test_detectors.py 13.6 KB
Newer Older
liyinhao's avatar
liyinhao committed
1
2
3
4
5
6
7
import copy
import numpy as np
import pytest
import random
import torch
from os.path import dirname, exists, join

twang's avatar
twang committed
8
9
from mmdet3d.core.bbox import (CameraInstance3DBoxes, DepthInstance3DBoxes,
                               LiDARInstance3DBoxes)
liyinhao's avatar
liyinhao committed
10
11
12
13
14
15
16
17
18
19
20
21
22
23
from mmdet3d.models.builder import build_detector


def _setup_seed(seed):
    torch.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)
    np.random.seed(seed)
    random.seed(seed)
    torch.backends.cudnn.deterministic = True


def _get_config_directory():
    """Find the predefined detector config directory."""
    try:
24
25
        # Assume we are running in the source mmdetection3d repo
        repo_dpath = dirname(dirname(dirname(__file__)))
liyinhao's avatar
liyinhao committed
26
27
    except NameError:
        # For IPython development when this __file__ is not defined
28
29
        import mmdet3d
        repo_dpath = dirname(dirname(mmdet3d.__file__))
liyinhao's avatar
liyinhao committed
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
    config_dpath = join(repo_dpath, 'configs')
    if not exists(config_dpath):
        raise Exception('Cannot find config path')
    return config_dpath


def _get_config_module(fname):
    """Load a configuration as a python module."""
    from mmcv import Config
    config_dpath = _get_config_directory()
    config_fpath = join(config_dpath, fname)
    config_mod = Config.fromfile(config_fpath)
    return config_mod


def _get_model_cfg(fname):
    """Grab configs necessary to create a model.

48
49
    These are deep copied to allow for safe modification of parameters without
    influencing other tests.
liyinhao's avatar
liyinhao committed
50
51
52
53
54
55
56
57
58
59
    """
    config = _get_config_module(fname)
    model = copy.deepcopy(config.model)

    return model


def _get_detector_cfg(fname):
    """Grab configs necessary to create a detector.

60
61
    These are deep copied to allow for safe modification of parameters without
    influencing other tests.
liyinhao's avatar
liyinhao committed
62
63
64
65
    """
    import mmcv
    config = _get_config_module(fname)
    model = copy.deepcopy(config.model)
66
67
    train_cfg = mmcv.Config(copy.deepcopy(config.model.train_cfg))
    test_cfg = mmcv.Config(copy.deepcopy(config.model.test_cfg))
liyinhao's avatar
liyinhao committed
68

yinchimaoliang's avatar
yinchimaoliang committed
69
70
71
    model.update(train_cfg=train_cfg)
    model.update(test_cfg=test_cfg)
    return model
liyinhao's avatar
liyinhao committed
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116


def test_get_dynamic_voxelnet():
    if not torch.cuda.is_available():
        pytest.skip('test requires GPU and torch+cuda')

    dynamic_voxelnet_cfg = _get_model_cfg(
        'dynamic_voxelization/dv_second_secfpn_6x8_80e_kitti-3d-car.py')
    self = build_detector(dynamic_voxelnet_cfg).cuda()
    points_0 = torch.rand([2010, 4], device='cuda')
    points_1 = torch.rand([2020, 4], device='cuda')
    points = [points_0, points_1]
    feats = self.extract_feat(points, None)
    assert feats[0].shape == torch.Size([2, 512, 200, 176])


def test_voxel_net():
    if not torch.cuda.is_available():
        pytest.skip('test requires GPU and torch+cuda')
    _setup_seed(0)
    voxel_net_cfg = _get_detector_cfg(
        'second/hv_second_secfpn_6x8_80e_kitti-3d-3class.py')

    self = build_detector(voxel_net_cfg).cuda()
    points_0 = torch.rand([2010, 4], device='cuda')
    points_1 = torch.rand([2020, 4], device='cuda')
    points = [points_0, points_1]
    gt_bbox_0 = LiDARInstance3DBoxes(torch.rand([10, 7], device='cuda'))
    gt_bbox_1 = LiDARInstance3DBoxes(torch.rand([10, 7], device='cuda'))
    gt_bboxes = [gt_bbox_0, gt_bbox_1]
    gt_labels_0 = torch.randint(0, 3, [10], device='cuda')
    gt_labels_1 = torch.randint(0, 3, [10], device='cuda')
    gt_labels = [gt_labels_0, gt_labels_1]
    img_meta_0 = dict(box_type_3d=LiDARInstance3DBoxes)
    img_meta_1 = dict(box_type_3d=LiDARInstance3DBoxes)
    img_metas = [img_meta_0, img_meta_1]

    # test forward_train
    losses = self.forward_train(points, img_metas, gt_bboxes, gt_labels)
    assert losses['loss_cls'][0] >= 0
    assert losses['loss_bbox'][0] >= 0
    assert losses['loss_dir'][0] >= 0

    # test simple_test
    results = self.simple_test(points, img_metas)
117
118
119
    boxes_3d = results[0]['boxes_3d']
    scores_3d = results[0]['scores_3d']
    labels_3d = results[0]['labels_3d']
liyinhao's avatar
liyinhao committed
120
121
122
123
124
    assert boxes_3d.tensor.shape == (50, 7)
    assert scores_3d.shape == torch.Size([50])
    assert labels_3d.shape == torch.Size([50])


125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
def test_3dssd():
    if not torch.cuda.is_available():
        pytest.skip('test requires GPU and torch+cuda')
    _setup_seed(0)
    ssd3d_cfg = _get_detector_cfg('3dssd/3dssd_kitti-3d-car.py')
    self = build_detector(ssd3d_cfg).cuda()
    points_0 = torch.rand([2000, 4], device='cuda')
    points_1 = torch.rand([2000, 4], device='cuda')
    points = [points_0, points_1]
    img_meta_0 = dict(box_type_3d=DepthInstance3DBoxes)
    img_meta_1 = dict(box_type_3d=DepthInstance3DBoxes)
    img_metas = [img_meta_0, img_meta_1]
    gt_bbox_0 = DepthInstance3DBoxes(torch.rand([10, 7], device='cuda'))
    gt_bbox_1 = DepthInstance3DBoxes(torch.rand([10, 7], device='cuda'))
    gt_bboxes = [gt_bbox_0, gt_bbox_1]
140
141
    gt_labels_0 = torch.zeros([10], device='cuda').long()
    gt_labels_1 = torch.zeros([10], device='cuda').long()
142
143
144
145
146
    gt_labels = [gt_labels_0, gt_labels_1]

    # test forward_train
    losses = self.forward_train(points, img_metas, gt_bboxes, gt_labels)
    assert losses['vote_loss'] >= 0
147
    assert losses['centerness_loss'] >= 0
148
149
150
    assert losses['center_loss'] >= 0
    assert losses['dir_class_loss'] >= 0
    assert losses['dir_res_loss'] >= 0
151
    assert losses['corner_loss'] >= 0
152
153
154
155
156
157
158
159
160
161
162
163
164
    assert losses['size_res_loss'] >= 0

    # test simple_test
    results = self.simple_test(points, img_metas)
    boxes_3d = results[0]['boxes_3d']
    scores_3d = results[0]['scores_3d']
    labels_3d = results[0]['labels_3d']
    assert boxes_3d.tensor.shape[0] >= 0
    assert boxes_3d.tensor.shape[1] == 7
    assert scores_3d.shape[0] >= 0
    assert labels_3d.shape[0] >= 0


liyinhao's avatar
liyinhao committed
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
def test_vote_net():
    if not torch.cuda.is_available():
        pytest.skip('test requires GPU and torch+cuda')

    _setup_seed(0)
    vote_net_cfg = _get_detector_cfg(
        'votenet/votenet_16x8_sunrgbd-3d-10class.py')
    self = build_detector(vote_net_cfg).cuda()
    points_0 = torch.rand([2000, 4], device='cuda')
    points_1 = torch.rand([2000, 4], device='cuda')
    points = [points_0, points_1]
    img_meta_0 = dict(box_type_3d=DepthInstance3DBoxes)
    img_meta_1 = dict(box_type_3d=DepthInstance3DBoxes)
    img_metas = [img_meta_0, img_meta_1]
    gt_bbox_0 = DepthInstance3DBoxes(torch.rand([10, 7], device='cuda'))
    gt_bbox_1 = DepthInstance3DBoxes(torch.rand([10, 7], device='cuda'))
    gt_bboxes = [gt_bbox_0, gt_bbox_1]
    gt_labels_0 = torch.randint(0, 10, [10], device='cuda')
    gt_labels_1 = torch.randint(0, 10, [10], device='cuda')
    gt_labels = [gt_labels_0, gt_labels_1]

    # test forward_train
    losses = self.forward_train(points, img_metas, gt_bboxes, gt_labels)
    assert losses['vote_loss'] >= 0
    assert losses['objectness_loss'] >= 0
    assert losses['semantic_loss'] >= 0
    assert losses['center_loss'] >= 0
    assert losses['dir_class_loss'] >= 0
    assert losses['dir_res_loss'] >= 0
    assert losses['size_class_loss'] >= 0
    assert losses['size_res_loss'] >= 0

    # test simple_test
    results = self.simple_test(points, img_metas)
199
200
201
    boxes_3d = results[0]['boxes_3d']
    scores_3d = results[0]['scores_3d']
    labels_3d = results[0]['labels_3d']
liyinhao's avatar
liyinhao committed
202
203
204
205
206
207
208
209
210
211
212
213
214
    assert boxes_3d.tensor.shape[0] >= 0
    assert boxes_3d.tensor.shape[1] == 7
    assert scores_3d.shape[0] >= 0
    assert labels_3d.shape[0] >= 0


def test_parta2():
    if not torch.cuda.is_available():
        pytest.skip('test requires GPU and torch+cuda')
    _setup_seed(0)
    parta2 = _get_detector_cfg(
        'parta2/hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-3class.py')
    self = build_detector(parta2).cuda()
215
216
    points_0 = torch.rand([1000, 4], device='cuda')
    points_1 = torch.rand([1000, 4], device='cuda')
liyinhao's avatar
liyinhao committed
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
    points = [points_0, points_1]
    img_meta_0 = dict(box_type_3d=LiDARInstance3DBoxes)
    img_meta_1 = dict(box_type_3d=LiDARInstance3DBoxes)
    img_metas = [img_meta_0, img_meta_1]
    gt_bbox_0 = LiDARInstance3DBoxes(torch.rand([10, 7], device='cuda'))
    gt_bbox_1 = LiDARInstance3DBoxes(torch.rand([10, 7], device='cuda'))
    gt_bboxes = [gt_bbox_0, gt_bbox_1]
    gt_labels_0 = torch.randint(0, 3, [10], device='cuda')
    gt_labels_1 = torch.randint(0, 3, [10], device='cuda')
    gt_labels = [gt_labels_0, gt_labels_1]

    # test_forward_train
    losses = self.forward_train(points, img_metas, gt_bboxes, gt_labels)
    assert losses['loss_rpn_cls'][0] >= 0
    assert losses['loss_rpn_bbox'][0] >= 0
    assert losses['loss_rpn_dir'][0] >= 0
    assert losses['loss_seg'] >= 0
    assert losses['loss_part'] >= 0
    assert losses['loss_cls'] >= 0
    assert losses['loss_bbox'] >= 0
    assert losses['loss_corner'] >= 0

    # test_simple_test
    results = self.simple_test(points, img_metas)
241
242
243
    boxes_3d = results[0]['boxes_3d']
    scores_3d = results[0]['scores_3d']
    labels_3d = results[0]['labels_3d']
liyinhao's avatar
liyinhao committed
244
245
246
247
    assert boxes_3d.tensor.shape[0] >= 0
    assert boxes_3d.tensor.shape[1] == 7
    assert scores_3d.shape[0] >= 0
    assert labels_3d.shape[0] >= 0
248
249
250
251
252
253


def test_centerpoint():
    if not torch.cuda.is_available():
        pytest.skip('test requires GPU and torch+cuda')
    centerpoint = _get_detector_cfg(
254
255
        'centerpoint/centerpoint_0075voxel_second_secfpn_'
        'dcn_4x8_cyclic_flip-tta_20e_nus.py')
256
257
258
259
    self = build_detector(centerpoint).cuda()
    points_0 = torch.rand([1000, 5], device='cuda')
    points_1 = torch.rand([1000, 5], device='cuda')
    points = [points_0, points_1]
260
261
262
263
264
265
266
267
268
269
    img_meta_0 = dict(
        box_type_3d=LiDARInstance3DBoxes,
        flip=True,
        pcd_horizontal_flip=True,
        pcd_vertical_flip=False)
    img_meta_1 = dict(
        box_type_3d=LiDARInstance3DBoxes,
        flip=True,
        pcd_horizontal_flip=False,
        pcd_vertical_flip=True)
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
    img_metas = [img_meta_0, img_meta_1]
    gt_bbox_0 = LiDARInstance3DBoxes(
        torch.rand([10, 9], device='cuda'), box_dim=9)
    gt_bbox_1 = LiDARInstance3DBoxes(
        torch.rand([10, 9], device='cuda'), box_dim=9)
    gt_bboxes = [gt_bbox_0, gt_bbox_1]
    gt_labels_0 = torch.randint(0, 3, [10], device='cuda')
    gt_labels_1 = torch.randint(0, 3, [10], device='cuda')
    gt_labels = [gt_labels_0, gt_labels_1]

    # test_forward_train
    losses = self.forward_train(points, img_metas, gt_bboxes, gt_labels)
    for key, value in losses.items():
        assert value >= 0

    # test_simple_test
    results = self.simple_test(points, img_metas)
    boxes_3d_0 = results[0]['pts_bbox']['boxes_3d']
    scores_3d_0 = results[0]['pts_bbox']['scores_3d']
    labels_3d_0 = results[0]['pts_bbox']['labels_3d']
    assert boxes_3d_0.tensor.shape[0] >= 0
    assert boxes_3d_0.tensor.shape[1] == 9
    assert scores_3d_0.shape[0] >= 0
    assert labels_3d_0.shape[0] >= 0
    boxes_3d_1 = results[1]['pts_bbox']['boxes_3d']
    scores_3d_1 = results[1]['pts_bbox']['scores_3d']
    labels_3d_1 = results[1]['pts_bbox']['labels_3d']
    assert boxes_3d_1.tensor.shape[0] >= 0
    assert boxes_3d_1.tensor.shape[1] == 9
    assert scores_3d_1.shape[0] >= 0
    assert labels_3d_1.shape[0] >= 0
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319

    # test_aug_test
    points = [[torch.rand([1000, 5], device='cuda')]]
    img_metas = [[
        dict(
            box_type_3d=LiDARInstance3DBoxes,
            pcd_scale_factor=1.0,
            flip=True,
            pcd_horizontal_flip=True,
            pcd_vertical_flip=False)
    ]]
    results = self.aug_test(points, img_metas)
    boxes_3d_0 = results[0]['pts_bbox']['boxes_3d']
    scores_3d_0 = results[0]['pts_bbox']['scores_3d']
    labels_3d_0 = results[0]['pts_bbox']['labels_3d']
    assert boxes_3d_0.tensor.shape[0] >= 0
    assert boxes_3d_0.tensor.shape[1] == 9
    assert scores_3d_0.shape[0] >= 0
    assert labels_3d_0.shape[0] >= 0
twang's avatar
twang committed
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372


def test_fcos3d():
    if not torch.cuda.is_available():
        pytest.skip('test requires GPU and torch+cuda')

    _setup_seed(0)
    fcos3d_cfg = _get_detector_cfg(
        'fcos3d/fcos3d_r101_caffe_fpn_gn-head_dcn_2x8_1x_nus-mono3d.py')
    self = build_detector(fcos3d_cfg).cuda()
    imgs = torch.rand([1, 3, 928, 1600], dtype=torch.float32).cuda()
    gt_bboxes = [torch.rand([3, 4], dtype=torch.float32).cuda()]
    gt_bboxes_3d = CameraInstance3DBoxes(
        torch.rand([3, 9], device='cuda'), box_dim=9)
    gt_labels = [torch.randint(0, 10, [3], device='cuda')]
    gt_labels_3d = gt_labels
    centers2d = [torch.rand([3, 2], dtype=torch.float32).cuda()]
    depths = [torch.rand([3], dtype=torch.float32).cuda()]
    attr_labels = [torch.randint(0, 9, [3], device='cuda')]
    img_metas = [
        dict(
            cam_intrinsic=[[1260.8474446004698, 0.0, 807.968244525554],
                           [0.0, 1260.8474446004698, 495.3344268742088],
                           [0.0, 0.0, 1.0]],
            scale_factor=np.array([1., 1., 1., 1.], dtype=np.float32),
            box_type_3d=CameraInstance3DBoxes)
    ]

    # test forward_train
    losses = self.forward_train(imgs, img_metas, gt_bboxes, gt_labels,
                                gt_bboxes_3d, gt_labels_3d, centers2d, depths,
                                attr_labels)
    assert losses['loss_cls'] >= 0
    assert losses['loss_offset'] >= 0
    assert losses['loss_depth'] >= 0
    assert losses['loss_size'] >= 0
    assert losses['loss_rotsin'] >= 0
    assert losses['loss_centerness'] >= 0
    assert losses['loss_velo'] >= 0
    assert losses['loss_dir'] >= 0
    assert losses['loss_attr'] >= 0

    # test simple_test
    results = self.simple_test(imgs, img_metas)
    boxes_3d = results[0]['img_bbox']['boxes_3d']
    scores_3d = results[0]['img_bbox']['scores_3d']
    labels_3d = results[0]['img_bbox']['labels_3d']
    attrs_3d = results[0]['img_bbox']['attrs_3d']
    assert boxes_3d.tensor.shape[0] >= 0
    assert boxes_3d.tensor.shape[1] == 9
    assert scores_3d.shape[0] >= 0
    assert labels_3d.shape[0] >= 0
    assert attrs_3d.shape[0] >= 0