test_detectors.py 17.5 KB
Newer Older
liyinhao's avatar
liyinhao committed
1
2
3
4
5
6
7
import copy
import numpy as np
import pytest
import random
import torch
from os.path import dirname, exists, join

twang's avatar
twang committed
8
9
from mmdet3d.core.bbox import (CameraInstance3DBoxes, DepthInstance3DBoxes,
                               LiDARInstance3DBoxes)
liyinhao's avatar
liyinhao committed
10
11
12
13
14
15
16
17
18
19
20
21
22
23
from mmdet3d.models.builder import build_detector


def _setup_seed(seed):
    torch.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)
    np.random.seed(seed)
    random.seed(seed)
    torch.backends.cudnn.deterministic = True


def _get_config_directory():
    """Find the predefined detector config directory."""
    try:
24
25
        # Assume we are running in the source mmdetection3d repo
        repo_dpath = dirname(dirname(dirname(__file__)))
liyinhao's avatar
liyinhao committed
26
27
    except NameError:
        # For IPython development when this __file__ is not defined
28
29
        import mmdet3d
        repo_dpath = dirname(dirname(mmdet3d.__file__))
liyinhao's avatar
liyinhao committed
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
    config_dpath = join(repo_dpath, 'configs')
    if not exists(config_dpath):
        raise Exception('Cannot find config path')
    return config_dpath


def _get_config_module(fname):
    """Load a configuration as a python module."""
    from mmcv import Config
    config_dpath = _get_config_directory()
    config_fpath = join(config_dpath, fname)
    config_mod = Config.fromfile(config_fpath)
    return config_mod


def _get_model_cfg(fname):
    """Grab configs necessary to create a model.

48
49
    These are deep copied to allow for safe modification of parameters without
    influencing other tests.
liyinhao's avatar
liyinhao committed
50
51
52
53
54
55
56
57
58
59
    """
    config = _get_config_module(fname)
    model = copy.deepcopy(config.model)

    return model


def _get_detector_cfg(fname):
    """Grab configs necessary to create a detector.

60
61
    These are deep copied to allow for safe modification of parameters without
    influencing other tests.
liyinhao's avatar
liyinhao committed
62
63
64
65
    """
    import mmcv
    config = _get_config_module(fname)
    model = copy.deepcopy(config.model)
66
67
    train_cfg = mmcv.Config(copy.deepcopy(config.model.train_cfg))
    test_cfg = mmcv.Config(copy.deepcopy(config.model.test_cfg))
liyinhao's avatar
liyinhao committed
68

yinchimaoliang's avatar
yinchimaoliang committed
69
70
71
    model.update(train_cfg=train_cfg)
    model.update(test_cfg=test_cfg)
    return model
liyinhao's avatar
liyinhao committed
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115


def test_get_dynamic_voxelnet():
    if not torch.cuda.is_available():
        pytest.skip('test requires GPU and torch+cuda')

    dynamic_voxelnet_cfg = _get_model_cfg(
        'dynamic_voxelization/dv_second_secfpn_6x8_80e_kitti-3d-car.py')
    self = build_detector(dynamic_voxelnet_cfg).cuda()
    points_0 = torch.rand([2010, 4], device='cuda')
    points_1 = torch.rand([2020, 4], device='cuda')
    points = [points_0, points_1]
    feats = self.extract_feat(points, None)
    assert feats[0].shape == torch.Size([2, 512, 200, 176])


def test_voxel_net():
    if not torch.cuda.is_available():
        pytest.skip('test requires GPU and torch+cuda')
    _setup_seed(0)
    voxel_net_cfg = _get_detector_cfg(
        'second/hv_second_secfpn_6x8_80e_kitti-3d-3class.py')

    self = build_detector(voxel_net_cfg).cuda()
    points_0 = torch.rand([2010, 4], device='cuda')
    points_1 = torch.rand([2020, 4], device='cuda')
    points = [points_0, points_1]
    gt_bbox_0 = LiDARInstance3DBoxes(torch.rand([10, 7], device='cuda'))
    gt_bbox_1 = LiDARInstance3DBoxes(torch.rand([10, 7], device='cuda'))
    gt_bboxes = [gt_bbox_0, gt_bbox_1]
    gt_labels_0 = torch.randint(0, 3, [10], device='cuda')
    gt_labels_1 = torch.randint(0, 3, [10], device='cuda')
    gt_labels = [gt_labels_0, gt_labels_1]
    img_meta_0 = dict(box_type_3d=LiDARInstance3DBoxes)
    img_meta_1 = dict(box_type_3d=LiDARInstance3DBoxes)
    img_metas = [img_meta_0, img_meta_1]

    # test forward_train
    losses = self.forward_train(points, img_metas, gt_bboxes, gt_labels)
    assert losses['loss_cls'][0] >= 0
    assert losses['loss_bbox'][0] >= 0
    assert losses['loss_dir'][0] >= 0

    # test simple_test
116
117
    with torch.no_grad():
        results = self.simple_test(points, img_metas)
118
119
120
    boxes_3d = results[0]['boxes_3d']
    scores_3d = results[0]['scores_3d']
    labels_3d = results[0]['labels_3d']
liyinhao's avatar
liyinhao committed
121
122
123
124
125
    assert boxes_3d.tensor.shape == (50, 7)
    assert scores_3d.shape == torch.Size([50])
    assert labels_3d.shape == torch.Size([50])


126
127
128
129
def test_3dssd():
    if not torch.cuda.is_available():
        pytest.skip('test requires GPU and torch+cuda')
    _setup_seed(0)
130
    ssd3d_cfg = _get_detector_cfg('3dssd/3dssd_4x4_kitti-3d-car.py')
131
132
133
134
135
136
137
138
139
140
    self = build_detector(ssd3d_cfg).cuda()
    points_0 = torch.rand([2000, 4], device='cuda')
    points_1 = torch.rand([2000, 4], device='cuda')
    points = [points_0, points_1]
    img_meta_0 = dict(box_type_3d=DepthInstance3DBoxes)
    img_meta_1 = dict(box_type_3d=DepthInstance3DBoxes)
    img_metas = [img_meta_0, img_meta_1]
    gt_bbox_0 = DepthInstance3DBoxes(torch.rand([10, 7], device='cuda'))
    gt_bbox_1 = DepthInstance3DBoxes(torch.rand([10, 7], device='cuda'))
    gt_bboxes = [gt_bbox_0, gt_bbox_1]
141
142
    gt_labels_0 = torch.zeros([10], device='cuda').long()
    gt_labels_1 = torch.zeros([10], device='cuda').long()
143
144
145
146
147
    gt_labels = [gt_labels_0, gt_labels_1]

    # test forward_train
    losses = self.forward_train(points, img_metas, gt_bboxes, gt_labels)
    assert losses['vote_loss'] >= 0
148
    assert losses['centerness_loss'] >= 0
149
150
151
    assert losses['center_loss'] >= 0
    assert losses['dir_class_loss'] >= 0
    assert losses['dir_res_loss'] >= 0
152
    assert losses['corner_loss'] >= 0
153
154
155
    assert losses['size_res_loss'] >= 0

    # test simple_test
156
157
    with torch.no_grad():
        results = self.simple_test(points, img_metas)
158
159
160
161
162
163
164
165
166
    boxes_3d = results[0]['boxes_3d']
    scores_3d = results[0]['scores_3d']
    labels_3d = results[0]['labels_3d']
    assert boxes_3d.tensor.shape[0] >= 0
    assert boxes_3d.tensor.shape[1] == 7
    assert scores_3d.shape[0] >= 0
    assert labels_3d.shape[0] >= 0


liyinhao's avatar
liyinhao committed
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
def test_vote_net():
    if not torch.cuda.is_available():
        pytest.skip('test requires GPU and torch+cuda')

    _setup_seed(0)
    vote_net_cfg = _get_detector_cfg(
        'votenet/votenet_16x8_sunrgbd-3d-10class.py')
    self = build_detector(vote_net_cfg).cuda()
    points_0 = torch.rand([2000, 4], device='cuda')
    points_1 = torch.rand([2000, 4], device='cuda')
    points = [points_0, points_1]
    img_meta_0 = dict(box_type_3d=DepthInstance3DBoxes)
    img_meta_1 = dict(box_type_3d=DepthInstance3DBoxes)
    img_metas = [img_meta_0, img_meta_1]
    gt_bbox_0 = DepthInstance3DBoxes(torch.rand([10, 7], device='cuda'))
    gt_bbox_1 = DepthInstance3DBoxes(torch.rand([10, 7], device='cuda'))
    gt_bboxes = [gt_bbox_0, gt_bbox_1]
    gt_labels_0 = torch.randint(0, 10, [10], device='cuda')
    gt_labels_1 = torch.randint(0, 10, [10], device='cuda')
    gt_labels = [gt_labels_0, gt_labels_1]

    # test forward_train
    losses = self.forward_train(points, img_metas, gt_bboxes, gt_labels)
    assert losses['vote_loss'] >= 0
    assert losses['objectness_loss'] >= 0
    assert losses['semantic_loss'] >= 0
    assert losses['center_loss'] >= 0
    assert losses['dir_class_loss'] >= 0
    assert losses['dir_res_loss'] >= 0
    assert losses['size_class_loss'] >= 0
    assert losses['size_res_loss'] >= 0

    # test simple_test
200
201
    with torch.no_grad():
        results = self.simple_test(points, img_metas)
202
203
204
    boxes_3d = results[0]['boxes_3d']
    scores_3d = results[0]['scores_3d']
    labels_3d = results[0]['labels_3d']
liyinhao's avatar
liyinhao committed
205
206
207
208
209
210
211
212
213
214
215
216
217
    assert boxes_3d.tensor.shape[0] >= 0
    assert boxes_3d.tensor.shape[1] == 7
    assert scores_3d.shape[0] >= 0
    assert labels_3d.shape[0] >= 0


def test_parta2():
    if not torch.cuda.is_available():
        pytest.skip('test requires GPU and torch+cuda')
    _setup_seed(0)
    parta2 = _get_detector_cfg(
        'parta2/hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-3class.py')
    self = build_detector(parta2).cuda()
218
219
    points_0 = torch.rand([1000, 4], device='cuda')
    points_1 = torch.rand([1000, 4], device='cuda')
liyinhao's avatar
liyinhao committed
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
    points = [points_0, points_1]
    img_meta_0 = dict(box_type_3d=LiDARInstance3DBoxes)
    img_meta_1 = dict(box_type_3d=LiDARInstance3DBoxes)
    img_metas = [img_meta_0, img_meta_1]
    gt_bbox_0 = LiDARInstance3DBoxes(torch.rand([10, 7], device='cuda'))
    gt_bbox_1 = LiDARInstance3DBoxes(torch.rand([10, 7], device='cuda'))
    gt_bboxes = [gt_bbox_0, gt_bbox_1]
    gt_labels_0 = torch.randint(0, 3, [10], device='cuda')
    gt_labels_1 = torch.randint(0, 3, [10], device='cuda')
    gt_labels = [gt_labels_0, gt_labels_1]

    # test_forward_train
    losses = self.forward_train(points, img_metas, gt_bboxes, gt_labels)
    assert losses['loss_rpn_cls'][0] >= 0
    assert losses['loss_rpn_bbox'][0] >= 0
    assert losses['loss_rpn_dir'][0] >= 0
    assert losses['loss_seg'] >= 0
    assert losses['loss_part'] >= 0
    assert losses['loss_cls'] >= 0
    assert losses['loss_bbox'] >= 0
    assert losses['loss_corner'] >= 0

    # test_simple_test
243
244
    with torch.no_grad():
        results = self.simple_test(points, img_metas)
245
246
247
    boxes_3d = results[0]['boxes_3d']
    scores_3d = results[0]['scores_3d']
    labels_3d = results[0]['labels_3d']
liyinhao's avatar
liyinhao committed
248
249
250
251
    assert boxes_3d.tensor.shape[0] >= 0
    assert boxes_3d.tensor.shape[1] == 7
    assert scores_3d.shape[0] >= 0
    assert labels_3d.shape[0] >= 0
252
253
254
255
256
257


def test_centerpoint():
    if not torch.cuda.is_available():
        pytest.skip('test requires GPU and torch+cuda')
    centerpoint = _get_detector_cfg(
258
259
        'centerpoint/centerpoint_0075voxel_second_secfpn_'
        'dcn_4x8_cyclic_flip-tta_20e_nus.py')
260
261
262
263
    self = build_detector(centerpoint).cuda()
    points_0 = torch.rand([1000, 5], device='cuda')
    points_1 = torch.rand([1000, 5], device='cuda')
    points = [points_0, points_1]
264
265
266
267
268
269
270
271
272
273
    img_meta_0 = dict(
        box_type_3d=LiDARInstance3DBoxes,
        flip=True,
        pcd_horizontal_flip=True,
        pcd_vertical_flip=False)
    img_meta_1 = dict(
        box_type_3d=LiDARInstance3DBoxes,
        flip=True,
        pcd_horizontal_flip=False,
        pcd_vertical_flip=True)
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
    img_metas = [img_meta_0, img_meta_1]
    gt_bbox_0 = LiDARInstance3DBoxes(
        torch.rand([10, 9], device='cuda'), box_dim=9)
    gt_bbox_1 = LiDARInstance3DBoxes(
        torch.rand([10, 9], device='cuda'), box_dim=9)
    gt_bboxes = [gt_bbox_0, gt_bbox_1]
    gt_labels_0 = torch.randint(0, 3, [10], device='cuda')
    gt_labels_1 = torch.randint(0, 3, [10], device='cuda')
    gt_labels = [gt_labels_0, gt_labels_1]

    # test_forward_train
    losses = self.forward_train(points, img_metas, gt_bboxes, gt_labels)
    for key, value in losses.items():
        assert value >= 0

    # test_simple_test
290
291
    with torch.no_grad():
        results = self.simple_test(points, img_metas)
292
293
294
295
296
297
298
299
300
301
302
303
304
305
    boxes_3d_0 = results[0]['pts_bbox']['boxes_3d']
    scores_3d_0 = results[0]['pts_bbox']['scores_3d']
    labels_3d_0 = results[0]['pts_bbox']['labels_3d']
    assert boxes_3d_0.tensor.shape[0] >= 0
    assert boxes_3d_0.tensor.shape[1] == 9
    assert scores_3d_0.shape[0] >= 0
    assert labels_3d_0.shape[0] >= 0
    boxes_3d_1 = results[1]['pts_bbox']['boxes_3d']
    scores_3d_1 = results[1]['pts_bbox']['scores_3d']
    labels_3d_1 = results[1]['pts_bbox']['labels_3d']
    assert boxes_3d_1.tensor.shape[0] >= 0
    assert boxes_3d_1.tensor.shape[1] == 9
    assert scores_3d_1.shape[0] >= 0
    assert labels_3d_1.shape[0] >= 0
306
307
308
309
310
311
312
313
314
315
316

    # test_aug_test
    points = [[torch.rand([1000, 5], device='cuda')]]
    img_metas = [[
        dict(
            box_type_3d=LiDARInstance3DBoxes,
            pcd_scale_factor=1.0,
            flip=True,
            pcd_horizontal_flip=True,
            pcd_vertical_flip=False)
    ]]
317
318
    with torch.no_grad():
        results = self.aug_test(points, img_metas)
319
320
321
322
323
324
325
    boxes_3d_0 = results[0]['pts_bbox']['boxes_3d']
    scores_3d_0 = results[0]['pts_bbox']['scores_3d']
    labels_3d_0 = results[0]['pts_bbox']['labels_3d']
    assert boxes_3d_0.tensor.shape[0] >= 0
    assert boxes_3d_0.tensor.shape[1] == 9
    assert scores_3d_0.shape[0] >= 0
    assert labels_3d_0.shape[0] >= 0
twang's avatar
twang committed
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346


def test_fcos3d():
    if not torch.cuda.is_available():
        pytest.skip('test requires GPU and torch+cuda')

    _setup_seed(0)
    fcos3d_cfg = _get_detector_cfg(
        'fcos3d/fcos3d_r101_caffe_fpn_gn-head_dcn_2x8_1x_nus-mono3d.py')
    self = build_detector(fcos3d_cfg).cuda()
    imgs = torch.rand([1, 3, 928, 1600], dtype=torch.float32).cuda()
    gt_bboxes = [torch.rand([3, 4], dtype=torch.float32).cuda()]
    gt_bboxes_3d = CameraInstance3DBoxes(
        torch.rand([3, 9], device='cuda'), box_dim=9)
    gt_labels = [torch.randint(0, 10, [3], device='cuda')]
    gt_labels_3d = gt_labels
    centers2d = [torch.rand([3, 2], dtype=torch.float32).cuda()]
    depths = [torch.rand([3], dtype=torch.float32).cuda()]
    attr_labels = [torch.randint(0, 9, [3], device='cuda')]
    img_metas = [
        dict(
347
348
349
            cam2img=[[1260.8474446004698, 0.0, 807.968244525554],
                     [0.0, 1260.8474446004698, 495.3344268742088],
                     [0.0, 0.0, 1.0]],
twang's avatar
twang committed
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
            scale_factor=np.array([1., 1., 1., 1.], dtype=np.float32),
            box_type_3d=CameraInstance3DBoxes)
    ]

    # test forward_train
    losses = self.forward_train(imgs, img_metas, gt_bboxes, gt_labels,
                                gt_bboxes_3d, gt_labels_3d, centers2d, depths,
                                attr_labels)
    assert losses['loss_cls'] >= 0
    assert losses['loss_offset'] >= 0
    assert losses['loss_depth'] >= 0
    assert losses['loss_size'] >= 0
    assert losses['loss_rotsin'] >= 0
    assert losses['loss_centerness'] >= 0
    assert losses['loss_velo'] >= 0
    assert losses['loss_dir'] >= 0
    assert losses['loss_attr'] >= 0

    # test simple_test
369
370
    with torch.no_grad():
        results = self.simple_test(imgs, img_metas)
twang's avatar
twang committed
371
372
373
374
375
376
377
378
379
    boxes_3d = results[0]['img_bbox']['boxes_3d']
    scores_3d = results[0]['img_bbox']['scores_3d']
    labels_3d = results[0]['img_bbox']['labels_3d']
    attrs_3d = results[0]['img_bbox']['attrs_3d']
    assert boxes_3d.tensor.shape[0] >= 0
    assert boxes_3d.tensor.shape[1] == 9
    assert scores_3d.shape[0] >= 0
    assert labels_3d.shape[0] >= 0
    assert attrs_3d.shape[0] >= 0
380
381


hjin2902's avatar
hjin2902 committed
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
def test_groupfree3dnet():
    if not torch.cuda.is_available():
        pytest.skip('test requires GPU and torch+cuda')

    _setup_seed(0)
    groupfree3d_cfg = _get_detector_cfg(
        'groupfree3d/groupfree3d_8x8_scannet-3d-18class-L6-O256.py')
    self = build_detector(groupfree3d_cfg).cuda()

    points_0 = torch.rand([50000, 3], device='cuda')
    points_1 = torch.rand([50000, 3], device='cuda')
    points = [points_0, points_1]
    img_meta_0 = dict(box_type_3d=DepthInstance3DBoxes)
    img_meta_1 = dict(box_type_3d=DepthInstance3DBoxes)
    img_metas = [img_meta_0, img_meta_1]
    gt_bbox_0 = DepthInstance3DBoxes(torch.rand([10, 7], device='cuda'))
    gt_bbox_1 = DepthInstance3DBoxes(torch.rand([10, 7], device='cuda'))
    gt_bboxes = [gt_bbox_0, gt_bbox_1]
    gt_labels_0 = torch.randint(0, 18, [10], device='cuda')
    gt_labels_1 = torch.randint(0, 18, [10], device='cuda')
    gt_labels = [gt_labels_0, gt_labels_1]
    pts_instance_mask_1 = torch.randint(0, 10, [50000], device='cuda')
    pts_instance_mask_2 = torch.randint(0, 10, [50000], device='cuda')
    pts_instance_mask = [pts_instance_mask_1, pts_instance_mask_2]
    pts_semantic_mask_1 = torch.randint(0, 19, [50000], device='cuda')
    pts_semantic_mask_2 = torch.randint(0, 19, [50000], device='cuda')
    pts_semantic_mask = [pts_semantic_mask_1, pts_semantic_mask_2]

    # test forward_train
    losses = self.forward_train(points, img_metas, gt_bboxes, gt_labels,
                                pts_semantic_mask, pts_instance_mask)

    assert losses['sampling_objectness_loss'] >= 0
    assert losses['s5.objectness_loss'] >= 0
    assert losses['s5.semantic_loss'] >= 0
    assert losses['s5.center_loss'] >= 0
    assert losses['s5.dir_class_loss'] >= 0
    assert losses['s5.dir_res_loss'] >= 0
    assert losses['s5.size_class_loss'] >= 0
    assert losses['s5.size_res_loss'] >= 0

    # test simple_test
    with torch.no_grad():
        results = self.simple_test(points, img_metas)
    boxes_3d = results[0]['boxes_3d']
    scores_3d = results[0]['scores_3d']
    labels_3d = results[0]['labels_3d']
    assert boxes_3d.tensor.shape[0] >= 0
    assert boxes_3d.tensor.shape[1] == 7
    assert scores_3d.shape[0] >= 0
    assert labels_3d.shape[0] >= 0


435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
def test_imvoxelnet():
    if not torch.cuda.is_available():
        pytest.skip('test requires GPU and torch+cuda')

    imvoxelnet_cfg = _get_detector_cfg('imvoxelnet/imvoxelnet_kitti-3d-car.py')
    self = build_detector(imvoxelnet_cfg).cuda()
    imgs = torch.rand([1, 3, 384, 1280], dtype=torch.float32).cuda()
    gt_bboxes_3d = [LiDARInstance3DBoxes(torch.rand([3, 7], device='cuda'))]
    gt_labels_3d = [torch.zeros([3], dtype=torch.long, device='cuda')]
    img_metas = [
        dict(
            box_type_3d=LiDARInstance3DBoxes,
            lidar2img=np.array([[6.0e+02, -7.2e+02, -1.2e+00, -1.2e+02],
                                [1.8e+02, 7.6e+00, -7.1e+02, -1.0e+02],
                                [9.9e-01, 1.2e-04, 1.0e-02, -2.6e-01],
                                [0.0e+00, 0.0e+00, 0.0e+00, 1.0e+00]],
                               dtype=np.float32),
            img_shape=(384, 1272, 3))
    ]

    # test forward_train
    losses = self.forward_train(imgs, img_metas, gt_bboxes_3d, gt_labels_3d)
    assert losses['loss_cls'][0] >= 0
    assert losses['loss_bbox'][0] >= 0
    assert losses['loss_dir'][0] >= 0

    # test simple_test
    with torch.no_grad():
        results = self.simple_test(imgs, img_metas)
    boxes_3d = results[0]['boxes_3d']
    scores_3d = results[0]['scores_3d']
    labels_3d = results[0]['labels_3d']
    assert boxes_3d.tensor.shape[0] >= 0
    assert boxes_3d.tensor.shape[1] == 7
    assert scores_3d.shape[0] >= 0
    assert labels_3d.shape[0] >= 0