"python/sglang/srt/entrypoints/openai/api_server.py" did not exist on "70c471a868bf505fadbfe0a041e7637a91db0365"
test_kitti_dataset.py 16.1 KB
Newer Older
yinchimaoliang's avatar
yinchimaoliang committed
1
import numpy as np
xiliu8006's avatar
xiliu8006 committed
2
import os
yinchimaoliang's avatar
yinchimaoliang committed
3
import pytest
xiliu8006's avatar
xiliu8006 committed
4
import tempfile
yinchimaoliang's avatar
yinchimaoliang committed
5
6
7
8
9
10
import torch

from mmdet3d.core.bbox import LiDARInstance3DBoxes
from mmdet3d.datasets import KittiDataset


xiliu8006's avatar
xiliu8006 committed
11
def _generate_kitti_dataset_config():
yinchimaoliang's avatar
yinchimaoliang committed
12
13
14
15
    data_root = 'tests/data/kitti'
    ann_file = 'tests/data/kitti/kitti_infos_train.pkl'
    classes = ['Pedestrian', 'Cyclist', 'Car']
    pts_prefix = 'velodyne_reduced'
xiliu8006's avatar
xiliu8006 committed
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
    pipeline = [
        dict(
            type='LoadPointsFromFile',
            coord_type='LIDAR',
            load_dim=4,
            use_dim=4,
            file_client_args=dict(backend='disk')),
        dict(
            type='MultiScaleFlipAug3D',
            img_scale=(1333, 800),
            pts_scale_ratio=1,
            flip=False,
            transforms=[
                dict(
                    type='GlobalRotScaleTrans',
                    rot_range=[0, 0],
                    scale_ratio_range=[1.0, 1.0],
                    translation_std=[0, 0, 0]),
                dict(type='RandomFlip3D'),
                dict(
                    type='PointsRangeFilter',
                    point_cloud_range=[0, -40, -3, 70.4, 40, 1]),
                dict(
                    type='DefaultFormatBundle3D',
40
                    class_names=classes,
xiliu8006's avatar
xiliu8006 committed
41
42
43
44
45
                    with_label=False),
                dict(type='Collect3D', keys=['points'])
            ])
    ]
    modality = dict(use_lidar=True, use_camera=False)
yinchimaoliang's avatar
yinchimaoliang committed
46
    split = 'training'
xiliu8006's avatar
xiliu8006 committed
47
48
49
    return data_root, ann_file, classes, pts_prefix, pipeline, modality, split


50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
def _generate_kitti_multi_modality_dataset_config():
    data_root = 'tests/data/kitti'
    ann_file = 'tests/data/kitti/kitti_infos_train.pkl'
    classes = ['Pedestrian', 'Cyclist', 'Car']
    pts_prefix = 'velodyne_reduced'
    img_norm_cfg = dict(
        mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False)
    pipeline = [
        dict(
            type='LoadPointsFromFile',
            coord_type='LIDAR',
            load_dim=4,
            use_dim=4,
            file_client_args=dict(backend='disk')),
        dict(type='LoadImageFromFile'),
        dict(
            type='MultiScaleFlipAug3D',
            img_scale=(1333, 800),
            pts_scale_ratio=1,
            flip=False,
            transforms=[
                dict(type='Resize', multiscale_mode='value', keep_ratio=True),
                dict(
                    type='GlobalRotScaleTrans',
                    rot_range=[0, 0],
                    scale_ratio_range=[1., 1.],
                    translation_std=[0, 0, 0]),
                dict(type='RandomFlip3D'),
                dict(type='Normalize', **img_norm_cfg),
                dict(type='Pad', size_divisor=32),
                dict(
                    type='PointsRangeFilter',
                    point_cloud_range=[0, -40, -3, 70.4, 40, 1]),
                dict(
                    type='DefaultFormatBundle3D',
                    class_names=classes,
                    with_label=False),
                dict(type='Collect3D', keys=['points', 'img'])
            ])
    ]
    modality = dict(use_lidar=True, use_camera=True)
    split = 'training'
    return data_root, ann_file, classes, pts_prefix, pipeline, modality, split


xiliu8006's avatar
xiliu8006 committed
95
96
def test_getitem():
    np.random.seed(0)
97
98
    data_root, ann_file, classes, pts_prefix, \
        _, modality, split = _generate_kitti_dataset_config()
xiliu8006's avatar
xiliu8006 committed
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
    pipeline = [
        dict(
            type='LoadPointsFromFile',
            coord_type='LIDAR',
            load_dim=4,
            use_dim=4,
            file_client_args=dict(backend='disk')),
        dict(
            type='LoadAnnotations3D',
            with_bbox_3d=True,
            with_label_3d=True,
            file_client_args=dict(backend='disk')),
        dict(
            type='ObjectSample',
            db_sampler=dict(
                data_root='tests/data/kitti/',
                info_path='tests/data/kitti/kitti_dbinfos_train.pkl',
                rate=1.0,
                prepare=dict(
                    filter_by_difficulty=[-1],
                    filter_by_min_points=dict(Pedestrian=10)),
                classes=['Pedestrian', 'Cyclist', 'Car'],
                sample_groups=dict(Pedestrian=6))),
        dict(
            type='ObjectNoise',
            num_try=100,
            translation_std=[1.0, 1.0, 0.5],
            global_rot_range=[0.0, 0.0],
            rot_range=[-0.78539816, 0.78539816]),
        dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5),
        dict(
            type='GlobalRotScaleTrans',
            rot_range=[-0.78539816, 0.78539816],
            scale_ratio_range=[0.95, 1.05]),
        dict(
            type='PointsRangeFilter',
            point_cloud_range=[0, -40, -3, 70.4, 40, 1]),
        dict(
            type='ObjectRangeFilter',
            point_cloud_range=[0, -40, -3, 70.4, 40, 1]),
        dict(type='PointShuffle'),
        dict(
            type='DefaultFormatBundle3D',
            class_names=['Pedestrian', 'Cyclist', 'Car']),
        dict(
            type='Collect3D', keys=['points', 'gt_bboxes_3d', 'gt_labels_3d'])
    ]
146
147
148
    kitti_dataset = KittiDataset(data_root, ann_file, split, pts_prefix,
                                 pipeline, classes, modality)
    data = kitti_dataset[0]
yinchimaoliang's avatar
yinchimaoliang committed
149
150
151
152
153
154
155
156
157
158
159
    points = data['points']._data
    gt_bboxes_3d = data['gt_bboxes_3d']._data
    gt_labels_3d = data['gt_labels_3d']._data
    expected_gt_bboxes_3d = torch.tensor(
        [[9.5081, -5.2269, -1.1370, 0.4915, 1.2288, 1.9353, -2.7136]])
    expected_gt_labels_3d = torch.tensor([0])
    assert points.shape == (780, 4)
    assert torch.allclose(
        gt_bboxes_3d.tensor, expected_gt_bboxes_3d, atol=1e-4)
    assert torch.all(gt_labels_3d == expected_gt_labels_3d)

160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
    # test multi-modality KITTI dataset
    np.random.seed(0)
    point_cloud_range = [0, -40, -3, 70.4, 40, 1]
    img_norm_cfg = dict(
        mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False)
    multi_modality_pipeline = [
        dict(
            type='LoadPointsFromFile',
            coord_type='LIDAR',
            load_dim=4,
            use_dim=4),
        dict(type='LoadImageFromFile'),
        dict(type='LoadAnnotations3D', with_bbox_3d=True, with_label_3d=True),
        dict(
            type='Resize',
            img_scale=[(640, 192), (2560, 768)],
            multiscale_mode='range',
            keep_ratio=True),
        dict(
            type='GlobalRotScaleTrans',
            rot_range=[-0.78539816, 0.78539816],
            scale_ratio_range=[0.95, 1.05],
            translation_std=[0.2, 0.2, 0.2]),
        dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5),
        dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range),
        dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range),
        dict(type='PointShuffle'),
        dict(type='Normalize', **img_norm_cfg),
        dict(type='Pad', size_divisor=32),
        dict(type='DefaultFormatBundle3D', class_names=classes),
        dict(
            type='Collect3D',
            keys=['points', 'img', 'gt_bboxes_3d', 'gt_labels_3d']),
    ]
    modality = dict(use_lidar=True, use_camera=True)
    kitti_dataset = KittiDataset(data_root, ann_file, split, pts_prefix,
                                 multi_modality_pipeline, classes, modality)
    data = kitti_dataset[0]
    img = data['img']._data
    lidar2img = data['img_metas']._data['lidar2img']

    expected_lidar2img = np.array(
        [[6.02943726e+02, -7.07913330e+02, -1.22748432e+01, -1.70942719e+02],
         [1.76777252e+02, 8.80879879e+00, -7.07936157e+02, -1.02568634e+02],
         [9.99984801e-01, -1.52826728e-03, -5.29071223e-03, -3.27567995e-01],
         [0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 1.00000000e+00]])

    assert img.shape[:] == (3, 416, 1344)
    assert np.allclose(lidar2img, expected_lidar2img)

yinchimaoliang's avatar
yinchimaoliang committed
210
211
212
213

def test_evaluate():
    if not torch.cuda.is_available():
        pytest.skip('test requires GPU and torch+cuda')
214
    data_root, ann_file, classes, pts_prefix, \
xiliu8006's avatar
xiliu8006 committed
215
        pipeline, modality, split = _generate_kitti_dataset_config()
216
217
    kitti_dataset = KittiDataset(data_root, ann_file, split, pts_prefix,
                                 pipeline, classes, modality)
yinchimaoliang's avatar
yinchimaoliang committed
218
219
220
221
222
223
224
225
226
    boxes_3d = LiDARInstance3DBoxes(
        torch.tensor(
            [[8.7314, -1.8559, -1.5997, 0.4800, 1.2000, 1.8900, 0.0100]]))
    labels_3d = torch.tensor([
        0,
    ])
    scores_3d = torch.tensor([0.5])
    metric = ['mAP']
    result = dict(boxes_3d=boxes_3d, labels_3d=labels_3d, scores_3d=scores_3d)
227
    ap_dict = kitti_dataset.evaluate([result], metric)
yinchimaoliang's avatar
yinchimaoliang committed
228
229
230
231
232
233
234
235
236
237
    assert np.isclose(ap_dict['KITTI/Overall_3D_easy'], 3.0303030303030307)
    assert np.isclose(ap_dict['KITTI/Overall_3D_moderate'], 3.0303030303030307)
    assert np.isclose(ap_dict['KITTI/Overall_3D_hard'], 3.0303030303030307)


def test_show():
    import mmcv
    from os import path as osp

    from mmdet3d.core.bbox import LiDARInstance3DBoxes
238
239
240
    tmp_dir = tempfile.TemporaryDirectory()
    temp_dir = tmp_dir.name
    data_root, ann_file, classes, pts_prefix, \
xiliu8006's avatar
xiliu8006 committed
241
        pipeline, modality, split = _generate_kitti_dataset_config()
yinchimaoliang's avatar
yinchimaoliang committed
242
243
244
245
246
247
248
249
250
251
252
253
254
    kitti_dataset = KittiDataset(
        data_root, ann_file, split=split, modality=modality, pipeline=pipeline)
    boxes_3d = LiDARInstance3DBoxes(
        torch.tensor(
            [[46.1218, -4.6496, -0.9275, 0.5316, 1.4442, 1.7450, 1.1749],
             [33.3189, 0.1981, 0.3136, 0.5656, 1.2301, 1.7985, 1.5723],
             [46.1366, -4.6404, -0.9510, 0.5162, 1.6501, 1.7540, 1.3778],
             [33.2646, 0.2297, 0.3446, 0.5746, 1.3365, 1.7947, 1.5430],
             [58.9079, 16.6272, -1.5829, 1.5656, 3.9313, 1.4899, 1.5505]]))
    scores_3d = torch.tensor([0.1815, 0.1663, 0.5792, 0.2194, 0.2780])
    labels_3d = torch.tensor([0, 0, 1, 1, 2])
    result = dict(boxes_3d=boxes_3d, scores_3d=scores_3d, labels_3d=labels_3d)
    results = [result]
255
    kitti_dataset.show(results, temp_dir, show=False)
yinchimaoliang's avatar
yinchimaoliang committed
256
    pts_file_path = osp.join(temp_dir, '000000', '000000_points.obj')
257
258
    gt_file_path = osp.join(temp_dir, '000000', '000000_gt.obj')
    pred_file_path = osp.join(temp_dir, '000000', '000000_pred.obj')
yinchimaoliang's avatar
yinchimaoliang committed
259
260
261
    mmcv.check_file_exist(pts_file_path)
    mmcv.check_file_exist(gt_file_path)
    mmcv.check_file_exist(pred_file_path)
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
    tmp_dir.cleanup()

    # test multi-modality show
    tmp_dir = tempfile.TemporaryDirectory()
    temp_dir = tmp_dir.name
    _, _, _, _, multi_modality_pipeline, modality, _ = \
        _generate_kitti_multi_modality_dataset_config()
    kitti_dataset = KittiDataset(data_root, ann_file, split, pts_prefix,
                                 multi_modality_pipeline, classes, modality)
    kitti_dataset.show(results, temp_dir, show=False)
    pts_file_path = osp.join(temp_dir, '000000', '000000_points.obj')
    gt_file_path = osp.join(temp_dir, '000000', '000000_gt.obj')
    pred_file_path = osp.join(temp_dir, '000000', '000000_pred.obj')
    img_file_path = osp.join(temp_dir, '000000', '000000_img.png')
    img_pred_path = osp.join(temp_dir, '000000', '000000_pred.png')
    img_gt_file = osp.join(temp_dir, '000000', '000000_gt.png')
    mmcv.check_file_exist(pts_file_path)
    mmcv.check_file_exist(gt_file_path)
    mmcv.check_file_exist(pred_file_path)
    mmcv.check_file_exist(img_file_path)
    mmcv.check_file_exist(img_pred_path)
    mmcv.check_file_exist(img_gt_file)
    tmp_dir.cleanup()
yinchimaoliang's avatar
yinchimaoliang committed
285
286
287
288


def test_format_results():
    from mmdet3d.core.bbox import LiDARInstance3DBoxes
289
    data_root, ann_file, classes, pts_prefix, \
xiliu8006's avatar
xiliu8006 committed
290
        pipeline, modality, split = _generate_kitti_dataset_config()
291
292
    kitti_dataset = KittiDataset(data_root, ann_file, split, pts_prefix,
                                 pipeline, classes, modality)
yinchimaoliang's avatar
yinchimaoliang committed
293
294
295
296
297
298
299
300
301
    boxes_3d = LiDARInstance3DBoxes(
        torch.tensor(
            [[8.7314, -1.8559, -1.5997, 0.4800, 1.2000, 1.8900, 0.0100]]))
    labels_3d = torch.tensor([
        0,
    ])
    scores_3d = torch.tensor([0.5])
    result = dict(boxes_3d=boxes_3d, labels_3d=labels_3d, scores_3d=scores_3d)
    results = [result]
302
    result_files, tmp_dir = kitti_dataset.format_results(results)
yinchimaoliang's avatar
yinchimaoliang committed
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
    expected_name = np.array(['Pedestrian'])
    expected_truncated = np.array([0.])
    expected_occluded = np.array([0])
    expected_alpha = np.array([-3.3410306])
    expected_bbox = np.array([[710.443, 144.00221, 820.29114, 307.58667]])
    expected_dimensions = np.array([[1.2, 1.89, 0.48]])
    expected_location = np.array([[1.8399826, 1.4700007, 8.410018]])
    expected_rotation_y = np.array([-3.1315928])
    expected_score = np.array([0.5])
    expected_sample_idx = np.array([0])
    assert np.all(result_files[0]['name'] == expected_name)
    assert np.allclose(result_files[0]['truncated'], expected_truncated)
    assert np.all(result_files[0]['occluded'] == expected_occluded)
    assert np.allclose(result_files[0]['alpha'], expected_alpha)
    assert np.allclose(result_files[0]['bbox'], expected_bbox)
    assert np.allclose(result_files[0]['dimensions'], expected_dimensions)
    assert np.allclose(result_files[0]['location'], expected_location)
    assert np.allclose(result_files[0]['rotation_y'], expected_rotation_y)
    assert np.allclose(result_files[0]['score'], expected_score)
    assert np.allclose(result_files[0]['sample_idx'], expected_sample_idx)
323
    tmp_dir.cleanup()
yinchimaoliang's avatar
yinchimaoliang committed
324
325


xiliu8006's avatar
xiliu8006 committed
326
def test_bbox2result_kitti():
327
    data_root, ann_file, classes, pts_prefix, \
xiliu8006's avatar
xiliu8006 committed
328
        pipeline, modality, split = _generate_kitti_dataset_config()
329
330
    kitti_dataset = KittiDataset(data_root, ann_file, split, pts_prefix,
                                 pipeline, classes, modality)
xiliu8006's avatar
xiliu8006 committed
331
332
333
334
335
336
337
338
339
    boxes_3d = LiDARInstance3DBoxes(
        torch.tensor(
            [[8.7314, -1.8559, -1.5997, 0.4800, 1.2000, 1.8900, 0.0100]]))
    labels_3d = torch.tensor([
        0,
    ])
    scores_3d = torch.tensor([0.5])
    result = dict(boxes_3d=boxes_3d, labels_3d=labels_3d, scores_3d=scores_3d)
    results = [result]
340
341
342
    tmp_dir = tempfile.TemporaryDirectory()
    temp_kitti_result_dir = tmp_dir.name
    det_annos = kitti_dataset.bbox2result_kitti(
xiliu8006's avatar
xiliu8006 committed
343
344
345
346
347
348
349
350
351
352
353
        results, classes, submission_prefix=temp_kitti_result_dir)
    expected_file_path = os.path.join(temp_kitti_result_dir, '000000.txt')
    expected_name = np.array(['Pedestrian'])
    expected_dimensions = np.array([1.2000, 1.8900, 0.4800])
    expected_rotation_y = np.array([0.0100]) - np.pi
    expected_score = np.array([0.5])
    assert np.all(det_annos[0]['name'] == expected_name)
    assert np.allclose(det_annos[0]['rotation_y'], expected_rotation_y)
    assert np.allclose(det_annos[0]['score'], expected_score)
    assert np.allclose(det_annos[0]['dimensions'], expected_dimensions)
    assert os.path.exists(expected_file_path)
354
    tmp_dir.cleanup()
xiliu8006's avatar
xiliu8006 committed
355

356
357
    tmp_dir = tempfile.TemporaryDirectory()
    temp_kitti_result_dir = tmp_dir.name
xiliu8006's avatar
xiliu8006 committed
358
359
360
361
362
363
    boxes_3d = LiDARInstance3DBoxes(torch.tensor([]))
    labels_3d = torch.tensor([])
    scores_3d = torch.tensor([])
    empty_result = dict(
        boxes_3d=boxes_3d, labels_3d=labels_3d, scores_3d=scores_3d)
    results = [empty_result]
364
    det_annos = kitti_dataset.bbox2result_kitti(
xiliu8006's avatar
xiliu8006 committed
365
366
367
        results, classes, submission_prefix=temp_kitti_result_dir)
    expected_file_path = os.path.join(temp_kitti_result_dir, '000000.txt')
    assert os.path.exists(expected_file_path)
368
    tmp_dir.cleanup()
xiliu8006's avatar
xiliu8006 committed
369
370


yinchimaoliang's avatar
yinchimaoliang committed
371
def test_bbox2result_kitti2d():
372
    data_root, ann_file, classes, pts_prefix, \
xiliu8006's avatar
xiliu8006 committed
373
        pipeline, modality, split = _generate_kitti_dataset_config()
374
375
    kitti_dataset = KittiDataset(data_root, ann_file, split, pts_prefix,
                                 pipeline, classes, modality)
yinchimaoliang's avatar
yinchimaoliang committed
376
377
378
379
    bboxes = np.array([[[46.1218, -4.6496, -0.9275, 0.5316, 0.5],
                        [33.3189, 0.1981, 0.3136, 0.5656, 0.5]],
                       [[46.1366, -4.6404, -0.9510, 0.5162, 0.5],
                        [33.2646, 0.2297, 0.3446, 0.5746, 0.5]]])
380
    det_annos = kitti_dataset.bbox2result_kitti2d([bboxes], classes)
yinchimaoliang's avatar
yinchimaoliang committed
381
382
383
384
385
386
387
388
389
390
    expected_name = np.array(
        ['Pedestrian', 'Pedestrian', 'Cyclist', 'Cyclist'])
    expected_bbox = np.array([[46.1218, -4.6496, -0.9275, 0.5316],
                              [33.3189, 0.1981, 0.3136, 0.5656],
                              [46.1366, -4.6404, -0.951, 0.5162],
                              [33.2646, 0.2297, 0.3446, 0.5746]])
    expected_score = np.array([0.5, 0.5, 0.5, 0.5])
    assert np.all(det_annos[0]['name'] == expected_name)
    assert np.allclose(det_annos[0]['bbox'], expected_bbox)
    assert np.allclose(det_annos[0]['score'], expected_score)