test_kitti_dataset.py 11.2 KB
Newer Older
yinchimaoliang's avatar
yinchimaoliang committed
1
import numpy as np
xiliu8006's avatar
xiliu8006 committed
2
import os
yinchimaoliang's avatar
yinchimaoliang committed
3
import pytest
xiliu8006's avatar
xiliu8006 committed
4
import tempfile
yinchimaoliang's avatar
yinchimaoliang committed
5
6
7
8
9
10
import torch

from mmdet3d.core.bbox import LiDARInstance3DBoxes
from mmdet3d.datasets import KittiDataset


xiliu8006's avatar
xiliu8006 committed
11
def _generate_kitti_dataset_config():
yinchimaoliang's avatar
yinchimaoliang committed
12
13
14
15
    data_root = 'tests/data/kitti'
    ann_file = 'tests/data/kitti/kitti_infos_train.pkl'
    classes = ['Pedestrian', 'Cyclist', 'Car']
    pts_prefix = 'velodyne_reduced'
xiliu8006's avatar
xiliu8006 committed
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
    pipeline = [
        dict(
            type='LoadPointsFromFile',
            coord_type='LIDAR',
            load_dim=4,
            use_dim=4,
            file_client_args=dict(backend='disk')),
        dict(
            type='MultiScaleFlipAug3D',
            img_scale=(1333, 800),
            pts_scale_ratio=1,
            flip=False,
            transforms=[
                dict(
                    type='GlobalRotScaleTrans',
                    rot_range=[0, 0],
                    scale_ratio_range=[1.0, 1.0],
                    translation_std=[0, 0, 0]),
                dict(type='RandomFlip3D'),
                dict(
                    type='PointsRangeFilter',
                    point_cloud_range=[0, -40, -3, 70.4, 40, 1]),
                dict(
                    type='DefaultFormatBundle3D',
                    class_names=['Pedestrian', 'Cyclist', 'Car'],
                    with_label=False),
                dict(type='Collect3D', keys=['points'])
            ])
    ]
    modality = dict(use_lidar=True, use_camera=False)
yinchimaoliang's avatar
yinchimaoliang committed
46
    split = 'training'
xiliu8006's avatar
xiliu8006 committed
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
    return data_root, ann_file, classes, pts_prefix, pipeline, modality, split


def test_getitem():
    np.random.seed(0)
    data_root, ann_file, classes, pts_prefix,\
        pipeline, modality, split = _generate_kitti_dataset_config()
    pipeline = [
        dict(
            type='LoadPointsFromFile',
            coord_type='LIDAR',
            load_dim=4,
            use_dim=4,
            file_client_args=dict(backend='disk')),
        dict(
            type='LoadAnnotations3D',
            with_bbox_3d=True,
            with_label_3d=True,
            file_client_args=dict(backend='disk')),
        dict(
            type='ObjectSample',
            db_sampler=dict(
                data_root='tests/data/kitti/',
                info_path='tests/data/kitti/kitti_dbinfos_train.pkl',
                rate=1.0,
                prepare=dict(
                    filter_by_difficulty=[-1],
                    filter_by_min_points=dict(Pedestrian=10)),
                classes=['Pedestrian', 'Cyclist', 'Car'],
                sample_groups=dict(Pedestrian=6))),
        dict(
            type='ObjectNoise',
            num_try=100,
            translation_std=[1.0, 1.0, 0.5],
            global_rot_range=[0.0, 0.0],
            rot_range=[-0.78539816, 0.78539816]),
        dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5),
        dict(
            type='GlobalRotScaleTrans',
            rot_range=[-0.78539816, 0.78539816],
            scale_ratio_range=[0.95, 1.05]),
        dict(
            type='PointsRangeFilter',
            point_cloud_range=[0, -40, -3, 70.4, 40, 1]),
        dict(
            type='ObjectRangeFilter',
            point_cloud_range=[0, -40, -3, 70.4, 40, 1]),
        dict(type='PointShuffle'),
        dict(
            type='DefaultFormatBundle3D',
            class_names=['Pedestrian', 'Cyclist', 'Car']),
        dict(
            type='Collect3D', keys=['points', 'gt_bboxes_3d', 'gt_labels_3d'])
    ]
yinchimaoliang's avatar
yinchimaoliang committed
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
    self = KittiDataset(data_root, ann_file, split, pts_prefix, pipeline,
                        classes, modality)
    data = self[0]
    points = data['points']._data
    gt_bboxes_3d = data['gt_bboxes_3d']._data
    gt_labels_3d = data['gt_labels_3d']._data
    expected_gt_bboxes_3d = torch.tensor(
        [[9.5081, -5.2269, -1.1370, 0.4915, 1.2288, 1.9353, -2.7136]])
    expected_gt_labels_3d = torch.tensor([0])
    assert points.shape == (780, 4)
    assert torch.allclose(
        gt_bboxes_3d.tensor, expected_gt_bboxes_3d, atol=1e-4)
    assert torch.all(gt_labels_3d == expected_gt_labels_3d)


def test_evaluate():
    if not torch.cuda.is_available():
        pytest.skip('test requires GPU and torch+cuda')
xiliu8006's avatar
xiliu8006 committed
119
120
121
122
    data_root, ann_file, classes, pts_prefix,\
        pipeline, modality, split = _generate_kitti_dataset_config()
    self = KittiDataset(data_root, ann_file, split, pts_prefix, pipeline,
                        classes, modality)
yinchimaoliang's avatar
yinchimaoliang committed
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
    boxes_3d = LiDARInstance3DBoxes(
        torch.tensor(
            [[8.7314, -1.8559, -1.5997, 0.4800, 1.2000, 1.8900, 0.0100]]))
    labels_3d = torch.tensor([
        0,
    ])
    scores_3d = torch.tensor([0.5])
    metric = ['mAP']
    result = dict(boxes_3d=boxes_3d, labels_3d=labels_3d, scores_3d=scores_3d)
    ap_dict = self.evaluate([result], metric)
    assert np.isclose(ap_dict['KITTI/Overall_3D_easy'], 3.0303030303030307)
    assert np.isclose(ap_dict['KITTI/Overall_3D_moderate'], 3.0303030303030307)
    assert np.isclose(ap_dict['KITTI/Overall_3D_hard'], 3.0303030303030307)


def test_show():
    import mmcv
    import tempfile
    from os import path as osp

    from mmdet3d.core.bbox import LiDARInstance3DBoxes
    temp_dir = tempfile.mkdtemp()
xiliu8006's avatar
xiliu8006 committed
145
146
    data_root, ann_file, classes, pts_prefix,\
        pipeline, modality, split = _generate_kitti_dataset_config()
yinchimaoliang's avatar
yinchimaoliang committed
147
148
149
150
151
152
153
154
155
156
157
158
159
    kitti_dataset = KittiDataset(
        data_root, ann_file, split=split, modality=modality, pipeline=pipeline)
    boxes_3d = LiDARInstance3DBoxes(
        torch.tensor(
            [[46.1218, -4.6496, -0.9275, 0.5316, 1.4442, 1.7450, 1.1749],
             [33.3189, 0.1981, 0.3136, 0.5656, 1.2301, 1.7985, 1.5723],
             [46.1366, -4.6404, -0.9510, 0.5162, 1.6501, 1.7540, 1.3778],
             [33.2646, 0.2297, 0.3446, 0.5746, 1.3365, 1.7947, 1.5430],
             [58.9079, 16.6272, -1.5829, 1.5656, 3.9313, 1.4899, 1.5505]]))
    scores_3d = torch.tensor([0.1815, 0.1663, 0.5792, 0.2194, 0.2780])
    labels_3d = torch.tensor([0, 0, 1, 1, 2])
    result = dict(boxes_3d=boxes_3d, scores_3d=scores_3d, labels_3d=labels_3d)
    results = [result]
160
    kitti_dataset.show(results, temp_dir, show=False)
yinchimaoliang's avatar
yinchimaoliang committed
161
    pts_file_path = osp.join(temp_dir, '000000', '000000_points.obj')
162
163
    gt_file_path = osp.join(temp_dir, '000000', '000000_gt.obj')
    pred_file_path = osp.join(temp_dir, '000000', '000000_pred.obj')
yinchimaoliang's avatar
yinchimaoliang committed
164
165
166
167
168
169
170
    mmcv.check_file_exist(pts_file_path)
    mmcv.check_file_exist(gt_file_path)
    mmcv.check_file_exist(pred_file_path)


def test_format_results():
    from mmdet3d.core.bbox import LiDARInstance3DBoxes
xiliu8006's avatar
xiliu8006 committed
171
172
173
174
    data_root, ann_file, classes, pts_prefix,\
        pipeline, modality, split = _generate_kitti_dataset_config()
    self = KittiDataset(data_root, ann_file, split, pts_prefix, pipeline,
                        classes, modality)
yinchimaoliang's avatar
yinchimaoliang committed
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
    boxes_3d = LiDARInstance3DBoxes(
        torch.tensor(
            [[8.7314, -1.8559, -1.5997, 0.4800, 1.2000, 1.8900, 0.0100]]))
    labels_3d = torch.tensor([
        0,
    ])
    scores_3d = torch.tensor([0.5])
    result = dict(boxes_3d=boxes_3d, labels_3d=labels_3d, scores_3d=scores_3d)
    results = [result]
    result_files, _ = self.format_results(results)
    expected_name = np.array(['Pedestrian'])
    expected_truncated = np.array([0.])
    expected_occluded = np.array([0])
    expected_alpha = np.array([-3.3410306])
    expected_bbox = np.array([[710.443, 144.00221, 820.29114, 307.58667]])
    expected_dimensions = np.array([[1.2, 1.89, 0.48]])
    expected_location = np.array([[1.8399826, 1.4700007, 8.410018]])
    expected_rotation_y = np.array([-3.1315928])
    expected_score = np.array([0.5])
    expected_sample_idx = np.array([0])
    assert np.all(result_files[0]['name'] == expected_name)
    assert np.allclose(result_files[0]['truncated'], expected_truncated)
    assert np.all(result_files[0]['occluded'] == expected_occluded)
    assert np.allclose(result_files[0]['alpha'], expected_alpha)
    assert np.allclose(result_files[0]['bbox'], expected_bbox)
    assert np.allclose(result_files[0]['dimensions'], expected_dimensions)
    assert np.allclose(result_files[0]['location'], expected_location)
    assert np.allclose(result_files[0]['rotation_y'], expected_rotation_y)
    assert np.allclose(result_files[0]['score'], expected_score)
    assert np.allclose(result_files[0]['sample_idx'], expected_sample_idx)


xiliu8006's avatar
xiliu8006 committed
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
def test_bbox2result_kitti():
    data_root, ann_file, classes, pts_prefix,\
        pipeline, modality, split = _generate_kitti_dataset_config()
    self = KittiDataset(data_root, ann_file, split, pts_prefix, pipeline,
                        classes, modality)
    boxes_3d = LiDARInstance3DBoxes(
        torch.tensor(
            [[8.7314, -1.8559, -1.5997, 0.4800, 1.2000, 1.8900, 0.0100]]))
    labels_3d = torch.tensor([
        0,
    ])
    scores_3d = torch.tensor([0.5])
    result = dict(boxes_3d=boxes_3d, labels_3d=labels_3d, scores_3d=scores_3d)
    results = [result]
    temp_kitti_result_dir = tempfile.mkdtemp()
    det_annos = self.bbox2result_kitti(
        results, classes, submission_prefix=temp_kitti_result_dir)
    expected_file_path = os.path.join(temp_kitti_result_dir, '000000.txt')
    expected_name = np.array(['Pedestrian'])
    expected_dimensions = np.array([1.2000, 1.8900, 0.4800])
    expected_rotation_y = np.array([0.0100]) - np.pi
    expected_score = np.array([0.5])
    assert np.all(det_annos[0]['name'] == expected_name)
    assert np.allclose(det_annos[0]['rotation_y'], expected_rotation_y)
    assert np.allclose(det_annos[0]['score'], expected_score)
    assert np.allclose(det_annos[0]['dimensions'], expected_dimensions)
    assert os.path.exists(expected_file_path)
    os.remove(expected_file_path)
    os.removedirs(temp_kitti_result_dir)

    temp_kitti_result_dir = tempfile.mkdtemp()
    boxes_3d = LiDARInstance3DBoxes(torch.tensor([]))
    labels_3d = torch.tensor([])
    scores_3d = torch.tensor([])
    empty_result = dict(
        boxes_3d=boxes_3d, labels_3d=labels_3d, scores_3d=scores_3d)
    results = [empty_result]
    det_annos = self.bbox2result_kitti(
        results, classes, submission_prefix=temp_kitti_result_dir)
    expected_file_path = os.path.join(temp_kitti_result_dir, '000000.txt')
    assert os.path.exists(expected_file_path)
    os.remove(expected_file_path)
    os.removedirs(temp_kitti_result_dir)


yinchimaoliang's avatar
yinchimaoliang committed
252
def test_bbox2result_kitti2d():
xiliu8006's avatar
xiliu8006 committed
253
254
255
256
    data_root, ann_file, classes, pts_prefix,\
        pipeline, modality, split = _generate_kitti_dataset_config()
    self = KittiDataset(data_root, ann_file, split, pts_prefix, pipeline,
                        classes, modality)
yinchimaoliang's avatar
yinchimaoliang committed
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
    bboxes = np.array([[[46.1218, -4.6496, -0.9275, 0.5316, 0.5],
                        [33.3189, 0.1981, 0.3136, 0.5656, 0.5]],
                       [[46.1366, -4.6404, -0.9510, 0.5162, 0.5],
                        [33.2646, 0.2297, 0.3446, 0.5746, 0.5]]])
    det_annos = self.bbox2result_kitti2d([bboxes], classes)
    expected_name = np.array(
        ['Pedestrian', 'Pedestrian', 'Cyclist', 'Cyclist'])
    expected_bbox = np.array([[46.1218, -4.6496, -0.9275, 0.5316],
                              [33.3189, 0.1981, 0.3136, 0.5656],
                              [46.1366, -4.6404, -0.951, 0.5162],
                              [33.2646, 0.2297, 0.3446, 0.5746]])
    expected_score = np.array([0.5, 0.5, 0.5, 0.5])
    assert np.all(det_annos[0]['name'] == expected_name)
    assert np.allclose(det_annos[0]['bbox'], expected_bbox)
    assert np.allclose(det_annos[0]['score'], expected_score)