1] and [crop_size[1], 1] for height and width
            respectively. "absolute" crops from an input with absolute size
            (crop_size[0], crop_size[1]). "absolute_range" uniformly samples
            crop_h in range [crop_size[0], min(h, crop_size[1])] and crop_w
            in range [crop_size[0], min(w, crop_size[1])].
            Defaults to "absolute".
        allow_negative_crop (bool): Whether to allow a crop that does
            not contain any bbox area. Defaults to False.
        recompute_bbox (bool): Whether to re-compute the boxes based
            on cropped instance masks. Defaults to False.
        bbox_clip_border (bool): Whether clip the objects outside
            the border of the image. Defaults to True.
1993
        rel_offset_h (tuple): The cropping interval of image height. Defaults
1994
            to (0., 1.).
1995
        rel_offset_w (tuple): The cropping interval of image width. Defaults
1996
1997
1998
1999
            to (0., 1.).

    Note:
        - If the image is smaller than the absolute crop size, return the
2000
          original image.
2001
2002
2003
2004
2005
2006
2007
2008
        - The keys for bboxes, labels and masks must be aligned. That is,
          ``gt_bboxes`` corresponds to ``gt_labels`` and ``gt_masks``, and
          ``gt_bboxes_ignore`` corresponds to ``gt_labels_ignore`` and
          ``gt_masks_ignore``.
        - If the crop does not contain any gt-bbox region and
          ``allow_negative_crop`` is set to False, skip this image.
    """

2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
    def __init__(
        self,
        crop_size: tuple,
        crop_type: str = 'absolute',
        allow_negative_crop: bool = False,
        recompute_bbox: bool = False,
        bbox_clip_border: bool = True,
        rel_offset_h: tuple = (0., 1.),
        rel_offset_w: tuple = (0., 1.)
    ) -> None:
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
        super().__init__(
            crop_size=crop_size,
            crop_type=crop_type,
            allow_negative_crop=allow_negative_crop,
            recompute_bbox=recompute_bbox,
            bbox_clip_border=bbox_clip_border)
        # rel_offset specifies the relative offset range of cropping origin
        # [0., 1.] means starting from 0*margin to 1*margin + 1
        self.rel_offset_h = rel_offset_h
        self.rel_offset_w = rel_offset_w

2030
2031
2032
2033
    def _crop_data(self,
                   results: dict,
                   crop_size: tuple,
                   allow_negative_crop: bool = False) -> dict:
2034
2035
2036
2037
2038
2039
2040
        """Function to randomly crop images, bounding boxes, masks, semantic
        segmentation maps.

        Args:
            results (dict): Result dict from loading pipeline.
            crop_size (tuple): Expected absolute size after cropping, (h, w).
            allow_negative_crop (bool): Whether to allow a crop that does not
2041
                contain any bbox area. Defaults to False.
2042
2043
2044

        Returns:
            dict: Randomly cropped results, 'img_shape' key in result dict is
2045
            updated according to crop size.
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
        """
        assert crop_size[0] > 0 and crop_size[1] > 0
        for key in results.get('img_fields', ['img']):
            img = results[key]
            if 'img_crop_offset' not in results:
                margin_h = max(img.shape[0] - crop_size[0], 0)
                margin_w = max(img.shape[1] - crop_size[1], 0)
                # TOCHECK: a little different from LIGA implementation
                offset_h = np.random.randint(
                    self.rel_offset_h[0] * margin_h,
                    self.rel_offset_h[1] * margin_h + 1)
                offset_w = np.random.randint(
                    self.rel_offset_w[0] * margin_w,
                    self.rel_offset_w[1] * margin_w + 1)
            else:
                offset_w, offset_h = results['img_crop_offset']

            crop_h = min(crop_size[0], img.shape[0])
            crop_w = min(crop_size[1], img.shape[1])
            crop_y1, crop_y2 = offset_h, offset_h + crop_h
            crop_x1, crop_x2 = offset_w, offset_w + crop_w

            # crop the image
            img = img[crop_y1:crop_y2, crop_x1:crop_x2, ...]
            img_shape = img.shape
            results[key] = img
        results['img_shape'] = img_shape

        # crop bboxes accordingly and clip to the image boundary
        for key in results.get('bbox_fields', []):
            # e.g. gt_bboxes and gt_bboxes_ignore
            bbox_offset = np.array([offset_w, offset_h, offset_w, offset_h],
                                   dtype=np.float32)
            bboxes = results[key] - bbox_offset
            if self.bbox_clip_border:
                bboxes[:, 0::2] = np.clip(bboxes[:, 0::2], 0, img_shape[1])
                bboxes[:, 1::2] = np.clip(bboxes[:, 1::2], 0, img_shape[0])
            valid_inds = (bboxes[:, 2] > bboxes[:, 0]) & (
                bboxes[:, 3] > bboxes[:, 1])
            # If the crop does not contain any gt-bbox area and
            # allow_negative_crop is False, skip this image.
            if (key == 'gt_bboxes' and not valid_inds.any()
                    and not allow_negative_crop):
                return None
            results[key] = bboxes[valid_inds, :]
            # label fields. e.g. gt_labels and gt_labels_ignore
            label_key = self.bbox2label.get(key)
            if label_key in results:
                results[label_key] = results[label_key][valid_inds]

            # mask fields, e.g. gt_masks and gt_masks_ignore
            mask_key = self.bbox2mask.get(key)
            if mask_key in results:
                results[mask_key] = results[mask_key][
                    valid_inds.nonzero()[0]].crop(
                        np.asarray([crop_x1, crop_y1, crop_x2, crop_y2]))
                if self.recompute_bbox:
                    results[key] = results[mask_key].get_bboxes()

        # crop semantic seg
        for key in results.get('seg_fields', []):
            results[key] = results[key][crop_y1:crop_y2, crop_x1:crop_x2]

        # manipulate camera intrinsic matrix
        # needs to apply offset to K instead of P2 (on KITTI)
        if isinstance(results['cam2img'], list):
            # TODO ignore this, but should handle it in the future
            pass
        else:
            K = results['cam2img'][:3, :3].copy()
            inv_K = np.linalg.inv(K)
            T = np.matmul(inv_K, results['cam2img'][:3])
            K[0, 2] -= crop_x1
            K[1, 2] -= crop_y1
            offset_cam2img = np.matmul(K, T)
            results['cam2img'][:offset_cam2img.shape[0], :offset_cam2img.
                               shape[1]] = offset_cam2img

        results['img_crop_offset'] = [offset_w, offset_h]

        return results

2128
    def transform(self, results: dict) -> dict:
2129
2130
2131
2132
2133
2134
2135
2136
        """Transform function to randomly crop images, bounding boxes, masks,
        semantic segmentation maps.

        Args:
            results (dict): Result dict from loading pipeline.

        Returns:
            dict: Randomly cropped results, 'img_shape' key in result dict is
2137
            updated according to crop size.
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
        """
        image_size = results['img'].shape[:2]
        if 'crop_size' not in results:
            crop_size = self._get_crop_size(image_size)
            results['crop_size'] = crop_size
        else:
            crop_size = results['crop_size']
        results = self._crop_data(results, crop_size, self.allow_negative_crop)
        return results

2148
2149
    def __repr__(self) -> dict:
        """str: Return a string that describes the module."""
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
        repr_str = self.__class__.__name__
        repr_str += f'(crop_size={self.crop_size}, '
        repr_str += f'crop_type={self.crop_type}, '
        repr_str += f'allow_negative_crop={self.allow_negative_crop}, '
        repr_str += f'bbox_clip_border={self.bbox_clip_border}), '
        repr_str += f'rel_offset_h={self.rel_offset_h}), '
        repr_str += f'rel_offset_w={self.rel_offset_w})'
        return repr_str


@TRANSFORMS.register_module()
class PhotoMetricDistortion3D(PhotoMetricDistortion):
    """Apply photometric distortion to image sequentially, every transformation
    is applied with a probability of 0.5. The position of random contrast is in
    second or second to last.

    PhotoMetricDistortion3D further support using predefined randomness
    variable to do the augmentation.

    1. random brightness
    2. random contrast (mode 0)
    3. convert color from BGR to HSV
    4. random saturation
    5. random hue
    6. convert color from HSV to BGR
    7. random contrast (mode 1)
    8. randomly swap channels

    Required Keys:

    - img (np.uint8)

    Modified Keys:

    - img (np.float32)

    Args:
        brightness_delta (int): delta of brightness.
        contrast_range (sequence): range of contrast.
        saturation_range (sequence): range of saturation.
        hue_delta (int): delta of hue.
    """

    def transform(self, results: dict) -> dict:
        """Transform function to perform photometric distortion on images.

        Args:
            results (dict): Result dict from loading pipeline.

        Returns:
            dict: Result dict with images distorted.
        """
        assert 'img' in results, '`img` is not found in results'
        img = results['img']
        img = img.astype(np.float32)
        if 'photometric_param' not in results:
            photometric_param = self._random_flags()
            results['photometric_param'] = photometric_param
        else:
            photometric_param = results['photometric_param']

        (mode, brightness_flag, contrast_flag, saturation_flag, hue_flag,
         swap_flag, delta_value, alpha_value, saturation_value, hue_value,
         swap_value) = photometric_param

        # random brightness
        if brightness_flag:
            img += delta_value

        # mode == 0 --> do random contrast first
        # mode == 1 --> do random contrast last
        if mode == 1:
            if contrast_flag:
                img *= alpha_value

        # convert color from BGR to HSV
        img = mmcv.bgr2hsv(img)

        # random saturation
        if saturation_flag:
            img[..., 1] *= saturation_value

        # random hue
        if hue_flag:
            img[..., 0] += hue_value
            img[..., 0][img[..., 0] > 360] -= 360
            img[..., 0][img[..., 0] < 0] += 360

        # convert color from HSV to BGR
        img = mmcv.hsv2bgr(img)

        # random contrast
        if mode == 0:
            if contrast_flag:
                img *= alpha_value

        # randomly swap channels
        if swap_flag:
            img = img[..., swap_value]

        results['img'] = img
        return results


@TRANSFORMS.register_module()
2255
class MultiViewWrapper(BaseTransform):
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
    """Wrap transformation from single-view into multi-view.

    The wrapper processes the images from multi-view one by one. For each
    image, it constructs a pseudo dict according to the keys specified by the
    'process_fields' parameter. After the transformation is finished, desired
    information can be collected by specifying the keys in the 'collected_keys'
    parameter. Multi-view images share the same transformation parameters
    but do not share the same magnitude when a random transformation is
    conducted.

    Args:
        transforms (list[dict]): A list of dict specifying the transformations
            for the monocular situation.
        override_aug_config (bool): flag of whether to use the same aug config
2270
            for multiview image. Defaults to True.
2271
        process_fields (list): Desired keys that the transformations should
2272
            be conducted on. Defaults to ['img', 'cam2img', 'lidar2cam'].
2273
        collected_keys (list): Collect information in transformation
2274
            like rotate angles, crop roi, and flip state. Defaults to
2275
2276
2277
2278
                ['scale', 'scale_factor', 'crop',
                 'crop_offset', 'ori_shape',
                 'pad_shape', 'img_shape',
                 'pad_fixed_size', 'pad_size_divisor',
2279
                 'flip', 'flip_direction', 'rotate'].
2280
        randomness_keys (list): The keys that related to the randomness
2281
            in transformation. Defaults to
2282
2283
2284
2285
                    ['scale', 'scale_factor', 'crop_size', 'flip',
                     'flip_direction', 'photometric_param']
    """

2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
    def __init__(
        self,
        transforms: dict,
        override_aug_config: bool = True,
        process_fields: list = ['img', 'cam2img', 'lidar2cam'],
        collected_keys: list = [
            'scale', 'scale_factor', 'crop', 'img_crop_offset', 'ori_shape',
            'pad_shape', 'img_shape', 'pad_fixed_size', 'pad_size_divisor',
            'flip', 'flip_direction', 'rotate'
        ],
        randomness_keys: list = [
            'scale', 'scale_factor', 'crop_size', 'img_crop_offset', 'flip',
            'flip_direction', 'photometric_param'
        ]
    ) -> None:
2301
        self.transforms = Compose(transforms)
2302
2303
2304
2305
2306
        self.override_aug_config = override_aug_config
        self.collected_keys = collected_keys
        self.process_fields = process_fields
        self.randomness_keys = randomness_keys

2307
    def transform(self, input_dict: dict) -> dict:
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
        """Transform function to do the transform for multiview image.

        Args:
            results (dict): Result dict from loading pipeline.

        Returns:
            dict: output dict after transformtaion
        """
        # store the augmentation related keys for each image.
        for key in self.collected_keys:
            if key not in input_dict or \
                    not isinstance(input_dict[key], list):
                input_dict[key] = []
        prev_process_dict = {}
        for img_id in range(len(input_dict['img'])):
            process_dict = {}

            # override the process dict (e.g. scale in random scale,
            # crop_size in random crop, flip, flip_direction in
            # random flip)
            if img_id != 0 and self.override_aug_config:
                for key in self.randomness_keys:
                    if key in prev_process_dict:
                        process_dict[key] = prev_process_dict[key]

            for key in self.process_fields:
                if key in input_dict:
                    process_dict[key] = input_dict[key][img_id]
2336
            process_dict = self.transforms(process_dict)
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
            # store the randomness variable in transformation.
            prev_process_dict = process_dict

            # store the related results to results_dict
            for key in self.process_fields:
                if key in process_dict:
                    input_dict[key][img_id] = process_dict[key]
            # update the keys
            for key in self.collected_keys:
                if key in process_dict:
                    if len(input_dict[key]) == img_id + 1:
                        input_dict[key][img_id] = process_dict[key]
                    else:
                        input_dict[key].append(process_dict[key])

        for key in self.collected_keys:
            if len(input_dict[key]) == 0:
                input_dict.pop(key)
        return input_dict
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523


@TRANSFORMS.register_module()
class PolarMix(BaseTransform):
    """PolarMix data augmentation.

    The polarmix transform steps are as follows:

        1. Another random point cloud is picked by dataset.
        2. Exchange sectors of two point clouds that are cut with certain
           azimuth angles.
        3. Cut point instances from picked point cloud, rotate them by multiple
           azimuth angles, and paste the cut and rotated instances.

    Required Keys:

    - points (:obj:`BasePoints`)
    - pts_semantic_mask (np.int64)
    - dataset (:obj:`BaseDataset`)

    Modified Keys:

    - points (:obj:`BasePoints`)
    - pts_semantic_mask (np.int64)

    Args:
        instance_classes (List[int]): Semantic masks which represent the
            instance.
        swap_ratio (float): Swap ratio of two point cloud. Defaults to 0.5.
        rotate_paste_ratio (float): Rotate paste ratio. Defaults to 1.0.
        pre_transform (Sequence[dict], optional): Sequence of transform object
            or config dict to be composed. Defaults to None.
        prob (float): The transformation probability. Defaults to 1.0.
    """

    def __init__(self,
                 instance_classes: List[int],
                 swap_ratio: float = 0.5,
                 rotate_paste_ratio: float = 1.0,
                 pre_transform: Optional[Sequence[dict]] = None,
                 prob: float = 1.0) -> None:
        assert is_list_of(instance_classes, int), \
            'instance_classes should be a list of int'
        self.instance_classes = instance_classes
        self.swap_ratio = swap_ratio
        self.rotate_paste_ratio = rotate_paste_ratio

        self.prob = prob
        if pre_transform is None:
            self.pre_transform = None
        else:
            self.pre_transform = Compose(pre_transform)

    def polar_mix_transform(self, input_dict: dict, mix_results: dict) -> dict:
        """PolarMix transform function.

        Args:
            input_dict (dict): Result dict from loading pipeline.
            mix_results (dict): Mixed dict picked from dataset.

        Returns:
            dict: output dict after transformation.
        """
        mix_points = mix_results['points']
        mix_pts_semantic_mask = mix_results['pts_semantic_mask']

        points = input_dict['points']
        pts_semantic_mask = input_dict['pts_semantic_mask']

        # 1. swap point cloud
        if np.random.random() < self.swap_ratio:
            start_angle = (np.random.random() - 1) * np.pi  # -pi~0
            end_angle = start_angle + np.pi
            # calculate horizontal angle for each point
            yaw = -torch.atan2(points.coord[:, 1], points.coord[:, 0])
            mix_yaw = -torch.atan2(mix_points.coord[:, 1], mix_points.coord[:,
                                                                            0])

            # select points in sector
            idx = (yaw <= start_angle) | (yaw >= end_angle)
            mix_idx = (mix_yaw > start_angle) & (mix_yaw < end_angle)

            # swap
            points = points.cat([points[idx], mix_points[mix_idx]])
            pts_semantic_mask = np.concatenate(
                (pts_semantic_mask[idx.numpy()],
                 mix_pts_semantic_mask[mix_idx.numpy()]),
                axis=0)

        # 2. rotate-pasting
        if np.random.random() < self.rotate_paste_ratio:
            # extract instance points
            instance_points, instance_pts_semantic_mask = [], []
            for instance_class in self.instance_classes:
                mix_idx = mix_pts_semantic_mask == instance_class
                instance_points.append(mix_points[mix_idx])
                instance_pts_semantic_mask.append(
                    mix_pts_semantic_mask[mix_idx])
            instance_points = mix_points.cat(instance_points)
            instance_pts_semantic_mask = np.concatenate(
                instance_pts_semantic_mask, axis=0)

            # rotate-copy
            copy_points = [instance_points]
            copy_pts_semantic_mask = [instance_pts_semantic_mask]
            angle_list = [
                np.random.random() * np.pi * 2 / 3,
                (np.random.random() + 1) * np.pi * 2 / 3
            ]
            for angle in angle_list:
                new_points = instance_points.clone()
                new_points.rotate(angle)
                copy_points.append(new_points)
                copy_pts_semantic_mask.append(instance_pts_semantic_mask)
            copy_points = instance_points.cat(copy_points)
            copy_pts_semantic_mask = np.concatenate(
                copy_pts_semantic_mask, axis=0)

            points = points.cat([points, copy_points])
            pts_semantic_mask = np.concatenate(
                (pts_semantic_mask, copy_pts_semantic_mask), axis=0)

        input_dict['points'] = points
        input_dict['pts_semantic_mask'] = pts_semantic_mask
        return input_dict

    def transform(self, input_dict: dict) -> dict:
        """PolarMix transform function.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: output dict after transformation.
        """
        if np.random.rand() > self.prob:
            return input_dict

        assert 'dataset' in input_dict, \
            '`dataset` is needed to pass through PolarMix, while not found.'
        dataset = input_dict['dataset']

        # get index of other point cloud
        index = np.random.randint(0, len(dataset))

        mix_results = dataset.get_data_info(index)

        if self.pre_transform is not None:
            # pre_transform may also require dataset
            mix_results.update({'dataset': dataset})
            # before polarmix need to go through
            # the necessary pre_transform
            mix_results = self.pre_transform(mix_results)
            mix_results.pop('dataset')

        input_dict = self.polar_mix_transform(input_dict, mix_results)

        return input_dict

    def __repr__(self) -> str:
        """str: Return a string that describes the module."""
        repr_str = self.__class__.__name__
        repr_str += f'(instance_classes={self.instance_classes}, '
        repr_str += f'swap_ratio={self.swap_ratio}, '
        repr_str += f'rotate_paste_ratio={self.rotate_paste_ratio}, '
        repr_str += f'pre_transform={self.pre_transform}, '
        repr_str += f'prob={self.prob})'
        return repr_str
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668


@TRANSFORMS.register_module()
class LaserMix(BaseTransform):
    """LaserMix data augmentation.

    The lasermix transform steps are as follows:

        1. Another random point cloud is picked by dataset.
        2. Divide the point cloud into several regions according to pitch
           angles and combine the areas crossly.

    Required Keys:

    - points (:obj:`BasePoints`)
    - pts_semantic_mask (np.int64)
    - dataset (:obj:`BaseDataset`)

    Modified Keys:

    - points (:obj:`BasePoints`)
    - pts_semantic_mask (np.int64)

    Args:
        num_areas (List[int]): A list of area numbers will be divided into.
        pitch_angles (Sequence[float]): Pitch angles used to divide areas.
        pre_transform (Sequence[dict], optional): Sequence of transform object
            or config dict to be composed. Defaults to None.
        prob (float): The transformation probability. Defaults to 1.0.
    """

    def __init__(self,
                 num_areas: List[int],
                 pitch_angles: Sequence[float],
                 pre_transform: Optional[Sequence[dict]] = None,
                 prob: float = 1.0) -> None:
        assert is_list_of(num_areas, int), \
            'num_areas should be a list of int.'
        self.num_areas = num_areas

        assert len(pitch_angles) == 2, \
            'The length of pitch_angles should be 2, ' \
            f'but got {len(pitch_angles)}.'
        assert pitch_angles[1] > pitch_angles[0], \
            'pitch_angles[1] should be larger than pitch_angles[0].'
        self.pitch_angles = pitch_angles

        self.prob = prob
        if pre_transform is None:
            self.pre_transform = None
        else:
            self.pre_transform = Compose(pre_transform)

    def laser_mix_transform(self, input_dict: dict, mix_results: dict) -> dict:
        """LaserMix transform function.

        Args:
            input_dict (dict): Result dict from loading pipeline.
            mix_results (dict): Mixed dict picked from dataset.

        Returns:
            dict: output dict after transformation.
        """
        mix_points = mix_results['points']
        mix_pts_semantic_mask = mix_results['pts_semantic_mask']

        points = input_dict['points']
        pts_semantic_mask = input_dict['pts_semantic_mask']

        rho = torch.sqrt(points.coord[:, 0]**2 + points.coord[:, 1]**2)
        pitch = torch.atan2(points.coord[:, 2], rho)
        pitch = torch.clip(pitch, self.pitch_angles[0] + 1e-5,
                           self.pitch_angles[1] - 1e-5)

        mix_rho = torch.sqrt(mix_points.coord[:, 0]**2 +
                             mix_points.coord[:, 1]**2)
        mix_pitch = torch.atan2(mix_points.coord[:, 2], mix_rho)
        mix_pitch = torch.clip(mix_pitch, self.pitch_angles[0] + 1e-5,
                               self.pitch_angles[1] - 1e-5)

        num_areas = np.random.choice(self.num_areas, size=1)[0]
        angle_list = np.linspace(self.pitch_angles[1], self.pitch_angles[0],
                                 num_areas + 1)
        out_points = []
        out_pts_semantic_mask = []
        for i in range(num_areas):
            # convert angle to radian
            start_angle = angle_list[i + 1] / 180 * np.pi
            end_angle = angle_list[i] / 180 * np.pi
            if i % 2 == 0:  # pick from original point cloud
                idx = (pitch > start_angle) & (pitch <= end_angle)
                out_points.append(points[idx])
                out_pts_semantic_mask.append(pts_semantic_mask[idx.numpy()])
            else:  # pickle from mixed point cloud
                idx = (mix_pitch > start_angle) & (mix_pitch <= end_angle)
                out_points.append(mix_points[idx])
                out_pts_semantic_mask.append(
                    mix_pts_semantic_mask[idx.numpy()])
        out_points = points.cat(out_points)
        out_pts_semantic_mask = np.concatenate(out_pts_semantic_mask, axis=0)
        input_dict['points'] = out_points
        input_dict['pts_semantic_mask'] = out_pts_semantic_mask
        return input_dict

    def transform(self, input_dict: dict) -> dict:
        """LaserMix transform function.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: output dict after transformation.
        """
        if np.random.rand() > self.prob:
            return input_dict

        assert 'dataset' in input_dict, \
            '`dataset` is needed to pass through LaserMix, while not found.'
        dataset = input_dict['dataset']

        # get index of other point cloud
        index = np.random.randint(0, len(dataset))

        mix_results = dataset.get_data_info(index)

        if self.pre_transform is not None:
            # pre_transform may also require dataset
            mix_results.update({'dataset': dataset})
            # before lasermix need to go through
            # the necessary pre_transform
            mix_results = self.pre_transform(mix_results)
            mix_results.pop('dataset')

        input_dict = self.laser_mix_transform(input_dict, mix_results)

        return input_dict

    def __repr__(self) -> str:
        """str: Return a string that describes the module."""
        repr_str = self.__class__.__name__
        repr_str += f'(num_areas={self.num_areas}, '
        repr_str += f'pitch_angles={self.pitch_angles}, '
        repr_str += f'pre_transform={self.pre_transform}, '
        repr_str += f'prob={self.prob})'
        return repr_str