test_kitti_dataset.py 19.6 KB
Newer Older
dingchang's avatar
dingchang committed
1
# Copyright (c) OpenMMLab. All rights reserved.
2
import math
xiliu8006's avatar
xiliu8006 committed
3
4
import os
import tempfile
5
6
7

import numpy as np
import pytest
yinchimaoliang's avatar
yinchimaoliang committed
8
9
import torch

10
from mmdet3d.core.bbox import LiDARInstance3DBoxes, limit_period
yinchimaoliang's avatar
yinchimaoliang committed
11
12
13
from mmdet3d.datasets import KittiDataset


xiliu8006's avatar
xiliu8006 committed
14
def _generate_kitti_dataset_config():
yinchimaoliang's avatar
yinchimaoliang committed
15
16
17
18
    data_root = 'tests/data/kitti'
    ann_file = 'tests/data/kitti/kitti_infos_train.pkl'
    classes = ['Pedestrian', 'Cyclist', 'Car']
    pts_prefix = 'velodyne_reduced'
xiliu8006's avatar
xiliu8006 committed
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
    pipeline = [
        dict(
            type='LoadPointsFromFile',
            coord_type='LIDAR',
            load_dim=4,
            use_dim=4,
            file_client_args=dict(backend='disk')),
        dict(
            type='MultiScaleFlipAug3D',
            img_scale=(1333, 800),
            pts_scale_ratio=1,
            flip=False,
            transforms=[
                dict(
                    type='GlobalRotScaleTrans',
                    rot_range=[0, 0],
                    scale_ratio_range=[1.0, 1.0],
                    translation_std=[0, 0, 0]),
                dict(type='RandomFlip3D'),
                dict(
                    type='PointsRangeFilter',
                    point_cloud_range=[0, -40, -3, 70.4, 40, 1]),
                dict(
                    type='DefaultFormatBundle3D',
43
                    class_names=classes,
xiliu8006's avatar
xiliu8006 committed
44
45
46
47
48
                    with_label=False),
                dict(type='Collect3D', keys=['points'])
            ])
    ]
    modality = dict(use_lidar=True, use_camera=False)
yinchimaoliang's avatar
yinchimaoliang committed
49
    split = 'training'
xiliu8006's avatar
xiliu8006 committed
50
51
52
    return data_root, ann_file, classes, pts_prefix, pipeline, modality, split


53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
def _generate_kitti_multi_modality_dataset_config():
    data_root = 'tests/data/kitti'
    ann_file = 'tests/data/kitti/kitti_infos_train.pkl'
    classes = ['Pedestrian', 'Cyclist', 'Car']
    pts_prefix = 'velodyne_reduced'
    img_norm_cfg = dict(
        mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False)
    pipeline = [
        dict(
            type='LoadPointsFromFile',
            coord_type='LIDAR',
            load_dim=4,
            use_dim=4,
            file_client_args=dict(backend='disk')),
        dict(type='LoadImageFromFile'),
        dict(
            type='MultiScaleFlipAug3D',
            img_scale=(1333, 800),
            pts_scale_ratio=1,
            flip=False,
            transforms=[
                dict(type='Resize', multiscale_mode='value', keep_ratio=True),
                dict(
                    type='GlobalRotScaleTrans',
                    rot_range=[0, 0],
                    scale_ratio_range=[1., 1.],
                    translation_std=[0, 0, 0]),
                dict(type='RandomFlip3D'),
                dict(type='Normalize', **img_norm_cfg),
                dict(type='Pad', size_divisor=32),
                dict(
                    type='PointsRangeFilter',
                    point_cloud_range=[0, -40, -3, 70.4, 40, 1]),
                dict(
                    type='DefaultFormatBundle3D',
                    class_names=classes,
                    with_label=False),
                dict(type='Collect3D', keys=['points', 'img'])
            ])
    ]
    modality = dict(use_lidar=True, use_camera=True)
    split = 'training'
    return data_root, ann_file, classes, pts_prefix, pipeline, modality, split


xiliu8006's avatar
xiliu8006 committed
98
99
def test_getitem():
    np.random.seed(0)
100
101
    data_root, ann_file, classes, pts_prefix, \
        _, modality, split = _generate_kitti_dataset_config()
xiliu8006's avatar
xiliu8006 committed
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
    pipeline = [
        dict(
            type='LoadPointsFromFile',
            coord_type='LIDAR',
            load_dim=4,
            use_dim=4,
            file_client_args=dict(backend='disk')),
        dict(
            type='LoadAnnotations3D',
            with_bbox_3d=True,
            with_label_3d=True,
            file_client_args=dict(backend='disk')),
        dict(
            type='ObjectSample',
            db_sampler=dict(
                data_root='tests/data/kitti/',
118
                # in coordinate system refactor, this test file is modified
xiliu8006's avatar
xiliu8006 committed
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
                info_path='tests/data/kitti/kitti_dbinfos_train.pkl',
                rate=1.0,
                prepare=dict(
                    filter_by_difficulty=[-1],
                    filter_by_min_points=dict(Pedestrian=10)),
                classes=['Pedestrian', 'Cyclist', 'Car'],
                sample_groups=dict(Pedestrian=6))),
        dict(
            type='ObjectNoise',
            num_try=100,
            translation_std=[1.0, 1.0, 0.5],
            global_rot_range=[0.0, 0.0],
            rot_range=[-0.78539816, 0.78539816]),
        dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5),
        dict(
            type='GlobalRotScaleTrans',
            rot_range=[-0.78539816, 0.78539816],
            scale_ratio_range=[0.95, 1.05]),
        dict(
            type='PointsRangeFilter',
            point_cloud_range=[0, -40, -3, 70.4, 40, 1]),
        dict(
            type='ObjectRangeFilter',
            point_cloud_range=[0, -40, -3, 70.4, 40, 1]),
        dict(type='PointShuffle'),
        dict(
            type='DefaultFormatBundle3D',
            class_names=['Pedestrian', 'Cyclist', 'Car']),
        dict(
            type='Collect3D', keys=['points', 'gt_bboxes_3d', 'gt_labels_3d'])
    ]
150
151
152
    kitti_dataset = KittiDataset(data_root, ann_file, split, pts_prefix,
                                 pipeline, classes, modality)
    data = kitti_dataset[0]
yinchimaoliang's avatar
yinchimaoliang committed
153
154
155
156
    points = data['points']._data
    gt_bboxes_3d = data['gt_bboxes_3d']._data
    gt_labels_3d = data['gt_labels_3d']._data
    expected_gt_bboxes_3d = torch.tensor(
157
        [[9.5081, -5.2269, -1.1370, 1.2288, 0.4915, 1.9353, 1.9988]])
yinchimaoliang's avatar
yinchimaoliang committed
158
    expected_gt_labels_3d = torch.tensor([0])
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
    rot_matrix = data['img_metas']._data['pcd_rotation']
    rot_angle = data['img_metas']._data['pcd_rotation_angle']
    horizontal_flip = data['img_metas']._data['pcd_horizontal_flip']
    vertical_flip = data['img_metas']._data['pcd_vertical_flip']
    expected_rot_matrix = torch.tensor([[0.8018, 0.5976, 0.0000],
                                        [-0.5976, 0.8018, 0.0000],
                                        [0.0000, 0.0000, 1.0000]])
    expected_rot_angle = 0.6404654291602163
    noise_angle = 0.20247319
    assert torch.allclose(expected_rot_matrix, rot_matrix, atol=1e-4)
    assert math.isclose(expected_rot_angle, rot_angle, abs_tol=1e-4)
    assert horizontal_flip is True
    assert vertical_flip is False

    # after coord system refactor
    expected_gt_bboxes_3d[:, :3] = \
        expected_gt_bboxes_3d[:, :3] @ rot_matrix @ rot_matrix
    expected_gt_bboxes_3d[:, -1:] = -np.pi - expected_gt_bboxes_3d[:, -1:] \
        + 2 * rot_angle - 2 * noise_angle
    expected_gt_bboxes_3d[:, -1:] = limit_period(
        expected_gt_bboxes_3d[:, -1:], period=np.pi * 2)
yinchimaoliang's avatar
yinchimaoliang committed
180
181
182
183
184
    assert points.shape == (780, 4)
    assert torch.allclose(
        gt_bboxes_3d.tensor, expected_gt_bboxes_3d, atol=1e-4)
    assert torch.all(gt_labels_3d == expected_gt_labels_3d)

185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
    # test multi-modality KITTI dataset
    np.random.seed(0)
    point_cloud_range = [0, -40, -3, 70.4, 40, 1]
    img_norm_cfg = dict(
        mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False)
    multi_modality_pipeline = [
        dict(
            type='LoadPointsFromFile',
            coord_type='LIDAR',
            load_dim=4,
            use_dim=4),
        dict(type='LoadImageFromFile'),
        dict(type='LoadAnnotations3D', with_bbox_3d=True, with_label_3d=True),
        dict(
            type='Resize',
            img_scale=[(640, 192), (2560, 768)],
            multiscale_mode='range',
            keep_ratio=True),
        dict(
            type='GlobalRotScaleTrans',
            rot_range=[-0.78539816, 0.78539816],
            scale_ratio_range=[0.95, 1.05],
            translation_std=[0.2, 0.2, 0.2]),
        dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5),
        dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range),
        dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range),
        dict(type='PointShuffle'),
        dict(type='Normalize', **img_norm_cfg),
        dict(type='Pad', size_divisor=32),
        dict(type='DefaultFormatBundle3D', class_names=classes),
        dict(
            type='Collect3D',
            keys=['points', 'img', 'gt_bboxes_3d', 'gt_labels_3d']),
    ]
    modality = dict(use_lidar=True, use_camera=True)
    kitti_dataset = KittiDataset(data_root, ann_file, split, pts_prefix,
                                 multi_modality_pipeline, classes, modality)
    data = kitti_dataset[0]
    img = data['img']._data
    lidar2img = data['img_metas']._data['lidar2img']

    expected_lidar2img = np.array(
        [[6.02943726e+02, -7.07913330e+02, -1.22748432e+01, -1.70942719e+02],
         [1.76777252e+02, 8.80879879e+00, -7.07936157e+02, -1.02568634e+02],
         [9.99984801e-01, -1.52826728e-03, -5.29071223e-03, -3.27567995e-01],
         [0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 1.00000000e+00]])

    assert img.shape[:] == (3, 416, 1344)
    assert np.allclose(lidar2img, expected_lidar2img)

yinchimaoliang's avatar
yinchimaoliang committed
235
236
237
238

def test_evaluate():
    if not torch.cuda.is_available():
        pytest.skip('test requires GPU and torch+cuda')
239
    data_root, ann_file, classes, pts_prefix, \
xiliu8006's avatar
xiliu8006 committed
240
        pipeline, modality, split = _generate_kitti_dataset_config()
241
242
    kitti_dataset = KittiDataset(data_root, ann_file, split, pts_prefix,
                                 pipeline, classes, modality)
yinchimaoliang's avatar
yinchimaoliang committed
243
244
245
246
247
248
249
250
251
    boxes_3d = LiDARInstance3DBoxes(
        torch.tensor(
            [[8.7314, -1.8559, -1.5997, 0.4800, 1.2000, 1.8900, 0.0100]]))
    labels_3d = torch.tensor([
        0,
    ])
    scores_3d = torch.tensor([0.5])
    metric = ['mAP']
    result = dict(boxes_3d=boxes_3d, labels_3d=labels_3d, scores_3d=scores_3d)
252
    ap_dict = kitti_dataset.evaluate([result], metric)
253
254
255
256
257
258
    assert np.isclose(ap_dict['KITTI/Overall_3D_AP11_easy'],
                      3.0303030303030307)
    assert np.isclose(ap_dict['KITTI/Overall_3D_AP11_moderate'],
                      3.0303030303030307)
    assert np.isclose(ap_dict['KITTI/Overall_3D_AP11_hard'],
                      3.0303030303030307)
yinchimaoliang's avatar
yinchimaoliang committed
259
260
261
262
263


def test_show():
    from os import path as osp

264
265
    import mmcv

yinchimaoliang's avatar
yinchimaoliang committed
266
    from mmdet3d.core.bbox import LiDARInstance3DBoxes
267
268
269
    tmp_dir = tempfile.TemporaryDirectory()
    temp_dir = tmp_dir.name
    data_root, ann_file, classes, pts_prefix, \
xiliu8006's avatar
xiliu8006 committed
270
        pipeline, modality, split = _generate_kitti_dataset_config()
yinchimaoliang's avatar
yinchimaoliang committed
271
272
273
274
275
276
277
278
279
280
281
282
283
    kitti_dataset = KittiDataset(
        data_root, ann_file, split=split, modality=modality, pipeline=pipeline)
    boxes_3d = LiDARInstance3DBoxes(
        torch.tensor(
            [[46.1218, -4.6496, -0.9275, 0.5316, 1.4442, 1.7450, 1.1749],
             [33.3189, 0.1981, 0.3136, 0.5656, 1.2301, 1.7985, 1.5723],
             [46.1366, -4.6404, -0.9510, 0.5162, 1.6501, 1.7540, 1.3778],
             [33.2646, 0.2297, 0.3446, 0.5746, 1.3365, 1.7947, 1.5430],
             [58.9079, 16.6272, -1.5829, 1.5656, 3.9313, 1.4899, 1.5505]]))
    scores_3d = torch.tensor([0.1815, 0.1663, 0.5792, 0.2194, 0.2780])
    labels_3d = torch.tensor([0, 0, 1, 1, 2])
    result = dict(boxes_3d=boxes_3d, scores_3d=scores_3d, labels_3d=labels_3d)
    results = [result]
284
    kitti_dataset.show(results, temp_dir, show=False)
yinchimaoliang's avatar
yinchimaoliang committed
285
    pts_file_path = osp.join(temp_dir, '000000', '000000_points.obj')
286
287
    gt_file_path = osp.join(temp_dir, '000000', '000000_gt.obj')
    pred_file_path = osp.join(temp_dir, '000000', '000000_pred.obj')
yinchimaoliang's avatar
yinchimaoliang committed
288
289
290
    mmcv.check_file_exist(pts_file_path)
    mmcv.check_file_exist(gt_file_path)
    mmcv.check_file_exist(pred_file_path)
291
292
    tmp_dir.cleanup()

293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
    # test show with pipeline
    eval_pipeline = [
        dict(
            type='LoadPointsFromFile',
            coord_type='LIDAR',
            load_dim=4,
            use_dim=4),
        dict(
            type='DefaultFormatBundle3D',
            class_names=classes,
            with_label=False),
        dict(type='Collect3D', keys=['points'])
    ]
    tmp_dir = tempfile.TemporaryDirectory()
    temp_dir = tmp_dir.name
    kitti_dataset.show(results, temp_dir, show=False, pipeline=eval_pipeline)
    pts_file_path = osp.join(temp_dir, '000000', '000000_points.obj')
    gt_file_path = osp.join(temp_dir, '000000', '000000_gt.obj')
    pred_file_path = osp.join(temp_dir, '000000', '000000_pred.obj')
    mmcv.check_file_exist(pts_file_path)
    mmcv.check_file_exist(gt_file_path)
    mmcv.check_file_exist(pred_file_path)
    tmp_dir.cleanup()

317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
    # test multi-modality show
    tmp_dir = tempfile.TemporaryDirectory()
    temp_dir = tmp_dir.name
    _, _, _, _, multi_modality_pipeline, modality, _ = \
        _generate_kitti_multi_modality_dataset_config()
    kitti_dataset = KittiDataset(data_root, ann_file, split, pts_prefix,
                                 multi_modality_pipeline, classes, modality)
    kitti_dataset.show(results, temp_dir, show=False)
    pts_file_path = osp.join(temp_dir, '000000', '000000_points.obj')
    gt_file_path = osp.join(temp_dir, '000000', '000000_gt.obj')
    pred_file_path = osp.join(temp_dir, '000000', '000000_pred.obj')
    img_file_path = osp.join(temp_dir, '000000', '000000_img.png')
    img_pred_path = osp.join(temp_dir, '000000', '000000_pred.png')
    img_gt_file = osp.join(temp_dir, '000000', '000000_gt.png')
    mmcv.check_file_exist(pts_file_path)
    mmcv.check_file_exist(gt_file_path)
    mmcv.check_file_exist(pred_file_path)
    mmcv.check_file_exist(img_file_path)
    mmcv.check_file_exist(img_pred_path)
    mmcv.check_file_exist(img_gt_file)
    tmp_dir.cleanup()
yinchimaoliang's avatar
yinchimaoliang committed
338

339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
    # test multi-modality show with pipeline
    eval_pipeline = [
        dict(
            type='LoadPointsFromFile',
            coord_type='LIDAR',
            load_dim=4,
            use_dim=4),
        dict(type='LoadImageFromFile'),
        dict(
            type='DefaultFormatBundle3D',
            class_names=classes,
            with_label=False),
        dict(type='Collect3D', keys=['points', 'img'])
    ]
    tmp_dir = tempfile.TemporaryDirectory()
    temp_dir = tmp_dir.name
    kitti_dataset.show(results, temp_dir, show=False, pipeline=eval_pipeline)
    pts_file_path = osp.join(temp_dir, '000000', '000000_points.obj')
    gt_file_path = osp.join(temp_dir, '000000', '000000_gt.obj')
    pred_file_path = osp.join(temp_dir, '000000', '000000_pred.obj')
    img_file_path = osp.join(temp_dir, '000000', '000000_img.png')
    img_pred_path = osp.join(temp_dir, '000000', '000000_pred.png')
    img_gt_file = osp.join(temp_dir, '000000', '000000_gt.png')
    mmcv.check_file_exist(pts_file_path)
    mmcv.check_file_exist(gt_file_path)
    mmcv.check_file_exist(pred_file_path)
    mmcv.check_file_exist(img_file_path)
    mmcv.check_file_exist(img_pred_path)
    mmcv.check_file_exist(img_gt_file)
    tmp_dir.cleanup()

yinchimaoliang's avatar
yinchimaoliang committed
370
371
372

def test_format_results():
    from mmdet3d.core.bbox import LiDARInstance3DBoxes
373
    data_root, ann_file, classes, pts_prefix, \
xiliu8006's avatar
xiliu8006 committed
374
        pipeline, modality, split = _generate_kitti_dataset_config()
375
376
    kitti_dataset = KittiDataset(data_root, ann_file, split, pts_prefix,
                                 pipeline, classes, modality)
377
    # coord system refactor
yinchimaoliang's avatar
yinchimaoliang committed
378
379
    boxes_3d = LiDARInstance3DBoxes(
        torch.tensor(
380
            [[8.7314, -1.8559, -1.5997, 1.2000, 0.4800, 1.8900, -1.5808]]))
yinchimaoliang's avatar
yinchimaoliang committed
381
382
383
384
385
386
    labels_3d = torch.tensor([
        0,
    ])
    scores_3d = torch.tensor([0.5])
    result = dict(boxes_3d=boxes_3d, labels_3d=labels_3d, scores_3d=scores_3d)
    results = [result]
387
    result_files, tmp_dir = kitti_dataset.format_results(results)
yinchimaoliang's avatar
yinchimaoliang committed
388
389
390
    expected_name = np.array(['Pedestrian'])
    expected_truncated = np.array([0.])
    expected_occluded = np.array([0])
391
392
    # coord sys refactor
    expected_alpha = np.array(-3.3410306 + np.pi)
yinchimaoliang's avatar
yinchimaoliang committed
393
394
395
    expected_bbox = np.array([[710.443, 144.00221, 820.29114, 307.58667]])
    expected_dimensions = np.array([[1.2, 1.89, 0.48]])
    expected_location = np.array([[1.8399826, 1.4700007, 8.410018]])
396
    expected_rotation_y = np.array([0.0100])
yinchimaoliang's avatar
yinchimaoliang committed
397
398
399
400
401
    expected_score = np.array([0.5])
    expected_sample_idx = np.array([0])
    assert np.all(result_files[0]['name'] == expected_name)
    assert np.allclose(result_files[0]['truncated'], expected_truncated)
    assert np.all(result_files[0]['occluded'] == expected_occluded)
402
    assert np.allclose(result_files[0]['alpha'], expected_alpha, 1e-3)
yinchimaoliang's avatar
yinchimaoliang committed
403
404
405
    assert np.allclose(result_files[0]['bbox'], expected_bbox)
    assert np.allclose(result_files[0]['dimensions'], expected_dimensions)
    assert np.allclose(result_files[0]['location'], expected_location)
406
407
    assert np.allclose(result_files[0]['rotation_y'], expected_rotation_y,
                       1e-3)
yinchimaoliang's avatar
yinchimaoliang committed
408
409
    assert np.allclose(result_files[0]['score'], expected_score)
    assert np.allclose(result_files[0]['sample_idx'], expected_sample_idx)
410
    tmp_dir.cleanup()
yinchimaoliang's avatar
yinchimaoliang committed
411
412


xiliu8006's avatar
xiliu8006 committed
413
def test_bbox2result_kitti():
414
    data_root, ann_file, classes, pts_prefix, \
xiliu8006's avatar
xiliu8006 committed
415
        pipeline, modality, split = _generate_kitti_dataset_config()
416
417
    kitti_dataset = KittiDataset(data_root, ann_file, split, pts_prefix,
                                 pipeline, classes, modality)
xiliu8006's avatar
xiliu8006 committed
418
419
    boxes_3d = LiDARInstance3DBoxes(
        torch.tensor(
420
            [[8.7314, -1.8559, -1.5997, 1.2000, 0.4800, 1.8900, -1.5808]]))
xiliu8006's avatar
xiliu8006 committed
421
422
423
424
425
426
    labels_3d = torch.tensor([
        0,
    ])
    scores_3d = torch.tensor([0.5])
    result = dict(boxes_3d=boxes_3d, labels_3d=labels_3d, scores_3d=scores_3d)
    results = [result]
427
428
429
    tmp_dir = tempfile.TemporaryDirectory()
    temp_kitti_result_dir = tmp_dir.name
    det_annos = kitti_dataset.bbox2result_kitti(
xiliu8006's avatar
xiliu8006 committed
430
431
432
433
        results, classes, submission_prefix=temp_kitti_result_dir)
    expected_file_path = os.path.join(temp_kitti_result_dir, '000000.txt')
    expected_name = np.array(['Pedestrian'])
    expected_dimensions = np.array([1.2000, 1.8900, 0.4800])
434
435
    # coord system refactor (reverse sign)
    expected_rotation_y = 0.0100
xiliu8006's avatar
xiliu8006 committed
436
437
    expected_score = np.array([0.5])
    assert np.all(det_annos[0]['name'] == expected_name)
438
    assert np.allclose(det_annos[0]['rotation_y'], expected_rotation_y, 1e-3)
xiliu8006's avatar
xiliu8006 committed
439
440
441
    assert np.allclose(det_annos[0]['score'], expected_score)
    assert np.allclose(det_annos[0]['dimensions'], expected_dimensions)
    assert os.path.exists(expected_file_path)
442
    tmp_dir.cleanup()
xiliu8006's avatar
xiliu8006 committed
443

444
445
    tmp_dir = tempfile.TemporaryDirectory()
    temp_kitti_result_dir = tmp_dir.name
xiliu8006's avatar
xiliu8006 committed
446
447
448
449
450
451
    boxes_3d = LiDARInstance3DBoxes(torch.tensor([]))
    labels_3d = torch.tensor([])
    scores_3d = torch.tensor([])
    empty_result = dict(
        boxes_3d=boxes_3d, labels_3d=labels_3d, scores_3d=scores_3d)
    results = [empty_result]
452
    det_annos = kitti_dataset.bbox2result_kitti(
xiliu8006's avatar
xiliu8006 committed
453
454
455
        results, classes, submission_prefix=temp_kitti_result_dir)
    expected_file_path = os.path.join(temp_kitti_result_dir, '000000.txt')
    assert os.path.exists(expected_file_path)
456
    tmp_dir.cleanup()
xiliu8006's avatar
xiliu8006 committed
457
458


yinchimaoliang's avatar
yinchimaoliang committed
459
def test_bbox2result_kitti2d():
460
    data_root, ann_file, classes, pts_prefix, \
xiliu8006's avatar
xiliu8006 committed
461
        pipeline, modality, split = _generate_kitti_dataset_config()
462
463
    kitti_dataset = KittiDataset(data_root, ann_file, split, pts_prefix,
                                 pipeline, classes, modality)
yinchimaoliang's avatar
yinchimaoliang committed
464
465
466
467
    bboxes = np.array([[[46.1218, -4.6496, -0.9275, 0.5316, 0.5],
                        [33.3189, 0.1981, 0.3136, 0.5656, 0.5]],
                       [[46.1366, -4.6404, -0.9510, 0.5162, 0.5],
                        [33.2646, 0.2297, 0.3446, 0.5746, 0.5]]])
468
    det_annos = kitti_dataset.bbox2result_kitti2d([bboxes], classes)
yinchimaoliang's avatar
yinchimaoliang committed
469
470
471
472
473
474
475
476
477
478
    expected_name = np.array(
        ['Pedestrian', 'Pedestrian', 'Cyclist', 'Cyclist'])
    expected_bbox = np.array([[46.1218, -4.6496, -0.9275, 0.5316],
                              [33.3189, 0.1981, 0.3136, 0.5656],
                              [46.1366, -4.6404, -0.951, 0.5162],
                              [33.2646, 0.2297, 0.3446, 0.5746]])
    expected_score = np.array([0.5, 0.5, 0.5, 0.5])
    assert np.all(det_annos[0]['name'] == expected_name)
    assert np.allclose(det_annos[0]['bbox'], expected_bbox)
    assert np.allclose(det_annos[0]['score'], expected_score)