test_indoor_eval.py 5.15 KB
Newer Older
liyinhao's avatar
liyinhao committed
1
import numpy as np
Wenwei Zhang's avatar
Wenwei Zhang committed
2
import pytest
liyinhao's avatar
liyinhao committed
3
import torch
liyinhao's avatar
liyinhao committed
4

liyinhao's avatar
liyinhao committed
5
from mmdet3d.core.evaluation.indoor_eval import average_precision, indoor_eval
liyinhao's avatar
liyinhao committed
6
7
8


def test_indoor_eval():
Wenwei Zhang's avatar
Wenwei Zhang committed
9
10
    if not torch.cuda.is_available():
        pytest.skip()
zhangwenwei's avatar
zhangwenwei committed
11
    from mmdet3d.core.bbox.structures import Box3DMode, DepthInstance3DBoxes
liyinhao's avatar
liyinhao committed
12
13
    det_infos = [{
        'labels_3d':
wuyuefeng's avatar
wuyuefeng committed
14
        torch.tensor([0, 1, 2, 2, 0, 3, 1, 2, 3, 2]),
liyinhao's avatar
liyinhao committed
15
        'boxes_3d':
wuyuefeng's avatar
wuyuefeng committed
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
        DepthInstance3DBoxes(
            torch.tensor([[
                -2.4089e-03, -3.3174e+00, 4.9438e-01, 2.1668e+00, 2.8431e-01,
                1.6506e+00, 0.0000e+00
            ],
                          [
                              -3.4269e-01, -2.7565e+00, 2.8144e-02, 6.8554e-01,
                              9.6854e-01, 6.1755e-01, 0.0000e+00
                          ],
                          [
                              -3.8320e+00, -1.0646e+00, 1.7074e-01, 2.4981e-01,
                              4.4708e-01, 6.2538e-01, 0.0000e+00
                          ],
                          [
                              4.1073e-01, 3.3757e+00, 3.4311e-01, 8.0617e-01,
                              2.8679e-01, 1.6060e+00, 0.0000e+00
                          ],
                          [
                              6.1199e-01, -3.1041e+00, 4.1873e-01, 1.2310e+00,
                              4.0162e-01, 1.7303e+00, 0.0000e+00
                          ],
                          [
                              -5.9877e-01, -2.6011e+00, 1.1148e+00, 1.5704e-01,
                              7.5957e-01, 9.6930e-01, 0.0000e+00
                          ],
                          [
                              2.7462e-01, -3.0088e+00, 6.5231e-02, 8.1208e-01,
                              4.1861e-01, 3.7339e-01, 0.0000e+00
                          ],
                          [
                              -1.4704e+00, -2.0024e+00, 2.7479e-01, 1.7888e+00,
                              1.0566e+00, 1.3704e+00, 0.0000e+00
                          ],
                          [
                              8.2727e-02, -3.1160e+00, 2.5690e-01, 1.4054e+00,
                              2.0772e-01, 9.6792e-01, 0.0000e+00
                          ],
                          [
                              2.6896e+00, 1.9881e+00, 1.1566e+00, 9.9885e-02,
                              3.5713e-01, 4.5638e-01, 0.0000e+00
                          ]]),
            origin=(0.5, 0.5, 0)),
liyinhao's avatar
liyinhao committed
58
        'scores_3d':
wuyuefeng's avatar
wuyuefeng committed
59
60
61
62
        torch.tensor([
            1.7516e-05, 1.0167e-06, 8.4486e-07, 7.1048e-02, 6.4274e-05,
            1.5003e-07, 5.8102e-06, 1.9399e-08, 5.3126e-07, 1.8630e-09
        ])
liyinhao's avatar
liyinhao committed
63
    }]
liyinhao's avatar
liyinhao committed
64
65
66
67
68
69
70
71
72

    label2cat = {
        0: 'cabinet',
        1: 'bed',
        2: 'chair',
        3: 'sofa',
    }
    gt_annos = [{
        'gt_num':
wuyuefeng's avatar
wuyuefeng committed
73
        10,
liyinhao's avatar
liyinhao committed
74
75
        'gt_boxes_upright_depth':
        np.array([[
wuyuefeng's avatar
wuyuefeng committed
76
77
            -2.4089e-03, -3.3174e+00, 4.9438e-01, 2.1668e+00, 2.8431e-01,
            1.6506e+00, 0.0000e+00
liyinhao's avatar
liyinhao committed
78
        ],
liyinhao's avatar
liyinhao committed
79
                  [
wuyuefeng's avatar
wuyuefeng committed
80
81
                      -3.4269e-01, -2.7565e+00, 2.8144e-02, 6.8554e-01,
                      9.6854e-01, 6.1755e-01, 0.0000e+00
liyinhao's avatar
liyinhao committed
82
83
                  ],
                  [
wuyuefeng's avatar
wuyuefeng committed
84
85
                      -3.8320e+00, -1.0646e+00, 1.7074e-01, 2.4981e-01,
                      4.4708e-01, 6.2538e-01, 0.0000e+00
liyinhao's avatar
liyinhao committed
86
87
                  ],
                  [
wuyuefeng's avatar
wuyuefeng committed
88
89
                      4.1073e-01, 3.3757e+00, 3.4311e-01, 8.0617e-01,
                      2.8679e-01, 1.6060e+00, 0.0000e+00
liyinhao's avatar
liyinhao committed
90
91
                  ],
                  [
wuyuefeng's avatar
wuyuefeng committed
92
93
                      6.1199e-01, -3.1041e+00, 4.1873e-01, 1.2310e+00,
                      4.0162e-01, 1.7303e+00, 0.0000e+00
liyinhao's avatar
liyinhao committed
94
95
                  ],
                  [
wuyuefeng's avatar
wuyuefeng committed
96
97
                      -5.9877e-01, -2.6011e+00, 1.1148e+00, 1.5704e-01,
                      7.5957e-01, 9.6930e-01, 0.0000e+00
liyinhao's avatar
liyinhao committed
98
99
                  ],
                  [
wuyuefeng's avatar
wuyuefeng committed
100
101
                      2.7462e-01, -3.0088e+00, 6.5231e-02, 8.1208e-01,
                      4.1861e-01, 3.7339e-01, 0.0000e+00
liyinhao's avatar
liyinhao committed
102
103
                  ],
                  [
wuyuefeng's avatar
wuyuefeng committed
104
105
                      -1.4704e+00, -2.0024e+00, 2.7479e-01, 1.7888e+00,
                      1.0566e+00, 1.3704e+00, 0.0000e+00
liyinhao's avatar
liyinhao committed
106
107
                  ],
                  [
wuyuefeng's avatar
wuyuefeng committed
108
109
                      8.2727e-02, -3.1160e+00, 2.5690e-01, 1.4054e+00,
                      2.0772e-01, 9.6792e-01, 0.0000e+00
liyinhao's avatar
liyinhao committed
110
111
                  ],
                  [
wuyuefeng's avatar
wuyuefeng committed
112
113
                      2.6896e+00, 1.9881e+00, 1.1566e+00, 9.9885e-02,
                      3.5713e-01, 4.5638e-01, 0.0000e+00
liyinhao's avatar
liyinhao committed
114
                  ]]),
liyinhao's avatar
liyinhao committed
115
        'class':
wuyuefeng's avatar
wuyuefeng committed
116
        np.array([0, 1, 2, 0, 0, 3, 1, 3, 3, 2])
liyinhao's avatar
liyinhao committed
117
118
    }]

wuyuefeng's avatar
wuyuefeng committed
119
120
121
122
123
124
125
126
127
128
129
130
    ret_value = indoor_eval(
        gt_annos,
        det_infos, [0.25, 0.5],
        label2cat,
        box_type_3d=DepthInstance3DBoxes,
        box_mode_3d=Box3DMode.DEPTH)

    assert abs(ret_value['cabinet_AP_0.25'] - 0.666667) < 1e-3
    assert abs(ret_value['bed_AP_0.25'] - 1.0) < 1e-3
    assert abs(ret_value['chair_AP_0.25'] - 0.5) < 1e-3
    assert abs(ret_value['mAP_0.25'] - 0.708333) < 1e-3
    assert abs(ret_value['mAR_0.25'] - 0.833333) < 1e-3
liyinhao's avatar
liyinhao committed
131
132
133
134
135
136
137
138


def test_average_precision():
    ap = average_precision(
        np.array([[0.25, 0.5, 0.75], [0.25, 0.5, 0.75]]),
        np.array([[1., 1., 1.], [1., 1., 1.]]), '11points')
    print(ap[0])
    assert abs(ap[0] - 0.06611571) < 0.001