"examples/pytorch/vrgcn/train_cv.py" did not exist on "fae26dd15caac92458a08ad34889086e1e333ddd"
transforms_3d.py 68.6 KB
Newer Older
dingchang's avatar
dingchang committed
1
# Copyright (c) OpenMMLab. All rights reserved.
2
import random
3
import warnings
4
from typing import List, Optional, Tuple, Union
5
6
7

import cv2
import numpy as np
8
from mmcv.transforms import BaseTransform
9
from mmengine import is_tuple_of
zhangwenwei's avatar
zhangwenwei committed
10

zhangshilong's avatar
zhangshilong committed
11
from mmdet3d.models.task_modules import VoxelGenerator
12
from mmdet3d.registry import TRANSFORMS
zhangshilong's avatar
zhangshilong committed
13
14
15
16
17
from mmdet3d.structures import (CameraInstance3DBoxes, DepthInstance3DBoxes,
                                LiDARInstance3DBoxes)
from mmdet3d.structures.ops import box_np_ops
from mmdet3d.structures.points import BasePoints
from mmdet.datasets.transforms import RandomFlip
zhangwenwei's avatar
zhangwenwei committed
18
19
20
from .data_augment_utils import noise_per_object_v3_


21
@TRANSFORMS.register_module()
ZCMax's avatar
ZCMax committed
22
class RandomDropPointsColor(BaseTransform):
23
24
25
26
27
28
29
    r"""Randomly set the color of points to all zeros.

    Once this transform is executed, all the points' color will be dropped.
    Refer to `PAConv <https://github.com/CVMI-Lab/PAConv/blob/main/scene_seg/
    util/transform.py#L223>`_ for more details.

    Args:
30
        drop_ratio (float, optional): The probability of dropping point colors.
31
32
33
            Defaults to 0.2.
    """

ZCMax's avatar
ZCMax committed
34
    def __init__(self, drop_ratio: float = 0.2) -> None:
35
36
37
38
        assert isinstance(drop_ratio, (int, float)) and 0 <= drop_ratio <= 1, \
            f'invalid drop_ratio value {drop_ratio}'
        self.drop_ratio = drop_ratio

ZCMax's avatar
ZCMax committed
39
    def transform(self, input_dict: dict) -> dict:
40
41
42
43
44
45
        """Call function to drop point colors.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
46
            dict: Results after color dropping,
47
48
49
50
51
52
53
                'points' key is updated in the result dict.
        """
        points = input_dict['points']
        assert points.attribute_dims is not None and \
            'color' in points.attribute_dims, \
            'Expect points have color attribute'

54
55
56
57
58
59
60
        # this if-expression is a bit strange
        # `RandomDropPointsColor` is used in training 3D segmentor PAConv
        # we discovered in our experiments that, using
        # `if np.random.rand() > 1.0 - self.drop_ratio` consistently leads to
        # better results than using `if np.random.rand() < self.drop_ratio`
        # so we keep this hack in our codebase
        if np.random.rand() > 1.0 - self.drop_ratio:
61
62
63
64
65
66
67
68
69
70
            points.color = points.color * 0.0
        return input_dict

    def __repr__(self):
        """str: Return a string that describes the module."""
        repr_str = self.__class__.__name__
        repr_str += f'(drop_ratio={self.drop_ratio})'
        return repr_str


71
@TRANSFORMS.register_module()
zhangwenwei's avatar
zhangwenwei committed
72
73
74
75
76
77
78
class RandomFlip3D(RandomFlip):
    """Flip the points & bbox.

    If the input dict contains the key "flip", then the flag will be used,
    otherwise it will be randomly decided by a ratio specified in the init
    method.

jshilong's avatar
jshilong committed
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
    Required Keys:

    - points (np.float32)
    - gt_bboxes_3d (np.float32)

    Modified Keys:

    - points (np.float32)
    - gt_bboxes_3d (np.float32)

    Added Keys:

    - points (np.float32)
    - pcd_trans (np.float32)
    - pcd_rotation (np.float32)
    - pcd_rotation_angle (np.float32)
    - pcd_scale_factor (np.float32)

zhangwenwei's avatar
zhangwenwei committed
97
    Args:
zhangwenwei's avatar
zhangwenwei committed
98
99
100
        sync_2d (bool, optional): Whether to apply flip according to the 2D
            images. If True, it will apply the same flip as that to 2D images.
            If False, it will decide whether to flip randomly and independently
liyinhao's avatar
liyinhao committed
101
            to that of 2D images. Defaults to True.
wuyuefeng's avatar
wuyuefeng committed
102
        flip_ratio_bev_horizontal (float, optional): The flipping probability
liyinhao's avatar
liyinhao committed
103
            in horizontal direction. Defaults to 0.0.
wuyuefeng's avatar
wuyuefeng committed
104
        flip_ratio_bev_vertical (float, optional): The flipping probability
liyinhao's avatar
liyinhao committed
105
            in vertical direction. Defaults to 0.0.
zhangwenwei's avatar
zhangwenwei committed
106
107
    """

wuyuefeng's avatar
wuyuefeng committed
108
    def __init__(self,
jshilong's avatar
jshilong committed
109
110
111
112
113
114
115
                 sync_2d: bool = True,
                 flip_ratio_bev_horizontal: float = 0.0,
                 flip_ratio_bev_vertical: float = 0.0,
                 **kwargs) -> None:
        # `flip_ratio_bev_horizontal` is equal to
        # for flip prob of 2d image when
        # `sync_2d` is True
wuyuefeng's avatar
wuyuefeng committed
116
        super(RandomFlip3D, self).__init__(
jshilong's avatar
jshilong committed
117
            prob=flip_ratio_bev_horizontal, direction='horizontal', **kwargs)
zhangwenwei's avatar
zhangwenwei committed
118
        self.sync_2d = sync_2d
jshilong's avatar
jshilong committed
119
        self.flip_ratio_bev_horizontal = flip_ratio_bev_horizontal
wuyuefeng's avatar
wuyuefeng committed
120
121
122
123
124
125
126
127
128
129
        self.flip_ratio_bev_vertical = flip_ratio_bev_vertical
        if flip_ratio_bev_horizontal is not None:
            assert isinstance(
                flip_ratio_bev_horizontal,
                (int, float)) and 0 <= flip_ratio_bev_horizontal <= 1
        if flip_ratio_bev_vertical is not None:
            assert isinstance(
                flip_ratio_bev_vertical,
                (int, float)) and 0 <= flip_ratio_bev_vertical <= 1

jshilong's avatar
jshilong committed
130
131
132
    def random_flip_data_3d(self,
                            input_dict: dict,
                            direction: str = 'horizontal') -> None:
133
134
        """Flip 3D data randomly.

jshilong's avatar
jshilong committed
135
136
137
138
139
140
141
        `random_flip_data_3d` should take these situations into consideration:

        - 1. LIDAR-based 3d detection
        - 2. LIDAR-based 3d segmentation
        - 3. vision-only detection
        - 4. multi-modality 3d detection.

142
143
        Args:
            input_dict (dict): Result dict from loading pipeline.
144
145
            direction (str, optional): Flip direction.
                Default: 'horizontal'.
146
147

        Returns:
148
            dict: Flipped results, 'points', 'bbox3d_fields' keys are
149
150
                updated in the result dict.
        """
wuyuefeng's avatar
wuyuefeng committed
151
        assert direction in ['horizontal', 'vertical']
jshilong's avatar
jshilong committed
152
153

        if 'gt_bboxes_3d' in input_dict:
154
            if 'points' in input_dict:
jshilong's avatar
jshilong committed
155
                input_dict['points'] = input_dict['gt_bboxes_3d'].flip(
156
157
                    direction, points=input_dict['points'])
            else:
jshilong's avatar
jshilong committed
158
159
160
161
162
163
                # vision-only detection
                input_dict['gt_bboxes_3d'].flip(direction)
        else:
            input_dict['points'].flip(direction)

        if 'centers_2d' in input_dict:
164
165
            assert self.sync_2d is True and direction == 'horizontal', \
                'Only support sync_2d=True and horizontal flip with images'
jshilong's avatar
jshilong committed
166
167
            # TODO fix this ori_shape and other keys in vision based model
            # TODO ori_shape to img_shape
168
            w = input_dict['ori_shape'][1]
jshilong's avatar
jshilong committed
169
170
            input_dict['centers_2d'][..., 0] = \
                w - input_dict['centers_2d'][..., 0]
171
172
            # need to modify the horizontal position of camera center
            # along u-axis in the image (flip like centers2d)
173
            # ['cam2img'][0][2] = c_u
174
175
            # see more details and examples at
            # https://github.com/open-mmlab/mmdetection3d/pull/744
176
            input_dict['cam2img'][0][2] = w - input_dict['cam2img'][0][2]
zhangwenwei's avatar
zhangwenwei committed
177

jshilong's avatar
jshilong committed
178
    def transform(self, input_dict: dict) -> dict:
179
        """Call function to flip points, values in the ``bbox3d_fields`` and
180
181
182
183
184
185
        also flip 2D image and its annotations.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
186
187
            dict: Flipped results, 'flip', 'flip_direction',
                'pcd_horizontal_flip' and 'pcd_vertical_flip' keys are added
188
189
                into result dict.
        """
190
        # flip 2D image and its annotations
jshilong's avatar
jshilong committed
191
192
        if 'img' in input_dict:
            super(RandomFlip3D, self).transform(input_dict)
zhangwenwei's avatar
zhangwenwei committed
193

jshilong's avatar
jshilong committed
194
        if self.sync_2d and 'img' in input_dict:
wuyuefeng's avatar
wuyuefeng committed
195
196
            input_dict['pcd_horizontal_flip'] = input_dict['flip']
            input_dict['pcd_vertical_flip'] = False
zhangwenwei's avatar
zhangwenwei committed
197
        else:
wuyuefeng's avatar
wuyuefeng committed
198
199
            if 'pcd_horizontal_flip' not in input_dict:
                flip_horizontal = True if np.random.rand(
jshilong's avatar
jshilong committed
200
                ) < self.flip_ratio_bev_horizontal else False
wuyuefeng's avatar
wuyuefeng committed
201
202
203
204
205
206
                input_dict['pcd_horizontal_flip'] = flip_horizontal
            if 'pcd_vertical_flip' not in input_dict:
                flip_vertical = True if np.random.rand(
                ) < self.flip_ratio_bev_vertical else False
                input_dict['pcd_vertical_flip'] = flip_vertical

207
208
209
        if 'transformation_3d_flow' not in input_dict:
            input_dict['transformation_3d_flow'] = []

wuyuefeng's avatar
wuyuefeng committed
210
211
        if input_dict['pcd_horizontal_flip']:
            self.random_flip_data_3d(input_dict, 'horizontal')
212
            input_dict['transformation_3d_flow'].extend(['HF'])
wuyuefeng's avatar
wuyuefeng committed
213
214
        if input_dict['pcd_vertical_flip']:
            self.random_flip_data_3d(input_dict, 'vertical')
215
            input_dict['transformation_3d_flow'].extend(['VF'])
zhangwenwei's avatar
zhangwenwei committed
216
217
        return input_dict

zhangwenwei's avatar
zhangwenwei committed
218
    def __repr__(self):
219
        """str: Return a string that describes the module."""
wuyuefeng's avatar
wuyuefeng committed
220
        repr_str = self.__class__.__name__
221
        repr_str += f'(sync_2d={self.sync_2d},'
222
        repr_str += f' flip_ratio_bev_vertical={self.flip_ratio_bev_vertical})'
wuyuefeng's avatar
wuyuefeng committed
223
        return repr_str
zhangwenwei's avatar
zhangwenwei committed
224

zhangwenwei's avatar
zhangwenwei committed
225

226
@TRANSFORMS.register_module()
ZCMax's avatar
ZCMax committed
227
class RandomJitterPoints(BaseTransform):
228
229
    """Randomly jitter point coordinates.

230
    Different from the global translation in ``GlobalRotScaleTrans``, here we
231
232
233
234
        apply different noises to each point in a scene.

    Args:
        jitter_std (list[float]): The standard deviation of jittering noise.
235
236
            This applies random noise to all points in a 3D scene, which is
            sampled from a gaussian distribution whose standard deviation is
237
            set by ``jitter_std``. Defaults to [0.01, 0.01, 0.01]
238
        clip_range (list[float]): Clip the randomly generated jitter
239
240
241
242
            noise into this range. If None is given, don't perform clipping.
            Defaults to [-0.05, 0.05]

    Note:
243
        This transform should only be used in point cloud segmentation tasks
244
245
246
247
248
            because we don't transform ground-truth bboxes accordingly.
        For similar transform in detection task, please refer to `ObjectNoise`.
    """

    def __init__(self,
ZCMax's avatar
ZCMax committed
249
250
                 jitter_std: List[float] = [0.01, 0.01, 0.01],
                 clip_range: List[float] = [-0.05, 0.05]) -> None:
251
252
253
254
255
256
257
258
259
260
261
262
263
264
        seq_types = (list, tuple, np.ndarray)
        if not isinstance(jitter_std, seq_types):
            assert isinstance(jitter_std, (int, float)), \
                f'unsupported jitter_std type {type(jitter_std)}'
            jitter_std = [jitter_std, jitter_std, jitter_std]
        self.jitter_std = jitter_std

        if clip_range is not None:
            if not isinstance(clip_range, seq_types):
                assert isinstance(clip_range, (int, float)), \
                    f'unsupported clip_range type {type(clip_range)}'
                clip_range = [-clip_range, clip_range]
        self.clip_range = clip_range

ZCMax's avatar
ZCMax committed
265
    def transform(self, input_dict: dict) -> dict:
266
267
268
269
270
271
        """Call function to jitter all the points in the scene.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
272
            dict: Results after adding noise to each point,
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
                'points' key is updated in the result dict.
        """
        points = input_dict['points']
        jitter_std = np.array(self.jitter_std, dtype=np.float32)
        jitter_noise = \
            np.random.randn(points.shape[0], 3) * jitter_std[None, :]
        if self.clip_range is not None:
            jitter_noise = np.clip(jitter_noise, self.clip_range[0],
                                   self.clip_range[1])

        points.translate(jitter_noise)
        return input_dict

    def __repr__(self):
        """str: Return a string that describes the module."""
        repr_str = self.__class__.__name__
        repr_str += f'(jitter_std={self.jitter_std},'
        repr_str += f' clip_range={self.clip_range})'
        return repr_str


294
295
@TRANSFORMS.register_module()
class ObjectSample(BaseTransform):
zhangwenwei's avatar
zhangwenwei committed
296
    """Sample GT objects to the data.
zhangwenwei's avatar
zhangwenwei committed
297

298
299
300
301
302
303
304
305
306
307
    Required Keys:

    - points
    - ann_info
    - gt_bboxes_3d
    - gt_labels_3d
    - img (optional)
    - gt_bboxes (optional)

    Modified Keys:
308

309
310
311
312
313
314
315
316
317
318
    - points
    - gt_bboxes_3d
    - gt_labels_3d
    - img (optional)
    - gt_bboxes (optional)

    Added Keys:

    - plane (optional)

zhangwenwei's avatar
zhangwenwei committed
319
320
321
322
    Args:
        db_sampler (dict): Config dict of the database sampler.
        sample_2d (bool): Whether to also paste 2D image patch to the images
            This should be true when applying multi-modality cut-and-paste.
liyinhao's avatar
liyinhao committed
323
            Defaults to False.
324
        use_ground_plane (bool): Whether to use ground plane to adjust the
325
            3D labels.
zhangwenwei's avatar
zhangwenwei committed
326
    """
zhangwenwei's avatar
zhangwenwei committed
327

328
329
330
    def __init__(self,
                 db_sampler: dict,
                 sample_2d: bool = False,
331
                 use_ground_plane: bool = False) -> None:
zhangwenwei's avatar
zhangwenwei committed
332
333
334
335
        self.sampler_cfg = db_sampler
        self.sample_2d = sample_2d
        if 'type' not in db_sampler.keys():
            db_sampler['type'] = 'DataBaseSampler'
336
        self.db_sampler = TRANSFORMS.build(db_sampler)
337
        self.use_ground_plane = use_ground_plane
zhangwenwei's avatar
zhangwenwei committed
338
339

    @staticmethod
340
341
    def remove_points_in_boxes(points: BasePoints,
                               boxes: np.ndarray) -> np.ndarray:
342
343
344
        """Remove the points in the sampled bounding boxes.

        Args:
345
            points (:obj:`BasePoints`): Input point cloud array.
346
347
348
349
350
            boxes (np.ndarray): Sampled ground truth boxes.

        Returns:
            np.ndarray: Points with those in the boxes removed.
        """
351
        masks = box_np_ops.points_in_rbbox(points.coord.numpy(), boxes)
zhangwenwei's avatar
zhangwenwei committed
352
353
354
        points = points[np.logical_not(masks.any(-1))]
        return points

355
356
    def transform(self, input_dict: dict) -> dict:
        """Transform function to sample ground truth objects to the data.
357
358
359
360
361

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
362
363
            dict: Results after object sampling augmentation,
                'points', 'gt_bboxes_3d', 'gt_labels_3d' keys are updated
364
365
                in the result dict.
        """
zhangwenwei's avatar
zhangwenwei committed
366
        gt_bboxes_3d = input_dict['gt_bboxes_3d']
zhangwenwei's avatar
zhangwenwei committed
367
368
        gt_labels_3d = input_dict['gt_labels_3d']

ChaimZhu's avatar
ChaimZhu committed
369
370
        if self.use_ground_plane:
            ground_plane = input_dict.get('plane', None)
371
372
            assert ground_plane is not None, '`use_ground_plane` is True ' \
                                             'but find plane is None'
373
374
        else:
            ground_plane = None
zhangwenwei's avatar
zhangwenwei committed
375
376
377
        # change to float for blending operation
        points = input_dict['points']
        if self.sample_2d:
wuyuefeng's avatar
wuyuefeng committed
378
            img = input_dict['img']
zhangwenwei's avatar
zhangwenwei committed
379
380
381
            gt_bboxes_2d = input_dict['gt_bboxes']
            # Assume for now 3D & 2D bboxes are the same
            sampled_dict = self.db_sampler.sample_all(
382
383
384
385
                gt_bboxes_3d.tensor.numpy(),
                gt_labels_3d,
                gt_bboxes_2d=gt_bboxes_2d,
                img=img)
zhangwenwei's avatar
zhangwenwei committed
386
387
        else:
            sampled_dict = self.db_sampler.sample_all(
388
389
390
391
                gt_bboxes_3d.tensor.numpy(),
                gt_labels_3d,
                img=None,
                ground_plane=ground_plane)
zhangwenwei's avatar
zhangwenwei committed
392
393
394
395

        if sampled_dict is not None:
            sampled_gt_bboxes_3d = sampled_dict['gt_bboxes_3d']
            sampled_points = sampled_dict['points']
zhangwenwei's avatar
zhangwenwei committed
396
            sampled_gt_labels = sampled_dict['gt_labels_3d']
zhangwenwei's avatar
zhangwenwei committed
397

zhangwenwei's avatar
zhangwenwei committed
398
399
            gt_labels_3d = np.concatenate([gt_labels_3d, sampled_gt_labels],
                                          axis=0)
400
401
402
            gt_bboxes_3d = gt_bboxes_3d.new_box(
                np.concatenate(
                    [gt_bboxes_3d.tensor.numpy(), sampled_gt_bboxes_3d]))
zhangwenwei's avatar
zhangwenwei committed
403

zhangwenwei's avatar
zhangwenwei committed
404
405
            points = self.remove_points_in_boxes(points, sampled_gt_bboxes_3d)
            # check the points dimension
406
            points = points.cat([sampled_points, points])
zhangwenwei's avatar
zhangwenwei committed
407
408
409
410
411

            if self.sample_2d:
                sampled_gt_bboxes_2d = sampled_dict['gt_bboxes_2d']
                gt_bboxes_2d = np.concatenate(
                    [gt_bboxes_2d, sampled_gt_bboxes_2d]).astype(np.float32)
zhangwenwei's avatar
zhangwenwei committed
412

zhangwenwei's avatar
zhangwenwei committed
413
                input_dict['gt_bboxes'] = gt_bboxes_2d
wuyuefeng's avatar
wuyuefeng committed
414
                input_dict['img'] = sampled_dict['img']
zhangwenwei's avatar
zhangwenwei committed
415
416

        input_dict['gt_bboxes_3d'] = gt_bboxes_3d
WRH's avatar
WRH committed
417
        input_dict['gt_labels_3d'] = gt_labels_3d.astype(np.int64)
zhangwenwei's avatar
zhangwenwei committed
418
        input_dict['points'] = points
zhangwenwei's avatar
zhangwenwei committed
419

zhangwenwei's avatar
zhangwenwei committed
420
421
422
        return input_dict

    def __repr__(self):
423
        """str: Return a string that describes the module."""
424
        repr_str = self.__class__.__name__
425
        repr_str += f'db_sampler={self.db_sampler},'
426
        repr_str += f' sample_2d={self.sample_2d},'
427
        repr_str += f' use_ground_plane={self.use_ground_plane}'
428
        return repr_str
zhangwenwei's avatar
zhangwenwei committed
429
430


431
432
@TRANSFORMS.register_module()
class ObjectNoise(BaseTransform):
zhangwenwei's avatar
zhangwenwei committed
433
    """Apply noise to each GT objects in the scene.
zhangwenwei's avatar
zhangwenwei committed
434

435
436
437
438
439
440
441
442
443
444
    Required Keys:

    - points
    - gt_bboxes_3d

    Modified Keys:

    - points
    - gt_bboxes_3d

zhangwenwei's avatar
zhangwenwei committed
445
    Args:
446
        translation_std (list[float], optional): Standard deviation of the
zhangwenwei's avatar
zhangwenwei committed
447
448
            distribution where translation noise are sampled from.
            Defaults to [0.25, 0.25, 0.25].
449
        global_rot_range (list[float], optional): Global rotation to the scene.
zhangwenwei's avatar
zhangwenwei committed
450
            Defaults to [0.0, 0.0].
451
        rot_range (list[float], optional): Object rotation range.
zhangwenwei's avatar
zhangwenwei committed
452
453
454
455
            Defaults to [-0.15707963267, 0.15707963267].
        num_try (int, optional): Number of times to try if the noise applied is
            invalid. Defaults to 100.
    """
zhangwenwei's avatar
zhangwenwei committed
456
457

    def __init__(self,
458
459
460
461
                 translation_std: List[float] = [0.25, 0.25, 0.25],
                 global_rot_range: List[float] = [0.0, 0.0],
                 rot_range: List[float] = [-0.15707963267, 0.15707963267],
                 num_try: int = 100) -> None:
zhangwenwei's avatar
zhangwenwei committed
462
        self.translation_std = translation_std
zhangwenwei's avatar
zhangwenwei committed
463
        self.global_rot_range = global_rot_range
zhangwenwei's avatar
zhangwenwei committed
464
        self.rot_range = rot_range
zhangwenwei's avatar
zhangwenwei committed
465
466
        self.num_try = num_try

467
468
    def transform(self, input_dict: dict) -> dict:
        """Transform function to apply noise to each ground truth in the scene.
469
470
471
472
473

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
474
            dict: Results after adding noise to each object,
475
476
                'points', 'gt_bboxes_3d' keys are updated in the result dict.
        """
zhangwenwei's avatar
zhangwenwei committed
477
478
        gt_bboxes_3d = input_dict['gt_bboxes_3d']
        points = input_dict['points']
zhangwenwei's avatar
zhangwenwei committed
479

480
        # TODO: this is inplace operation
481
        numpy_box = gt_bboxes_3d.tensor.numpy()
482
483
        numpy_points = points.tensor.numpy()

zhangwenwei's avatar
zhangwenwei committed
484
        noise_per_object_v3_(
485
            numpy_box,
486
            numpy_points,
zhangwenwei's avatar
zhangwenwei committed
487
488
            rotation_perturb=self.rot_range,
            center_noise_std=self.translation_std,
zhangwenwei's avatar
zhangwenwei committed
489
490
            global_random_rot_range=self.global_rot_range,
            num_try=self.num_try)
491
492

        input_dict['gt_bboxes_3d'] = gt_bboxes_3d.new_box(numpy_box)
493
        input_dict['points'] = points.new_point(numpy_points)
zhangwenwei's avatar
zhangwenwei committed
494
495
496
        return input_dict

    def __repr__(self):
497
        """str: Return a string that describes the module."""
zhangwenwei's avatar
zhangwenwei committed
498
        repr_str = self.__class__.__name__
499
500
501
502
        repr_str += f'(num_try={self.num_try},'
        repr_str += f' translation_std={self.translation_std},'
        repr_str += f' global_rot_range={self.global_rot_range},'
        repr_str += f' rot_range={self.rot_range})'
zhangwenwei's avatar
zhangwenwei committed
503
504
505
        return repr_str


506
@TRANSFORMS.register_module()
507
class GlobalAlignment(BaseTransform):
508
509
510
511
512
513
    """Apply global alignment to 3D scene points by rotation and translation.

    Args:
        rotation_axis (int): Rotation axis for points and bboxes rotation.

    Note:
514
515
        We do not record the applied rotation and translation as in
            GlobalRotScaleTrans. Because usually, we do not need to reverse
516
            the alignment step.
517
        For example, ScanNet 3D detection task uses aligned ground-truth
518
519
520
            bounding boxes for evaluation.
    """

521
    def __init__(self, rotation_axis: int) -> None:
522
523
        self.rotation_axis = rotation_axis

524
    def _trans_points(self, results: dict, trans_factor: np.ndarray) -> None:
525
526
527
528
529
530
531
532
533
        """Private function to translate points.

        Args:
            input_dict (dict): Result dict from loading pipeline.
            trans_factor (np.ndarray): Translation vector to be applied.

        Returns:
            dict: Results after translation, 'points' is updated in the dict.
        """
534
        results['points'].translate(trans_factor)
535

536
    def _rot_points(self, results: dict, rot_mat: np.ndarray) -> None:
537
538
539
540
541
542
543
544
545
546
        """Private function to rotate bounding boxes and points.

        Args:
            input_dict (dict): Result dict from loading pipeline.
            rot_mat (np.ndarray): Rotation matrix to be applied.

        Returns:
            dict: Results after rotation, 'points' is updated in the dict.
        """
        # input should be rot_mat_T so I transpose it here
547
        results['points'].rotate(rot_mat.T)
548

549
    def _check_rot_mat(self, rot_mat: np.ndarray) -> None:
550
551
552
553
554
555
556
557
558
559
560
561
        """Check if rotation matrix is valid for self.rotation_axis.

        Args:
            rot_mat (np.ndarray): Rotation matrix to be applied.
        """
        is_valid = np.allclose(np.linalg.det(rot_mat), 1.0)
        valid_array = np.zeros(3)
        valid_array[self.rotation_axis] = 1.0
        is_valid &= (rot_mat[self.rotation_axis, :] == valid_array).all()
        is_valid &= (rot_mat[:, self.rotation_axis] == valid_array).all()
        assert is_valid, f'invalid rotation matrix {rot_mat}'

562
    def transform(self, results: dict) -> dict:
563
564
565
566
567
568
        """Call function to shuffle points.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
569
            dict: Results after global alignment, 'points' and keys in
570
571
                input_dict['bbox3d_fields'] are updated in the result dict.
        """
572
        assert 'axis_align_matrix' in results, \
573
574
            'axis_align_matrix is not provided in GlobalAlignment'

575
        axis_align_matrix = results['axis_align_matrix']
576
577
578
579
580
581
        assert axis_align_matrix.shape == (4, 4), \
            f'invalid shape {axis_align_matrix.shape} for axis_align_matrix'
        rot_mat = axis_align_matrix[:3, :3]
        trans_vec = axis_align_matrix[:3, -1]

        self._check_rot_mat(rot_mat)
582
583
        self._rot_points(results, rot_mat)
        self._trans_points(results, trans_vec)
584

585
        return results
586
587

    def __repr__(self):
588
        """str: Return a string that describes the module."""
589
590
591
592
593
        repr_str = self.__class__.__name__
        repr_str += f'(rotation_axis={self.rotation_axis})'
        return repr_str


594
@TRANSFORMS.register_module()
jshilong's avatar
jshilong committed
595
class GlobalRotScaleTrans(BaseTransform):
zhangwenwei's avatar
zhangwenwei committed
596
    """Apply global rotation, scaling and translation to a 3D scene.
zhangwenwei's avatar
zhangwenwei committed
597

jshilong's avatar
jshilong committed
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
    Required Keys:

    - points (np.float32)
    - gt_bboxes_3d (np.float32)

    Modified Keys:

    - points (np.float32)
    - gt_bboxes_3d (np.float32)

    Added Keys:

    - points (np.float32)
    - pcd_trans (np.float32)
    - pcd_rotation (np.float32)
    - pcd_rotation_angle (np.float32)
    - pcd_scale_factor (np.float32)

zhangwenwei's avatar
zhangwenwei committed
616
    Args:
617
        rot_range (list[float], optional): Range of rotation angle.
liyinhao's avatar
liyinhao committed
618
            Defaults to [-0.78539816, 0.78539816] (close to [-pi/4, pi/4]).
619
        scale_ratio_range (list[float], optional): Range of scale ratio.
liyinhao's avatar
liyinhao committed
620
            Defaults to [0.95, 1.05].
621
622
        translation_std (list[float], optional): The standard deviation of
            translation noise applied to a scene, which
zhangwenwei's avatar
zhangwenwei committed
623
            is sampled from a gaussian distribution whose standard deviation
liyinhao's avatar
liyinhao committed
624
            is set by ``translation_std``. Defaults to [0, 0, 0]
625
        shift_height (bool, optional): Whether to shift height.
wuyuefeng's avatar
wuyuefeng committed
626
            (the fourth dimension of indoor points) when scaling.
liyinhao's avatar
liyinhao committed
627
            Defaults to False.
zhangwenwei's avatar
zhangwenwei committed
628
    """
zhangwenwei's avatar
zhangwenwei committed
629
630

    def __init__(self,
jshilong's avatar
jshilong committed
631
632
633
634
                 rot_range: List[float] = [-0.78539816, 0.78539816],
                 scale_ratio_range: List[float] = [0.95, 1.05],
                 translation_std: List[int] = [0, 0, 0],
                 shift_height: bool = False) -> None:
635
636
637
638
639
        seq_types = (list, tuple, np.ndarray)
        if not isinstance(rot_range, seq_types):
            assert isinstance(rot_range, (int, float)), \
                f'unsupported rot_range type {type(rot_range)}'
            rot_range = [-rot_range, rot_range]
zhangwenwei's avatar
zhangwenwei committed
640
        self.rot_range = rot_range
641
642
643

        assert isinstance(scale_ratio_range, seq_types), \
            f'unsupported scale_ratio_range type {type(scale_ratio_range)}'
jshilong's avatar
jshilong committed
644

zhangwenwei's avatar
zhangwenwei committed
645
        self.scale_ratio_range = scale_ratio_range
646
647
648
649
650
651
652

        if not isinstance(translation_std, seq_types):
            assert isinstance(translation_std, (int, float)), \
                f'unsupported translation_std type {type(translation_std)}'
            translation_std = [
                translation_std, translation_std, translation_std
            ]
653
654
        assert all([std >= 0 for std in translation_std]), \
            'translation_std should be positive'
zhangwenwei's avatar
zhangwenwei committed
655
        self.translation_std = translation_std
wuyuefeng's avatar
wuyuefeng committed
656
        self.shift_height = shift_height
zhangwenwei's avatar
zhangwenwei committed
657

jshilong's avatar
jshilong committed
658
    def _trans_bbox_points(self, input_dict: dict) -> None:
659
660
661
662
663
664
        """Private function to translate bounding boxes and points.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
665
            dict: Results after translation, 'points', 'pcd_trans'
jshilong's avatar
jshilong committed
666
667
            and `gt_bboxes_3d` is updated
            in the result dict.
668
        """
669
        translation_std = np.array(self.translation_std, dtype=np.float32)
zhangwenwei's avatar
zhangwenwei committed
670
671
        trans_factor = np.random.normal(scale=translation_std, size=3).T

672
        input_dict['points'].translate(trans_factor)
zhangwenwei's avatar
zhangwenwei committed
673
        input_dict['pcd_trans'] = trans_factor
jshilong's avatar
jshilong committed
674
675
        if 'gt_bboxes_3d' in input_dict:
            input_dict['gt_bboxes_3d'].translate(trans_factor)
zhangwenwei's avatar
zhangwenwei committed
676

jshilong's avatar
jshilong committed
677
    def _rot_bbox_points(self, input_dict: dict) -> None:
678
679
680
681
682
683
        """Private function to rotate bounding boxes and points.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
684
            dict: Results after rotation, 'points', 'pcd_rotation'
jshilong's avatar
jshilong committed
685
686
            and `gt_bboxes_3d` is updated
            in the result dict.
687
        """
zhangwenwei's avatar
zhangwenwei committed
688
        rotation = self.rot_range
zhangwenwei's avatar
zhangwenwei committed
689
        noise_rotation = np.random.uniform(rotation[0], rotation[1])
zhangwenwei's avatar
zhangwenwei committed
690

jshilong's avatar
jshilong committed
691
692
693
694
695
696
697
698
        if 'gt_bboxes_3d' in input_dict and \
                len(input_dict['gt_bboxes_3d'].tensor) != 0:
            # rotate points with bboxes
            points, rot_mat_T = input_dict['gt_bboxes_3d'].rotate(
                noise_rotation, input_dict['points'])
            input_dict['points'] = points
        else:
            # if no bbox in input_dict, only rotate points
699
            rot_mat_T = input_dict['points'].rotate(noise_rotation)
jshilong's avatar
jshilong committed
700
701
702
703
704

        input_dict['pcd_rotation'] = rot_mat_T
        input_dict['pcd_rotation_angle'] = noise_rotation

    def _scale_bbox_points(self, input_dict: dict) -> None:
705
706
707
708
709
710
        """Private function to scale bounding boxes and points.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
jshilong's avatar
jshilong committed
711
712
713
            dict: Results after scaling, 'points' and
            `gt_bboxes_3d` is updated
            in the result dict.
714
        """
zhangwenwei's avatar
zhangwenwei committed
715
        scale = input_dict['pcd_scale_factor']
716
717
        points = input_dict['points']
        points.scale(scale)
wuyuefeng's avatar
wuyuefeng committed
718
        if self.shift_height:
719
720
            assert 'height' in points.attribute_dims.keys(), \
                'setting shift_height=True but points have no height attribute'
721
722
            points.tensor[:, points.attribute_dims['height']] *= scale
        input_dict['points'] = points
wuyuefeng's avatar
wuyuefeng committed
723

jshilong's avatar
jshilong committed
724
725
726
        if 'gt_bboxes_3d' in input_dict and \
                len(input_dict['gt_bboxes_3d'].tensor) != 0:
            input_dict['gt_bboxes_3d'].scale(scale)
zhangwenwei's avatar
zhangwenwei committed
727

jshilong's avatar
jshilong committed
728
    def _random_scale(self, input_dict: dict) -> None:
729
730
731
732
733
734
        """Private function to randomly set the scale factor.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
jshilong's avatar
jshilong committed
735
736
            dict: Results after scaling, 'pcd_scale_factor'
            are updated in the result dict.
737
        """
zhangwenwei's avatar
zhangwenwei committed
738
739
740
        scale_factor = np.random.uniform(self.scale_ratio_range[0],
                                         self.scale_ratio_range[1])
        input_dict['pcd_scale_factor'] = scale_factor
zhangwenwei's avatar
zhangwenwei committed
741

jshilong's avatar
jshilong committed
742
    def transform(self, input_dict: dict) -> dict:
743
        """Private function to rotate, scale and translate bounding boxes and
744
745
746
747
748
749
750
        points.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after scaling, 'points', 'pcd_rotation',
jshilong's avatar
jshilong committed
751
752
            'pcd_scale_factor', 'pcd_trans' and `gt_bboxes_3d` is updated
            in the result dict.
753
        """
754
755
756
        if 'transformation_3d_flow' not in input_dict:
            input_dict['transformation_3d_flow'] = []

zhangwenwei's avatar
zhangwenwei committed
757
        self._rot_bbox_points(input_dict)
zhangwenwei's avatar
zhangwenwei committed
758

zhangwenwei's avatar
zhangwenwei committed
759
760
761
        if 'pcd_scale_factor' not in input_dict:
            self._random_scale(input_dict)
        self._scale_bbox_points(input_dict)
zhangwenwei's avatar
zhangwenwei committed
762

zhangwenwei's avatar
zhangwenwei committed
763
        self._trans_bbox_points(input_dict)
764
765

        input_dict['transformation_3d_flow'].extend(['R', 'S', 'T'])
zhangwenwei's avatar
zhangwenwei committed
766
767
768
        return input_dict

    def __repr__(self):
769
        """str: Return a string that describes the module."""
zhangwenwei's avatar
zhangwenwei committed
770
        repr_str = self.__class__.__name__
771
772
773
774
        repr_str += f'(rot_range={self.rot_range},'
        repr_str += f' scale_ratio_range={self.scale_ratio_range},'
        repr_str += f' translation_std={self.translation_std},'
        repr_str += f' shift_height={self.shift_height})'
zhangwenwei's avatar
zhangwenwei committed
775
776
777
        return repr_str


778
@TRANSFORMS.register_module()
ZCMax's avatar
ZCMax committed
779
class PointShuffle(BaseTransform):
780
    """Shuffle input points."""
zhangwenwei's avatar
zhangwenwei committed
781

ZCMax's avatar
ZCMax committed
782
    def transform(self, input_dict: dict) -> dict:
783
784
785
786
787
788
        """Call function to shuffle points.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
789
            dict: Results after filtering, 'points', 'pts_instance_mask'
790
                and 'pts_semantic_mask' keys are updated in the result dict.
791
        """
792
793
794
795
796
797
798
799
800
801
802
803
        idx = input_dict['points'].shuffle()
        idx = idx.numpy()

        pts_instance_mask = input_dict.get('pts_instance_mask', None)
        pts_semantic_mask = input_dict.get('pts_semantic_mask', None)

        if pts_instance_mask is not None:
            input_dict['pts_instance_mask'] = pts_instance_mask[idx]

        if pts_semantic_mask is not None:
            input_dict['pts_semantic_mask'] = pts_semantic_mask[idx]

zhangwenwei's avatar
zhangwenwei committed
804
805
806
        return input_dict

    def __repr__(self):
807
        """str: Return a string that describes the module."""
zhangwenwei's avatar
zhangwenwei committed
808
809
810
        return self.__class__.__name__


811
@TRANSFORMS.register_module()
812
class ObjectRangeFilter(BaseTransform):
813
814
    """Filter objects by the range.

815
816
817
818
819
820
821
822
    Required Keys:

    - gt_bboxes_3d

    Modified Keys:

    - gt_bboxes_3d

823
824
825
    Args:
        point_cloud_range (list[float]): Point cloud range.
    """
zhangwenwei's avatar
zhangwenwei committed
826

827
    def __init__(self, point_cloud_range: List[float]):
zhangwenwei's avatar
zhangwenwei committed
828
829
        self.pcd_range = np.array(point_cloud_range, dtype=np.float32)

830
831
    def transform(self, input_dict: dict) -> dict:
        """Transform function to filter objects by the range.
832
833
834
835
836

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
837
            dict: Results after filtering, 'gt_bboxes_3d', 'gt_labels_3d'
838
839
                keys are updated in the result dict.
        """
840
841
842
843
844
845
846
        # Check points instance type and initialise bev_range
        if isinstance(input_dict['gt_bboxes_3d'],
                      (LiDARInstance3DBoxes, DepthInstance3DBoxes)):
            bev_range = self.pcd_range[[0, 1, 3, 4]]
        elif isinstance(input_dict['gt_bboxes_3d'], CameraInstance3DBoxes):
            bev_range = self.pcd_range[[0, 2, 3, 5]]

zhangwenwei's avatar
zhangwenwei committed
847
        gt_bboxes_3d = input_dict['gt_bboxes_3d']
zhangwenwei's avatar
zhangwenwei committed
848
        gt_labels_3d = input_dict['gt_labels_3d']
849
        mask = gt_bboxes_3d.in_range_bev(bev_range)
zhangwenwei's avatar
zhangwenwei committed
850
        gt_bboxes_3d = gt_bboxes_3d[mask]
ZwwWayne's avatar
ZwwWayne committed
851
852
853
854
855
        # mask is a torch tensor but gt_labels_3d is still numpy array
        # using mask to index gt_labels_3d will cause bug when
        # len(gt_labels_3d) == 1, where mask=1 will be interpreted
        # as gt_labels_3d[1] and cause out of index error
        gt_labels_3d = gt_labels_3d[mask.numpy().astype(np.bool)]
zhangwenwei's avatar
zhangwenwei committed
856
857

        # limit rad to [-pi, pi]
858
859
        gt_bboxes_3d.limit_yaw(offset=0.5, period=2 * np.pi)
        input_dict['gt_bboxes_3d'] = gt_bboxes_3d
zhangwenwei's avatar
zhangwenwei committed
860
861
        input_dict['gt_labels_3d'] = gt_labels_3d

zhangwenwei's avatar
zhangwenwei committed
862
863
864
        return input_dict

    def __repr__(self):
865
        """str: Return a string that describes the module."""
zhangwenwei's avatar
zhangwenwei committed
866
        repr_str = self.__class__.__name__
867
        repr_str += f'(point_cloud_range={self.pcd_range.tolist()})'
zhangwenwei's avatar
zhangwenwei committed
868
869
870
        return repr_str


871
@TRANSFORMS.register_module()
872
class PointsRangeFilter(BaseTransform):
873
874
    """Filter points by the range.

875
876
877
878
879
880
881
882
883
884
    Required Keys:

    - points
    - pts_instance_mask (optional)

    Modified Keys:

    - points
    - pts_instance_mask (optional)

885
886
887
    Args:
        point_cloud_range (list[float]): Point cloud range.
    """
zhangwenwei's avatar
zhangwenwei committed
888

889
    def __init__(self, point_cloud_range: List[float]) -> None:
890
        self.pcd_range = np.array(point_cloud_range, dtype=np.float32)
zhangwenwei's avatar
zhangwenwei committed
891

892
893
    def transform(self, input_dict: dict) -> dict:
        """Transform function to filter points by the range.
894
895
896
897
898

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
899
            dict: Results after filtering, 'points', 'pts_instance_mask'
900
                and 'pts_semantic_mask' keys are updated in the result dict.
901
        """
zhangwenwei's avatar
zhangwenwei committed
902
        points = input_dict['points']
903
904
        points_mask = points.in_range_3d(self.pcd_range)
        clean_points = points[points_mask]
zhangwenwei's avatar
zhangwenwei committed
905
        input_dict['points'] = clean_points
906
907
908
909
910
911
912
913
914
915
916
        points_mask = points_mask.numpy()

        pts_instance_mask = input_dict.get('pts_instance_mask', None)
        pts_semantic_mask = input_dict.get('pts_semantic_mask', None)

        if pts_instance_mask is not None:
            input_dict['pts_instance_mask'] = pts_instance_mask[points_mask]

        if pts_semantic_mask is not None:
            input_dict['pts_semantic_mask'] = pts_semantic_mask[points_mask]

zhangwenwei's avatar
zhangwenwei committed
917
918
919
        return input_dict

    def __repr__(self):
920
        """str: Return a string that describes the module."""
zhangwenwei's avatar
zhangwenwei committed
921
        repr_str = self.__class__.__name__
922
        repr_str += f'(point_cloud_range={self.pcd_range.tolist()})'
zhangwenwei's avatar
zhangwenwei committed
923
        return repr_str
zhangwenwei's avatar
zhangwenwei committed
924
925


926
@TRANSFORMS.register_module()
927
class ObjectNameFilter(BaseTransform):
zhangwenwei's avatar
zhangwenwei committed
928
    """Filter GT objects by their names.
zhangwenwei's avatar
zhangwenwei committed
929

930
931
932
933
934
935
936
937
    Required Keys:

    - gt_labels_3d

    Modified Keys:

    - gt_labels_3d

zhangwenwei's avatar
zhangwenwei committed
938
    Args:
liyinhao's avatar
liyinhao committed
939
        classes (list[str]): List of class names to be kept for training.
zhangwenwei's avatar
zhangwenwei committed
940
941
    """

942
    def __init__(self, classes: List[str]) -> None:
zhangwenwei's avatar
zhangwenwei committed
943
944
945
        self.classes = classes
        self.labels = list(range(len(self.classes)))

946
947
    def transform(self, input_dict: dict) -> dict:
        """Transform function to filter objects by their names.
948
949
950
951
952

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
953
            dict: Results after filtering, 'gt_bboxes_3d', 'gt_labels_3d'
954
955
                keys are updated in the result dict.
        """
zhangwenwei's avatar
zhangwenwei committed
956
957
958
959
960
961
962
963
964
        gt_labels_3d = input_dict['gt_labels_3d']
        gt_bboxes_mask = np.array([n in self.labels for n in gt_labels_3d],
                                  dtype=np.bool_)
        input_dict['gt_bboxes_3d'] = input_dict['gt_bboxes_3d'][gt_bboxes_mask]
        input_dict['gt_labels_3d'] = input_dict['gt_labels_3d'][gt_bboxes_mask]

        return input_dict

    def __repr__(self):
965
        """str: Return a string that describes the module."""
zhangwenwei's avatar
zhangwenwei committed
966
967
968
        repr_str = self.__class__.__name__
        repr_str += f'(classes={self.classes})'
        return repr_str
wuyuefeng's avatar
wuyuefeng committed
969
970


971
972
@TRANSFORMS.register_module()
class PointSample(BaseTransform):
973
    """Point sample.
wuyuefeng's avatar
wuyuefeng committed
974
975
976

    Sampling data to a certain number.

977
    Required Keys:
978

979
980
981
982
983
    - points
    - pts_instance_mask (optional)
    - pts_semantic_mask (optional)

    Modified Keys:
984

985
986
987
988
    - points
    - pts_instance_mask (optional)
    - pts_semantic_mask (optional)

wuyuefeng's avatar
wuyuefeng committed
989
990
    Args:
        num_points (int): Number of points to be sampled.
991
        sample_range (float, optional): The range where to sample points.
992
993
994
995
            If not None, the points with depth larger than `sample_range` are
            prior to be sampled. Defaults to None.
        replace (bool, optional): Whether the sampling is with or without
            replacement. Defaults to False.
wuyuefeng's avatar
wuyuefeng committed
996
997
    """

998
999
    def __init__(self,
                 num_points: int,
1000
1001
                 sample_range: Optional[float] = None,
                 replace: bool = False) -> None:
wuyuefeng's avatar
wuyuefeng committed
1002
        self.num_points = num_points
1003
1004
1005
        self.sample_range = sample_range
        self.replace = replace

1006
1007
1008
1009
1010
1011
1012
1013
    def _points_random_sampling(
        self,
        points: BasePoints,
        num_samples: int,
        sample_range: Optional[float] = None,
        replace: bool = False,
        return_choices: bool = False
    ) -> Union[Tuple[BasePoints, np.ndarray], BasePoints]:
wuyuefeng's avatar
wuyuefeng committed
1014
1015
1016
1017
1018
        """Points random sampling.

        Sample points to a certain number.

        Args:
1019
            points (:obj:`BasePoints`): 3D Points.
wuyuefeng's avatar
wuyuefeng committed
1020
            num_samples (int): Number of samples to be sampled.
1021
            sample_range (float, optional): Indicating the range where the
1022
                points will be sampled. Defaults to None.
1023
            replace (bool, optional): Sampling with or without replacement.
1024
                Defaults to False.
1025
1026
            return_choices (bool, optional): Whether return choice.
                Defaults to False.
1027

wuyuefeng's avatar
wuyuefeng committed
1028
        Returns:
1029
1030
1031
            tuple[:obj:`BasePoints`, np.ndarray] | :obj:`BasePoints`:

                - points (:obj:`BasePoints`): 3D Points.
1032
                - choices (np.ndarray, optional): The generated random samples.
wuyuefeng's avatar
wuyuefeng committed
1033
        """
1034
        if not replace:
wuyuefeng's avatar
wuyuefeng committed
1035
            replace = (points.shape[0] < num_samples)
1036
1037
1038
        point_range = range(len(points))
        if sample_range is not None and not replace:
            # Only sampling the near points when len(points) >= num_samples
1039
            dist = np.linalg.norm(points.coord.numpy(), axis=1)
1040
1041
            far_inds = np.where(dist >= sample_range)[0]
            near_inds = np.where(dist < sample_range)[0]
1042
1043
1044
1045
            # in case there are too many far points
            if len(far_inds) > num_samples:
                far_inds = np.random.choice(
                    far_inds, num_samples, replace=False)
1046
1047
1048
1049
1050
1051
1052
            point_range = near_inds
            num_samples -= len(far_inds)
        choices = np.random.choice(point_range, num_samples, replace=replace)
        if sample_range is not None and not replace:
            choices = np.concatenate((far_inds, choices))
            # Shuffle points after sampling
            np.random.shuffle(choices)
wuyuefeng's avatar
wuyuefeng committed
1053
1054
1055
1056
1057
        if return_choices:
            return points[choices], choices
        else:
            return points[choices]

1058
    def transform(self, input_dict: dict) -> dict:
1059
        """Transform function to sample points to in indoor scenes.
1060
1061
1062

        Args:
            input_dict (dict): Result dict from loading pipeline.
1063

1064
        Returns:
1065
            dict: Results after sampling, 'points', 'pts_instance_mask'
1066
1067
                and 'pts_semantic_mask' keys are updated in the result dict.
        """
1068
        points = input_dict['points']
1069
1070
1071
1072
1073
1074
        points, choices = self._points_random_sampling(
            points,
            self.num_points,
            self.sample_range,
            self.replace,
            return_choices=True)
1075
        input_dict['points'] = points
1076

1077
1078
        pts_instance_mask = input_dict.get('pts_instance_mask', None)
        pts_semantic_mask = input_dict.get('pts_semantic_mask', None)
wuyuefeng's avatar
wuyuefeng committed
1079

1080
        if pts_instance_mask is not None:
wuyuefeng's avatar
wuyuefeng committed
1081
            pts_instance_mask = pts_instance_mask[choices]
1082
            input_dict['pts_instance_mask'] = pts_instance_mask
1083
1084
1085

        if pts_semantic_mask is not None:
            pts_semantic_mask = pts_semantic_mask[choices]
1086
            input_dict['pts_semantic_mask'] = pts_semantic_mask
wuyuefeng's avatar
wuyuefeng committed
1087

1088
        return input_dict
wuyuefeng's avatar
wuyuefeng committed
1089
1090

    def __repr__(self):
1091
        """str: Return a string that describes the module."""
wuyuefeng's avatar
wuyuefeng committed
1092
        repr_str = self.__class__.__name__
1093
        repr_str += f'(num_points={self.num_points},'
1094
1095
        repr_str += f' sample_range={self.sample_range},'
        repr_str += f' replace={self.replace})'
1096

1097
1098
1099
        return repr_str


1100
@TRANSFORMS.register_module()
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
class IndoorPointSample(PointSample):
    """Indoor point sample.

    Sampling data to a certain number.
    NOTE: IndoorPointSample is deprecated in favor of PointSample

    Args:
        num_points (int): Number of points to be sampled.
    """

    def __init__(self, *args, **kwargs):
        warnings.warn(
            'IndoorPointSample is deprecated in favor of PointSample')
        super(IndoorPointSample, self).__init__(*args, **kwargs)


1117
@TRANSFORMS.register_module()
ZCMax's avatar
ZCMax committed
1118
class IndoorPatchPointSample(BaseTransform):
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
    r"""Indoor point sample within a patch. Modified from `PointNet++ <https://
    github.com/charlesq34/pointnet2/blob/master/scannet/scannet_dataset.py>`_.

    Sampling data to a certain number for semantic segmentation.

    Args:
        num_points (int): Number of points to be sampled.
        block_size (float, optional): Size of a block to sample points from.
            Defaults to 1.5.
        sample_rate (float, optional): Stride used in sliding patch generation.
1129
1130
1131
            This parameter is unused in `IndoorPatchPointSample` and thus has
            been deprecated. We plan to remove it in the future.
            Defaults to None.
1132
1133
        ignore_index (int, optional): Label index that won't be used for the
            segmentation task. This is set in PointSegClassMapping as neg_cls.
1134
            If not None, will be used as a patch selection criterion.
1135
1136
1137
1138
1139
            Defaults to None.
        use_normalized_coord (bool, optional): Whether to use normalized xyz as
            additional features. Defaults to False.
        num_try (int, optional): Number of times to try if the patch selected
            is invalid. Defaults to 10.
1140
        enlarge_size (float, optional): Enlarge the sampled patch to
1141
            [-block_size / 2 - enlarge_size, block_size / 2 + enlarge_size] as
1142
            an augmentation. If None, set it as 0. Defaults to 0.2.
1143
        min_unique_num (int, optional): Minimum number of unique points
1144
1145
            the sampled patch should contain. If None, use PointNet++'s method
            to judge uniqueness. Defaults to None.
1146
1147
        eps (float, optional): A value added to patch boundary to guarantee
            points coverage. Defaults to 1e-2.
1148
1149
1150
1151
1152
1153

    Note:
        This transform should only be used in the training process of point
            cloud segmentation tasks. For the sliding patch generation and
            inference process in testing, please refer to the `slide_inference`
            function of `EncoderDecoder3D` class.
1154
1155
1156
    """

    def __init__(self,
ZCMax's avatar
ZCMax committed
1157
1158
1159
1160
1161
1162
1163
1164
1165
                 num_points: int,
                 block_size: float = 1.5,
                 sample_rate: Optional[float] = None,
                 ignore_index: Optional[int] = None,
                 use_normalized_coord: bool = False,
                 num_try: int = 10,
                 enlarge_size: float = 0.2,
                 min_unique_num: Optional[int] = None,
                 eps: float = 1e-2) -> None:
1166
1167
1168
1169
1170
        self.num_points = num_points
        self.block_size = block_size
        self.ignore_index = ignore_index
        self.use_normalized_coord = use_normalized_coord
        self.num_try = num_try
1171
        self.enlarge_size = enlarge_size if enlarge_size is not None else 0.0
1172
        self.min_unique_num = min_unique_num
1173
        self.eps = eps
1174
1175
1176
1177
1178

        if sample_rate is not None:
            warnings.warn(
                "'sample_rate' has been deprecated and will be removed in "
                'the future. Please remove them from your code.')
1179

ZCMax's avatar
ZCMax committed
1180
1181
1182
1183
    def _input_generation(self, coords: np.ndarray, patch_center: np.ndarray,
                          coord_max: np.ndarray, attributes: np.ndarray,
                          attribute_dims: dict,
                          point_type: type) -> BasePoints:
1184
1185
        """Generating model input.

1186
        Generate input by subtracting patch center and adding additional
1187
1188
1189
1190
1191
1192
1193
1194
1195
            features. Currently support colors and normalized xyz as features.

        Args:
            coords (np.ndarray): Sampled 3D Points.
            patch_center (np.ndarray): Center coordinate of the selected patch.
            coord_max (np.ndarray): Max coordinate of all 3D Points.
            attributes (np.ndarray): features of input points.
            attribute_dims (dict): Dictionary to indicate the meaning of extra
                dimension.
1196
            point_type (type): class of input points inherited from BasePoints.
1197
1198

        Returns:
1199
            :obj:`BasePoints`: The generated input data.
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
        """
        # subtract patch center, the z dimension is not centered
        centered_coords = coords.copy()
        centered_coords[:, 0] -= patch_center[0]
        centered_coords[:, 1] -= patch_center[1]

        if self.use_normalized_coord:
            normalized_coord = coords / coord_max
            attributes = np.concatenate([attributes, normalized_coord], axis=1)
            if attribute_dims is None:
                attribute_dims = dict()
            attribute_dims.update(
                dict(normalized_coord=[
                    attributes.shape[1], attributes.shape[1] +
                    1, attributes.shape[1] + 2
                ]))

        points = np.concatenate([centered_coords, attributes], axis=1)
        points = point_type(
            points, points_dim=points.shape[1], attribute_dims=attribute_dims)

        return points

1223
    def _patch_points_sampling(
1224
1225
            self, points: BasePoints,
            sem_mask: np.ndarray) -> Tuple[BasePoints, np.ndarray]:
1226
1227
1228
1229
1230
1231
        """Patch points sampling.

        First sample a valid patch.
        Then sample points within that patch to a certain number.

        Args:
1232
            points (:obj:`BasePoints`): 3D Points.
1233
1234
1235
            sem_mask (np.ndarray): semantic segmentation mask for input points.

        Returns:
1236
            tuple[:obj:`BasePoints`, np.ndarray]:
1237

1238
                - points (:obj:`BasePoints`): 3D Points.
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
                - choices (np.ndarray): The generated random samples.
        """
        coords = points.coord.numpy()
        attributes = points.tensor[:, 3:].numpy()
        attribute_dims = points.attribute_dims
        point_type = type(points)

        coord_max = np.amax(coords, axis=0)
        coord_min = np.amin(coords, axis=0)

1249
        for _ in range(self.num_try):
1250
1251
1252
            # random sample a point as patch center
            cur_center = coords[np.random.choice(coords.shape[0])]

1253
1254
            # boundary of a patch, which would be enlarged by
            # `self.enlarge_size` as an augmentation
1255
1256
1257
1258
1259
1260
1261
            cur_max = cur_center + np.array(
                [self.block_size / 2.0, self.block_size / 2.0, 0.0])
            cur_min = cur_center - np.array(
                [self.block_size / 2.0, self.block_size / 2.0, 0.0])
            cur_max[2] = coord_max[2]
            cur_min[2] = coord_min[2]
            cur_choice = np.sum(
1262
1263
                (coords >= (cur_min - self.enlarge_size)) *
                (coords <= (cur_max + self.enlarge_size)),
1264
1265
1266
1267
1268
1269
1270
                axis=1) == 3

            if not cur_choice.any():  # no points in this patch
                continue

            cur_coords = coords[cur_choice, :]
            cur_sem_mask = sem_mask[cur_choice]
1271
            point_idxs = np.where(cur_choice)[0]
1272
            mask = np.sum(
1273
1274
                (cur_coords >= (cur_min - self.eps)) * (cur_coords <=
                                                        (cur_max + self.eps)),
1275
                axis=1) == 3
1276

1277
1278
            # two criteria for patch sampling, adopted from PointNet++
            # 1. selected patch should contain enough unique points
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
            if self.min_unique_num is None:
                # use PointNet++'s method as default
                # [31, 31, 62] are just some big values used to transform
                # coords from 3d array to 1d and then check their uniqueness
                # this is used in all the ScanNet code following PointNet++
                vidx = np.ceil(
                    (cur_coords[mask, :] - cur_min) / (cur_max - cur_min) *
                    np.array([31.0, 31.0, 62.0]))
                vidx = np.unique(vidx[:, 0] * 31.0 * 62.0 + vidx[:, 1] * 62.0 +
                                 vidx[:, 2])
                flag1 = len(vidx) / 31.0 / 31.0 / 62.0 >= 0.02
            else:
1291
                # if `min_unique_num` is provided, directly compare with it
1292
                flag1 = mask.sum() >= self.min_unique_num
1293

1294
            # 2. selected patch should contain enough annotated points
1295
1296
1297
1298
1299
1300
1301
1302
1303
            if self.ignore_index is None:
                flag2 = True
            else:
                flag2 = np.sum(cur_sem_mask != self.ignore_index) / \
                               len(cur_sem_mask) >= 0.7

            if flag1 and flag2:
                break

1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
        # sample idx to `self.num_points`
        if point_idxs.size >= self.num_points:
            # no duplicate in sub-sampling
            choices = np.random.choice(
                point_idxs, self.num_points, replace=False)
        else:
            # do not use random choice here to avoid some points not counted
            dup = np.random.choice(point_idxs.size,
                                   self.num_points - point_idxs.size)
            idx_dup = np.concatenate(
                [np.arange(point_idxs.size),
                 np.array(dup)], 0)
            choices = point_idxs[idx_dup]
1317
1318
1319
1320
1321
1322
1323
1324

        # construct model input
        points = self._input_generation(coords[choices], cur_center, coord_max,
                                        attributes[choices], attribute_dims,
                                        point_type)

        return points, choices

ZCMax's avatar
ZCMax committed
1325
    def transform(self, input_dict: dict) -> dict:
1326
1327
1328
1329
1330
1331
        """Call function to sample points to in indoor scenes.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
1332
            dict: Results after sampling, 'points', 'pts_instance_mask'
1333
1334
                and 'pts_semantic_mask' keys are updated in the result dict.
        """
ZCMax's avatar
ZCMax committed
1335
        points = input_dict['points']
1336

ZCMax's avatar
ZCMax committed
1337
        assert 'pts_semantic_mask' in input_dict.keys(), \
1338
            'semantic mask should be provided in training and evaluation'
ZCMax's avatar
ZCMax committed
1339
        pts_semantic_mask = input_dict['pts_semantic_mask']
1340
1341
1342
1343

        points, choices = self._patch_points_sampling(points,
                                                      pts_semantic_mask)

ZCMax's avatar
ZCMax committed
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
        input_dict['points'] = points
        input_dict['pts_semantic_mask'] = pts_semantic_mask[choices]

        # 'eval_ann_info' will be passed to evaluator
        if 'eval_ann_info' in input_dict:
            input_dict['eval_ann_info']['pts_semantic_mask'] = \
                pts_semantic_mask[choices]

        pts_instance_mask = input_dict.get('pts_instance_mask', None)

1354
        if pts_instance_mask is not None:
ZCMax's avatar
ZCMax committed
1355
1356
1357
1358
1359
            input_dict['pts_instance_mask'] = pts_instance_mask[choices]
            # 'eval_ann_info' will be passed to evaluator
            if 'eval_ann_info' in input_dict:
                input_dict['eval_ann_info']['pts_instance_mask'] = \
                    pts_instance_mask[choices]
1360

ZCMax's avatar
ZCMax committed
1361
        return input_dict
1362
1363
1364
1365
1366
1367
1368
1369

    def __repr__(self):
        """str: Return a string that describes the module."""
        repr_str = self.__class__.__name__
        repr_str += f'(num_points={self.num_points},'
        repr_str += f' block_size={self.block_size},'
        repr_str += f' ignore_index={self.ignore_index},'
        repr_str += f' use_normalized_coord={self.use_normalized_coord},'
1370
1371
        repr_str += f' num_try={self.num_try},'
        repr_str += f' enlarge_size={self.enlarge_size},'
1372
1373
        repr_str += f' min_unique_num={self.min_unique_num},'
        repr_str += f' eps={self.eps})'
wuyuefeng's avatar
wuyuefeng committed
1374
        return repr_str
1375
1376


1377
@TRANSFORMS.register_module()
ZCMax's avatar
ZCMax committed
1378
class BackgroundPointsFilter(BaseTransform):
1379
1380
1381
1382
1383
1384
    """Filter background points near the bounding box.

    Args:
        bbox_enlarge_range (tuple[float], float): Bbox enlarge range.
    """

ZCMax's avatar
ZCMax committed
1385
    def __init__(self, bbox_enlarge_range: Union[Tuple[float], float]) -> None:
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
        assert (is_tuple_of(bbox_enlarge_range, float)
                and len(bbox_enlarge_range) == 3) \
            or isinstance(bbox_enlarge_range, float), \
            f'Invalid arguments bbox_enlarge_range {bbox_enlarge_range}'

        if isinstance(bbox_enlarge_range, float):
            bbox_enlarge_range = [bbox_enlarge_range] * 3
        self.bbox_enlarge_range = np.array(
            bbox_enlarge_range, dtype=np.float32)[np.newaxis, :]

ZCMax's avatar
ZCMax committed
1396
    def transform(self, input_dict: dict) -> dict:
1397
1398
1399
1400
1401
1402
        """Call function to filter points by the range.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
1403
            dict: Results after filtering, 'points', 'pts_instance_mask'
1404
                and 'pts_semantic_mask' keys are updated in the result dict.
1405
1406
1407
1408
        """
        points = input_dict['points']
        gt_bboxes_3d = input_dict['gt_bboxes_3d']

xiliu8006's avatar
xiliu8006 committed
1409
1410
1411
1412
        # avoid groundtruth being modified
        gt_bboxes_3d_np = gt_bboxes_3d.tensor.clone().numpy()
        gt_bboxes_3d_np[:, :3] = gt_bboxes_3d.gravity_center.clone().numpy()

1413
1414
        enlarged_gt_bboxes_3d = gt_bboxes_3d_np.copy()
        enlarged_gt_bboxes_3d[:, 3:6] += self.bbox_enlarge_range
xiliu8006's avatar
xiliu8006 committed
1415
        points_numpy = points.tensor.clone().numpy()
1416
1417
        foreground_masks = box_np_ops.points_in_rbbox(
            points_numpy, gt_bboxes_3d_np, origin=(0.5, 0.5, 0.5))
1418
        enlarge_foreground_masks = box_np_ops.points_in_rbbox(
1419
            points_numpy, enlarged_gt_bboxes_3d, origin=(0.5, 0.5, 0.5))
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
        foreground_masks = foreground_masks.max(1)
        enlarge_foreground_masks = enlarge_foreground_masks.max(1)
        valid_masks = ~np.logical_and(~foreground_masks,
                                      enlarge_foreground_masks)

        input_dict['points'] = points[valid_masks]
        pts_instance_mask = input_dict.get('pts_instance_mask', None)
        if pts_instance_mask is not None:
            input_dict['pts_instance_mask'] = pts_instance_mask[valid_masks]

        pts_semantic_mask = input_dict.get('pts_semantic_mask', None)
        if pts_semantic_mask is not None:
            input_dict['pts_semantic_mask'] = pts_semantic_mask[valid_masks]
        return input_dict

    def __repr__(self):
        """str: Return a string that describes the module."""
        repr_str = self.__class__.__name__
1438
        repr_str += f'(bbox_enlarge_range={self.bbox_enlarge_range.tolist()})'
1439
        return repr_str
1440
1441


1442
@TRANSFORMS.register_module()
1443
class VoxelBasedPointSampler(BaseTransform):
1444
1445
1446
1447
1448
1449
1450
    """Voxel based point sampler.

    Apply voxel sampling to multiple sweep points.

    Args:
        cur_sweep_cfg (dict): Config for sampling current points.
        prev_sweep_cfg (dict): Config for sampling previous points.
1451
        time_dim (int): Index that indicate the time dimension
1452
1453
1454
            for input points.
    """

1455
1456
1457
1458
    def __init__(self,
                 cur_sweep_cfg: dict,
                 prev_sweep_cfg: Optional[dict] = None,
                 time_dim: int = 3) -> None:
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
        self.cur_voxel_generator = VoxelGenerator(**cur_sweep_cfg)
        self.cur_voxel_num = self.cur_voxel_generator._max_voxels
        self.time_dim = time_dim
        if prev_sweep_cfg is not None:
            assert prev_sweep_cfg['max_num_points'] == \
                cur_sweep_cfg['max_num_points']
            self.prev_voxel_generator = VoxelGenerator(**prev_sweep_cfg)
            self.prev_voxel_num = self.prev_voxel_generator._max_voxels
        else:
            self.prev_voxel_generator = None
            self.prev_voxel_num = 0

1471
    def _sample_points(self, points: np.ndarray, sampler: VoxelGenerator,
1472
                       point_dim: int) -> np.ndarray:
1473
1474
1475
1476
1477
1478
        """Sample points for each points subset.

        Args:
            points (np.ndarray): Points subset to be sampled.
            sampler (VoxelGenerator): Voxel based sampler for
                each points subset.
1479
            point_dim (int): The dimension of each points
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497

        Returns:
            np.ndarray: Sampled points.
        """
        voxels, coors, num_points_per_voxel = sampler.generate(points)
        if voxels.shape[0] < sampler._max_voxels:
            padding_points = np.zeros([
                sampler._max_voxels - voxels.shape[0], sampler._max_num_points,
                point_dim
            ],
                                      dtype=points.dtype)
            padding_points[:] = voxels[0]
            sample_points = np.concatenate([voxels, padding_points], axis=0)
        else:
            sample_points = voxels

        return sample_points

1498
    def transform(self, results: dict) -> dict:
1499
1500
1501
1502
1503
1504
        """Call function to sample points from multiple sweeps.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
1505
            dict: Results after sampling, 'points', 'pts_instance_mask'
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
                and 'pts_semantic_mask' keys are updated in the result dict.
        """
        points = results['points']
        original_dim = points.shape[1]

        # TODO: process instance and semantic mask while _max_num_points
        # is larger than 1
        # Extend points with seg and mask fields
        map_fields2dim = []
        start_dim = original_dim
1516
1517
        points_numpy = points.tensor.numpy()
        extra_channel = [points_numpy]
1518
1519
1520
1521
1522
1523
1524
1525
1526
        for idx, key in enumerate(results['pts_mask_fields']):
            map_fields2dim.append((key, idx + start_dim))
            extra_channel.append(results[key][..., None])

        start_dim += len(results['pts_mask_fields'])
        for idx, key in enumerate(results['pts_seg_fields']):
            map_fields2dim.append((key, idx + start_dim))
            extra_channel.append(results[key][..., None])

1527
        points_numpy = np.concatenate(extra_channel, axis=-1)
1528
1529
1530
1531
1532

        # Split points into two part, current sweep points and
        # previous sweeps points.
        # TODO: support different sampling methods for next sweeps points
        # and previous sweeps points.
1533
1534
1535
        cur_points_flag = (points_numpy[:, self.time_dim] == 0)
        cur_sweep_points = points_numpy[cur_points_flag]
        prev_sweeps_points = points_numpy[~cur_points_flag]
1536
1537
1538
1539
1540
1541
1542
1543
1544
        if prev_sweeps_points.shape[0] == 0:
            prev_sweeps_points = cur_sweep_points

        # Shuffle points before sampling
        np.random.shuffle(cur_sweep_points)
        np.random.shuffle(prev_sweeps_points)

        cur_sweep_points = self._sample_points(cur_sweep_points,
                                               self.cur_voxel_generator,
1545
                                               points_numpy.shape[1])
1546
1547
1548
        if self.prev_voxel_generator is not None:
            prev_sweeps_points = self._sample_points(prev_sweeps_points,
                                                     self.prev_voxel_generator,
1549
                                                     points_numpy.shape[1])
1550

1551
1552
            points_numpy = np.concatenate(
                [cur_sweep_points, prev_sweeps_points], 0)
1553
        else:
1554
            points_numpy = cur_sweep_points
1555
1556

        if self.cur_voxel_generator._max_num_points == 1:
1557
1558
            points_numpy = points_numpy.squeeze(1)
        results['points'] = points.new_point(points_numpy[..., :original_dim])
1559

1560
        # Restore the corresponding seg and mask fields
1561
        for key, dim_index in map_fields2dim:
1562
            results[key] = points_numpy[..., dim_index]
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585

        return results

    def __repr__(self):
        """str: Return a string that describes the module."""

        def _auto_indent(repr_str, indent):
            repr_str = repr_str.split('\n')
            repr_str = [' ' * indent + t + '\n' for t in repr_str]
            repr_str = ''.join(repr_str)[:-1]
            return repr_str

        repr_str = self.__class__.__name__
        indent = 4
        repr_str += '(\n'
        repr_str += ' ' * indent + f'num_cur_sweep={self.cur_voxel_num},\n'
        repr_str += ' ' * indent + f'num_prev_sweep={self.prev_voxel_num},\n'
        repr_str += ' ' * indent + f'time_dim={self.time_dim},\n'
        repr_str += ' ' * indent + 'cur_voxel_generator=\n'
        repr_str += f'{_auto_indent(repr(self.cur_voxel_generator), 8)},\n'
        repr_str += ' ' * indent + 'prev_voxel_generator=\n'
        repr_str += f'{_auto_indent(repr(self.prev_voxel_generator), 8)})'
        return repr_str
1586
1587


1588
@TRANSFORMS.register_module()
ZCMax's avatar
ZCMax committed
1589
class AffineResize(BaseTransform):
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
    """Get the affine transform matrices to the target size.

    Different from :class:`RandomAffine` in MMDetection, this class can
    calculate the affine transform matrices while resizing the input image
    to a fixed size. The affine transform matrices include: 1) matrix
    transforming original image to the network input image size. 2) matrix
    transforming original image to the network output feature map size.

    Args:
        img_scale (tuple): Images scales for resizing.
        down_ratio (int): The down ratio of feature map.
            Actually the arg should be >= 1.
        bbox_clip_border (bool, optional): Whether clip the objects
            outside the border of the image. Defaults to True.
    """

ZCMax's avatar
ZCMax committed
1606
1607
1608
1609
    def __init__(self,
                 img_scale: Tuple,
                 down_ratio: int,
                 bbox_clip_border: bool = True) -> None:
1610
1611
1612
1613
1614

        self.img_scale = img_scale
        self.down_ratio = down_ratio
        self.bbox_clip_border = bbox_clip_border

ZCMax's avatar
ZCMax committed
1615
    def transform(self, results: dict) -> dict:
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
        """Call function to do affine transform to input image and labels.

        Args:
            results (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after affine resize, 'affine_aug', 'trans_mat'
                keys are added in the result dict.
        """
        # The results have gone through RandomShiftScale before AffineResize
        if 'center' not in results:
            img = results['img']
            height, width = img.shape[:2]
            center = np.array([width / 2, height / 2], dtype=np.float32)
            size = np.array([width, height], dtype=np.float32)
            results['affine_aug'] = False
        else:
            # The results did not go through RandomShiftScale before
            # AffineResize
            img = results['img']
            center = results['center']
            size = results['size']

        trans_affine = self._get_transform_matrix(center, size, self.img_scale)

        img = cv2.warpAffine(img, trans_affine[:2, :], self.img_scale)

        if isinstance(self.down_ratio, tuple):
            trans_mat = [
                self._get_transform_matrix(
                    center, size,
                    (self.img_scale[0] // ratio, self.img_scale[1] // ratio))
                for ratio in self.down_ratio
            ]  # (3, 3)
        else:
            trans_mat = self._get_transform_matrix(
                center, size, (self.img_scale[0] // self.down_ratio,
                               self.img_scale[1] // self.down_ratio))

        results['img'] = img
        results['img_shape'] = img.shape
        results['pad_shape'] = img.shape
        results['trans_mat'] = trans_mat

ZCMax's avatar
ZCMax committed
1660
1661
        if 'gt_bboxes' in results:
            self._affine_bboxes(results, trans_affine)
1662

ZCMax's avatar
ZCMax committed
1663
1664
        if 'centers_2d' in results:
            centers2d = self._affine_transform(results['centers_2d'],
1665
1666
1667
1668
1669
                                               trans_affine)
            valid_index = (centers2d[:, 0] >
                           0) & (centers2d[:, 0] <
                                 self.img_scale[0]) & (centers2d[:, 1] > 0) & (
                                     centers2d[:, 1] < self.img_scale[1])
ZCMax's avatar
ZCMax committed
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
            results['centers_2d'] = centers2d[valid_index]

            if 'gt_bboxes' in results:
                results['gt_bboxes'] = results['gt_bboxes'][valid_index]
                if 'gt_labels' in results:
                    results['gt_labels'] = results['gt_labels'][valid_index]
                if 'gt_masks' in results:
                    raise NotImplementedError(
                        'AffineResize only supports bbox.')

            if 'gt_bboxes_3d' in results:
                results['gt_bboxes_3d'].tensor = results[
                    'gt_bboxes_3d'].tensor[valid_index]
                if 'gt_labels_3d' in results:
                    results['gt_labels_3d'] = results['gt_labels_3d'][
                        valid_index]
1686
1687
1688
1689
1690

            results['depths'] = results['depths'][valid_index]

        return results

ZCMax's avatar
ZCMax committed
1691
    def _affine_bboxes(self, results: dict, matrix: np.ndarray) -> None:
1692
1693
1694
1695
1696
1697
1698
1699
1700
        """Affine transform bboxes to input image.

        Args:
            results (dict): Result dict from loading pipeline.
            matrix (np.ndarray): Matrix transforming original
                image to the network input image size.
                shape: (3, 3)
        """

ZCMax's avatar
ZCMax committed
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
        bboxes = results['gt_bboxes']
        bboxes[:, :2] = self._affine_transform(bboxes[:, :2], matrix)
        bboxes[:, 2:] = self._affine_transform(bboxes[:, 2:], matrix)
        if self.bbox_clip_border:
            bboxes[:, [0, 2]] = bboxes[:, [0, 2]].clip(0,
                                                       self.img_scale[0] - 1)
            bboxes[:, [1, 3]] = bboxes[:, [1, 3]].clip(0,
                                                       self.img_scale[1] - 1)
        results['gt_bboxes'] = bboxes

    def _affine_transform(self, points: np.ndarray,
                          matrix: np.ndarray) -> np.ndarray:
1713
        """Affine transform bbox points to input image.
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730

        Args:
            points (np.ndarray): Points to be transformed.
                shape: (N, 2)
            matrix (np.ndarray): Affine transform matrix.
                shape: (3, 3)

        Returns:
            np.ndarray: Transformed points.
        """
        num_points = points.shape[0]
        hom_points_2d = np.concatenate((points, np.ones((num_points, 1))),
                                       axis=1)
        hom_points_2d = hom_points_2d.T
        affined_points = np.matmul(matrix, hom_points_2d).T
        return affined_points[:, :2]

ZCMax's avatar
ZCMax committed
1731
1732
    def _get_transform_matrix(self, center: Tuple, scale: Tuple,
                              output_scale: Tuple[float]) -> np.ndarray:
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
        """Get affine transform matrix.

        Args:
            center (tuple): Center of current image.
            scale (tuple): Scale of current image.
            output_scale (tuple[float]): The transform target image scales.

        Returns:
            np.ndarray: Affine transform matrix.
        """
        # TODO: further add rot and shift here.
        src_w = scale[0]
        dst_w = output_scale[0]
        dst_h = output_scale[1]

        src_dir = np.array([0, src_w * -0.5])
        dst_dir = np.array([0, dst_w * -0.5])

        src = np.zeros((3, 2), dtype=np.float32)
        dst = np.zeros((3, 2), dtype=np.float32)
        src[0, :] = center
        src[1, :] = center + src_dir
        dst[0, :] = np.array([dst_w * 0.5, dst_h * 0.5])
        dst[1, :] = np.array([dst_w * 0.5, dst_h * 0.5]) + dst_dir

        src[2, :] = self._get_ref_point(src[0, :], src[1, :])
        dst[2, :] = self._get_ref_point(dst[0, :], dst[1, :])

        get_matrix = cv2.getAffineTransform(src, dst)

        matrix = np.concatenate((get_matrix, [[0., 0., 1.]]))

        return matrix.astype(np.float32)

ZCMax's avatar
ZCMax committed
1767
1768
    def _get_ref_point(self, ref_point1: np.ndarray,
                       ref_point2: np.ndarray) -> np.ndarray:
1769
        """Get reference point to calculate affine transform matrix.
1770
1771

        While using opencv to calculate the affine matrix, we need at least
1772
        three corresponding points separately on original image and target
1773
1774
1775
1776
1777
1778
1779
        image. Here we use two points to get the the third reference point.
        """
        d = ref_point1 - ref_point2
        ref_point3 = ref_point2 + np.array([-d[1], d[0]])
        return ref_point3

    def __repr__(self):
1780
        """str: Return a string that describes the module."""
1781
1782
1783
1784
1785
1786
        repr_str = self.__class__.__name__
        repr_str += f'(img_scale={self.img_scale}, '
        repr_str += f'down_ratio={self.down_ratio}) '
        return repr_str


1787
@TRANSFORMS.register_module()
ZCMax's avatar
ZCMax committed
1788
class RandomShiftScale(BaseTransform):
1789
1790
1791
1792
    """Random shift scale.

    Different from the normal shift and scale function, it doesn't
    directly shift or scale image. It can record the shift and scale
1793
    infos into loading TRANSFORMS. It's designed to be used with
1794
1795
1796
1797
1798
1799
1800
    AffineResize together.

    Args:
        shift_scale (tuple[float]): Shift and scale range.
        aug_prob (float): The shifting and scaling probability.
    """

1801
    def __init__(self, shift_scale: Tuple[float], aug_prob: float) -> None:
1802
1803
1804
1805

        self.shift_scale = shift_scale
        self.aug_prob = aug_prob

ZCMax's avatar
ZCMax committed
1806
    def transform(self, results: dict) -> dict:
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
        """Call function to record random shift and scale infos.

        Args:
            results (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after random shift and scale, 'center', 'size'
                and 'affine_aug' keys are added in the result dict.
        """
        img = results['img']

        height, width = img.shape[:2]

        center = np.array([width / 2, height / 2], dtype=np.float32)
        size = np.array([width, height], dtype=np.float32)

        if random.random() < self.aug_prob:
            shift, scale = self.shift_scale[0], self.shift_scale[1]
            shift_ranges = np.arange(-shift, shift + 0.1, 0.1)
            center[0] += size[0] * random.choice(shift_ranges)
            center[1] += size[1] * random.choice(shift_ranges)
            scale_ranges = np.arange(1 - scale, 1 + scale + 0.1, 0.1)
            size *= random.choice(scale_ranges)
            results['affine_aug'] = True
        else:
            results['affine_aug'] = False

        results['center'] = center
        results['size'] = size

        return results

    def __repr__(self):
1840
        """str: Return a string that describes the module."""
1841
1842
1843
1844
        repr_str = self.__class__.__name__
        repr_str += f'(shift_scale={self.shift_scale}, '
        repr_str += f'aug_prob={self.aug_prob}) '
        return repr_str