transforms_3d.py 70.9 KB
Newer Older
dingchang's avatar
dingchang committed
1
# Copyright (c) OpenMMLab. All rights reserved.
2
import random
3
import warnings
4
from typing import List, Optional, Tuple, Union
5
6
7

import cv2
import numpy as np
8
from mmcv.transforms import BaseTransform, RandomResize, Resize
9
from mmengine import is_tuple_of
zhangwenwei's avatar
zhangwenwei committed
10

zhangshilong's avatar
zhangshilong committed
11
from mmdet3d.models.task_modules import VoxelGenerator
12
from mmdet3d.registry import TRANSFORMS
zhangshilong's avatar
zhangshilong committed
13
14
15
16
17
from mmdet3d.structures import (CameraInstance3DBoxes, DepthInstance3DBoxes,
                                LiDARInstance3DBoxes)
from mmdet3d.structures.ops import box_np_ops
from mmdet3d.structures.points import BasePoints
from mmdet.datasets.transforms import RandomFlip
zhangwenwei's avatar
zhangwenwei committed
18
19
20
from .data_augment_utils import noise_per_object_v3_


21
@TRANSFORMS.register_module()
ZCMax's avatar
ZCMax committed
22
class RandomDropPointsColor(BaseTransform):
23
24
25
26
27
28
29
    r"""Randomly set the color of points to all zeros.

    Once this transform is executed, all the points' color will be dropped.
    Refer to `PAConv <https://github.com/CVMI-Lab/PAConv/blob/main/scene_seg/
    util/transform.py#L223>`_ for more details.

    Args:
30
        drop_ratio (float, optional): The probability of dropping point colors.
31
32
33
            Defaults to 0.2.
    """

ZCMax's avatar
ZCMax committed
34
    def __init__(self, drop_ratio: float = 0.2) -> None:
35
36
37
38
        assert isinstance(drop_ratio, (int, float)) and 0 <= drop_ratio <= 1, \
            f'invalid drop_ratio value {drop_ratio}'
        self.drop_ratio = drop_ratio

ZCMax's avatar
ZCMax committed
39
    def transform(self, input_dict: dict) -> dict:
40
41
42
43
44
45
        """Call function to drop point colors.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
46
            dict: Results after color dropping,
47
48
49
50
51
52
53
                'points' key is updated in the result dict.
        """
        points = input_dict['points']
        assert points.attribute_dims is not None and \
            'color' in points.attribute_dims, \
            'Expect points have color attribute'

54
55
56
57
58
59
60
        # this if-expression is a bit strange
        # `RandomDropPointsColor` is used in training 3D segmentor PAConv
        # we discovered in our experiments that, using
        # `if np.random.rand() > 1.0 - self.drop_ratio` consistently leads to
        # better results than using `if np.random.rand() < self.drop_ratio`
        # so we keep this hack in our codebase
        if np.random.rand() > 1.0 - self.drop_ratio:
61
62
63
64
65
66
67
68
69
70
            points.color = points.color * 0.0
        return input_dict

    def __repr__(self):
        """str: Return a string that describes the module."""
        repr_str = self.__class__.__name__
        repr_str += f'(drop_ratio={self.drop_ratio})'
        return repr_str


71
@TRANSFORMS.register_module()
zhangwenwei's avatar
zhangwenwei committed
72
73
74
75
76
77
78
class RandomFlip3D(RandomFlip):
    """Flip the points & bbox.

    If the input dict contains the key "flip", then the flag will be used,
    otherwise it will be randomly decided by a ratio specified in the init
    method.

jshilong's avatar
jshilong committed
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
    Required Keys:

    - points (np.float32)
    - gt_bboxes_3d (np.float32)

    Modified Keys:

    - points (np.float32)
    - gt_bboxes_3d (np.float32)

    Added Keys:

    - points (np.float32)
    - pcd_trans (np.float32)
    - pcd_rotation (np.float32)
    - pcd_rotation_angle (np.float32)
    - pcd_scale_factor (np.float32)

zhangwenwei's avatar
zhangwenwei committed
97
    Args:
zhangwenwei's avatar
zhangwenwei committed
98
99
100
        sync_2d (bool, optional): Whether to apply flip according to the 2D
            images. If True, it will apply the same flip as that to 2D images.
            If False, it will decide whether to flip randomly and independently
liyinhao's avatar
liyinhao committed
101
            to that of 2D images. Defaults to True.
wuyuefeng's avatar
wuyuefeng committed
102
        flip_ratio_bev_horizontal (float, optional): The flipping probability
liyinhao's avatar
liyinhao committed
103
            in horizontal direction. Defaults to 0.0.
wuyuefeng's avatar
wuyuefeng committed
104
        flip_ratio_bev_vertical (float, optional): The flipping probability
liyinhao's avatar
liyinhao committed
105
            in vertical direction. Defaults to 0.0.
zhangwenwei's avatar
zhangwenwei committed
106
107
    """

wuyuefeng's avatar
wuyuefeng committed
108
    def __init__(self,
jshilong's avatar
jshilong committed
109
110
111
112
113
114
115
                 sync_2d: bool = True,
                 flip_ratio_bev_horizontal: float = 0.0,
                 flip_ratio_bev_vertical: float = 0.0,
                 **kwargs) -> None:
        # `flip_ratio_bev_horizontal` is equal to
        # for flip prob of 2d image when
        # `sync_2d` is True
wuyuefeng's avatar
wuyuefeng committed
116
        super(RandomFlip3D, self).__init__(
jshilong's avatar
jshilong committed
117
            prob=flip_ratio_bev_horizontal, direction='horizontal', **kwargs)
zhangwenwei's avatar
zhangwenwei committed
118
        self.sync_2d = sync_2d
jshilong's avatar
jshilong committed
119
        self.flip_ratio_bev_horizontal = flip_ratio_bev_horizontal
wuyuefeng's avatar
wuyuefeng committed
120
121
122
123
124
125
126
127
128
129
        self.flip_ratio_bev_vertical = flip_ratio_bev_vertical
        if flip_ratio_bev_horizontal is not None:
            assert isinstance(
                flip_ratio_bev_horizontal,
                (int, float)) and 0 <= flip_ratio_bev_horizontal <= 1
        if flip_ratio_bev_vertical is not None:
            assert isinstance(
                flip_ratio_bev_vertical,
                (int, float)) and 0 <= flip_ratio_bev_vertical <= 1

jshilong's avatar
jshilong committed
130
131
132
    def random_flip_data_3d(self,
                            input_dict: dict,
                            direction: str = 'horizontal') -> None:
133
134
        """Flip 3D data randomly.

jshilong's avatar
jshilong committed
135
136
137
138
139
140
141
        `random_flip_data_3d` should take these situations into consideration:

        - 1. LIDAR-based 3d detection
        - 2. LIDAR-based 3d segmentation
        - 3. vision-only detection
        - 4. multi-modality 3d detection.

142
143
        Args:
            input_dict (dict): Result dict from loading pipeline.
144
145
            direction (str, optional): Flip direction.
                Default: 'horizontal'.
146
147

        Returns:
148
            dict: Flipped results, 'points', 'bbox3d_fields' keys are
149
150
                updated in the result dict.
        """
wuyuefeng's avatar
wuyuefeng committed
151
        assert direction in ['horizontal', 'vertical']
jshilong's avatar
jshilong committed
152
153

        if 'gt_bboxes_3d' in input_dict:
154
            if 'points' in input_dict:
jshilong's avatar
jshilong committed
155
                input_dict['points'] = input_dict['gt_bboxes_3d'].flip(
156
157
                    direction, points=input_dict['points'])
            else:
jshilong's avatar
jshilong committed
158
159
160
161
162
163
                # vision-only detection
                input_dict['gt_bboxes_3d'].flip(direction)
        else:
            input_dict['points'].flip(direction)

        if 'centers_2d' in input_dict:
164
165
            assert self.sync_2d is True and direction == 'horizontal', \
                'Only support sync_2d=True and horizontal flip with images'
166
            w = input_dict['img_shape'][1]
jshilong's avatar
jshilong committed
167
168
            input_dict['centers_2d'][..., 0] = \
                w - input_dict['centers_2d'][..., 0]
169
170
            # need to modify the horizontal position of camera center
            # along u-axis in the image (flip like centers2d)
171
            # ['cam2img'][0][2] = c_u
172
173
            # see more details and examples at
            # https://github.com/open-mmlab/mmdetection3d/pull/744
174
            input_dict['cam2img'][0][2] = w - input_dict['cam2img'][0][2]
zhangwenwei's avatar
zhangwenwei committed
175

jshilong's avatar
jshilong committed
176
    def transform(self, input_dict: dict) -> dict:
177
        """Call function to flip points, values in the ``bbox3d_fields`` and
178
179
180
181
182
183
        also flip 2D image and its annotations.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
184
185
            dict: Flipped results, 'flip', 'flip_direction',
                'pcd_horizontal_flip' and 'pcd_vertical_flip' keys are added
186
187
                into result dict.
        """
188
        # flip 2D image and its annotations
jshilong's avatar
jshilong committed
189
190
        if 'img' in input_dict:
            super(RandomFlip3D, self).transform(input_dict)
zhangwenwei's avatar
zhangwenwei committed
191

jshilong's avatar
jshilong committed
192
        if self.sync_2d and 'img' in input_dict:
wuyuefeng's avatar
wuyuefeng committed
193
194
            input_dict['pcd_horizontal_flip'] = input_dict['flip']
            input_dict['pcd_vertical_flip'] = False
zhangwenwei's avatar
zhangwenwei committed
195
        else:
wuyuefeng's avatar
wuyuefeng committed
196
197
            if 'pcd_horizontal_flip' not in input_dict:
                flip_horizontal = True if np.random.rand(
jshilong's avatar
jshilong committed
198
                ) < self.flip_ratio_bev_horizontal else False
wuyuefeng's avatar
wuyuefeng committed
199
200
201
202
203
204
                input_dict['pcd_horizontal_flip'] = flip_horizontal
            if 'pcd_vertical_flip' not in input_dict:
                flip_vertical = True if np.random.rand(
                ) < self.flip_ratio_bev_vertical else False
                input_dict['pcd_vertical_flip'] = flip_vertical

205
206
207
        if 'transformation_3d_flow' not in input_dict:
            input_dict['transformation_3d_flow'] = []

wuyuefeng's avatar
wuyuefeng committed
208
209
        if input_dict['pcd_horizontal_flip']:
            self.random_flip_data_3d(input_dict, 'horizontal')
210
            input_dict['transformation_3d_flow'].extend(['HF'])
wuyuefeng's avatar
wuyuefeng committed
211
212
        if input_dict['pcd_vertical_flip']:
            self.random_flip_data_3d(input_dict, 'vertical')
213
            input_dict['transformation_3d_flow'].extend(['VF'])
zhangwenwei's avatar
zhangwenwei committed
214
215
        return input_dict

zhangwenwei's avatar
zhangwenwei committed
216
    def __repr__(self):
217
        """str: Return a string that describes the module."""
wuyuefeng's avatar
wuyuefeng committed
218
        repr_str = self.__class__.__name__
219
        repr_str += f'(sync_2d={self.sync_2d},'
220
        repr_str += f' flip_ratio_bev_vertical={self.flip_ratio_bev_vertical})'
wuyuefeng's avatar
wuyuefeng committed
221
        return repr_str
zhangwenwei's avatar
zhangwenwei committed
222

zhangwenwei's avatar
zhangwenwei committed
223

224
@TRANSFORMS.register_module()
ZCMax's avatar
ZCMax committed
225
class RandomJitterPoints(BaseTransform):
226
227
    """Randomly jitter point coordinates.

228
    Different from the global translation in ``GlobalRotScaleTrans``, here we
229
230
231
232
        apply different noises to each point in a scene.

    Args:
        jitter_std (list[float]): The standard deviation of jittering noise.
233
234
            This applies random noise to all points in a 3D scene, which is
            sampled from a gaussian distribution whose standard deviation is
235
            set by ``jitter_std``. Defaults to [0.01, 0.01, 0.01]
236
        clip_range (list[float]): Clip the randomly generated jitter
237
238
239
240
            noise into this range. If None is given, don't perform clipping.
            Defaults to [-0.05, 0.05]

    Note:
241
        This transform should only be used in point cloud segmentation tasks
242
243
244
245
246
            because we don't transform ground-truth bboxes accordingly.
        For similar transform in detection task, please refer to `ObjectNoise`.
    """

    def __init__(self,
ZCMax's avatar
ZCMax committed
247
248
                 jitter_std: List[float] = [0.01, 0.01, 0.01],
                 clip_range: List[float] = [-0.05, 0.05]) -> None:
249
250
251
252
253
254
255
256
257
258
259
260
261
262
        seq_types = (list, tuple, np.ndarray)
        if not isinstance(jitter_std, seq_types):
            assert isinstance(jitter_std, (int, float)), \
                f'unsupported jitter_std type {type(jitter_std)}'
            jitter_std = [jitter_std, jitter_std, jitter_std]
        self.jitter_std = jitter_std

        if clip_range is not None:
            if not isinstance(clip_range, seq_types):
                assert isinstance(clip_range, (int, float)), \
                    f'unsupported clip_range type {type(clip_range)}'
                clip_range = [-clip_range, clip_range]
        self.clip_range = clip_range

ZCMax's avatar
ZCMax committed
263
    def transform(self, input_dict: dict) -> dict:
264
265
266
267
268
269
        """Call function to jitter all the points in the scene.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
270
            dict: Results after adding noise to each point,
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
                'points' key is updated in the result dict.
        """
        points = input_dict['points']
        jitter_std = np.array(self.jitter_std, dtype=np.float32)
        jitter_noise = \
            np.random.randn(points.shape[0], 3) * jitter_std[None, :]
        if self.clip_range is not None:
            jitter_noise = np.clip(jitter_noise, self.clip_range[0],
                                   self.clip_range[1])

        points.translate(jitter_noise)
        return input_dict

    def __repr__(self):
        """str: Return a string that describes the module."""
        repr_str = self.__class__.__name__
        repr_str += f'(jitter_std={self.jitter_std},'
        repr_str += f' clip_range={self.clip_range})'
        return repr_str


292
293
@TRANSFORMS.register_module()
class ObjectSample(BaseTransform):
zhangwenwei's avatar
zhangwenwei committed
294
    """Sample GT objects to the data.
zhangwenwei's avatar
zhangwenwei committed
295

296
297
298
299
300
301
302
303
304
305
    Required Keys:

    - points
    - ann_info
    - gt_bboxes_3d
    - gt_labels_3d
    - img (optional)
    - gt_bboxes (optional)

    Modified Keys:
306

307
308
309
310
311
312
313
314
315
316
    - points
    - gt_bboxes_3d
    - gt_labels_3d
    - img (optional)
    - gt_bboxes (optional)

    Added Keys:

    - plane (optional)

zhangwenwei's avatar
zhangwenwei committed
317
318
319
320
    Args:
        db_sampler (dict): Config dict of the database sampler.
        sample_2d (bool): Whether to also paste 2D image patch to the images
            This should be true when applying multi-modality cut-and-paste.
liyinhao's avatar
liyinhao committed
321
            Defaults to False.
322
        use_ground_plane (bool): Whether to use ground plane to adjust the
323
            3D labels.
zhangwenwei's avatar
zhangwenwei committed
324
    """
zhangwenwei's avatar
zhangwenwei committed
325

326
327
328
    def __init__(self,
                 db_sampler: dict,
                 sample_2d: bool = False,
329
                 use_ground_plane: bool = False) -> None:
zhangwenwei's avatar
zhangwenwei committed
330
331
332
333
        self.sampler_cfg = db_sampler
        self.sample_2d = sample_2d
        if 'type' not in db_sampler.keys():
            db_sampler['type'] = 'DataBaseSampler'
334
        self.db_sampler = TRANSFORMS.build(db_sampler)
335
        self.use_ground_plane = use_ground_plane
zhangwenwei's avatar
zhangwenwei committed
336
337

    @staticmethod
338
339
    def remove_points_in_boxes(points: BasePoints,
                               boxes: np.ndarray) -> np.ndarray:
340
341
342
        """Remove the points in the sampled bounding boxes.

        Args:
343
            points (:obj:`BasePoints`): Input point cloud array.
344
345
346
347
348
            boxes (np.ndarray): Sampled ground truth boxes.

        Returns:
            np.ndarray: Points with those in the boxes removed.
        """
349
        masks = box_np_ops.points_in_rbbox(points.coord.numpy(), boxes)
zhangwenwei's avatar
zhangwenwei committed
350
351
352
        points = points[np.logical_not(masks.any(-1))]
        return points

353
354
    def transform(self, input_dict: dict) -> dict:
        """Transform function to sample ground truth objects to the data.
355
356
357
358
359

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
360
361
            dict: Results after object sampling augmentation,
                'points', 'gt_bboxes_3d', 'gt_labels_3d' keys are updated
362
363
                in the result dict.
        """
zhangwenwei's avatar
zhangwenwei committed
364
        gt_bboxes_3d = input_dict['gt_bboxes_3d']
zhangwenwei's avatar
zhangwenwei committed
365
366
        gt_labels_3d = input_dict['gt_labels_3d']

ChaimZhu's avatar
ChaimZhu committed
367
368
        if self.use_ground_plane:
            ground_plane = input_dict.get('plane', None)
369
370
            assert ground_plane is not None, '`use_ground_plane` is True ' \
                                             'but find plane is None'
371
372
        else:
            ground_plane = None
zhangwenwei's avatar
zhangwenwei committed
373
374
375
        # change to float for blending operation
        points = input_dict['points']
        if self.sample_2d:
wuyuefeng's avatar
wuyuefeng committed
376
            img = input_dict['img']
zhangwenwei's avatar
zhangwenwei committed
377
378
379
            gt_bboxes_2d = input_dict['gt_bboxes']
            # Assume for now 3D & 2D bboxes are the same
            sampled_dict = self.db_sampler.sample_all(
380
381
382
383
                gt_bboxes_3d.tensor.numpy(),
                gt_labels_3d,
                gt_bboxes_2d=gt_bboxes_2d,
                img=img)
zhangwenwei's avatar
zhangwenwei committed
384
385
        else:
            sampled_dict = self.db_sampler.sample_all(
386
387
388
389
                gt_bboxes_3d.tensor.numpy(),
                gt_labels_3d,
                img=None,
                ground_plane=ground_plane)
zhangwenwei's avatar
zhangwenwei committed
390
391
392
393

        if sampled_dict is not None:
            sampled_gt_bboxes_3d = sampled_dict['gt_bboxes_3d']
            sampled_points = sampled_dict['points']
zhangwenwei's avatar
zhangwenwei committed
394
            sampled_gt_labels = sampled_dict['gt_labels_3d']
zhangwenwei's avatar
zhangwenwei committed
395

zhangwenwei's avatar
zhangwenwei committed
396
397
            gt_labels_3d = np.concatenate([gt_labels_3d, sampled_gt_labels],
                                          axis=0)
398
399
400
            gt_bboxes_3d = gt_bboxes_3d.new_box(
                np.concatenate(
                    [gt_bboxes_3d.tensor.numpy(), sampled_gt_bboxes_3d]))
zhangwenwei's avatar
zhangwenwei committed
401

zhangwenwei's avatar
zhangwenwei committed
402
403
            points = self.remove_points_in_boxes(points, sampled_gt_bboxes_3d)
            # check the points dimension
404
            points = points.cat([sampled_points, points])
zhangwenwei's avatar
zhangwenwei committed
405
406
407
408
409

            if self.sample_2d:
                sampled_gt_bboxes_2d = sampled_dict['gt_bboxes_2d']
                gt_bboxes_2d = np.concatenate(
                    [gt_bboxes_2d, sampled_gt_bboxes_2d]).astype(np.float32)
zhangwenwei's avatar
zhangwenwei committed
410

zhangwenwei's avatar
zhangwenwei committed
411
                input_dict['gt_bboxes'] = gt_bboxes_2d
wuyuefeng's avatar
wuyuefeng committed
412
                input_dict['img'] = sampled_dict['img']
zhangwenwei's avatar
zhangwenwei committed
413
414

        input_dict['gt_bboxes_3d'] = gt_bboxes_3d
WRH's avatar
WRH committed
415
        input_dict['gt_labels_3d'] = gt_labels_3d.astype(np.int64)
zhangwenwei's avatar
zhangwenwei committed
416
        input_dict['points'] = points
zhangwenwei's avatar
zhangwenwei committed
417

zhangwenwei's avatar
zhangwenwei committed
418
419
420
        return input_dict

    def __repr__(self):
421
        """str: Return a string that describes the module."""
422
        repr_str = self.__class__.__name__
423
        repr_str += f'db_sampler={self.db_sampler},'
424
        repr_str += f' sample_2d={self.sample_2d},'
425
        repr_str += f' use_ground_plane={self.use_ground_plane}'
426
        return repr_str
zhangwenwei's avatar
zhangwenwei committed
427
428


429
430
@TRANSFORMS.register_module()
class ObjectNoise(BaseTransform):
zhangwenwei's avatar
zhangwenwei committed
431
    """Apply noise to each GT objects in the scene.
zhangwenwei's avatar
zhangwenwei committed
432

433
434
435
436
437
438
439
440
441
442
    Required Keys:

    - points
    - gt_bboxes_3d

    Modified Keys:

    - points
    - gt_bboxes_3d

zhangwenwei's avatar
zhangwenwei committed
443
    Args:
444
        translation_std (list[float], optional): Standard deviation of the
zhangwenwei's avatar
zhangwenwei committed
445
446
            distribution where translation noise are sampled from.
            Defaults to [0.25, 0.25, 0.25].
447
        global_rot_range (list[float], optional): Global rotation to the scene.
zhangwenwei's avatar
zhangwenwei committed
448
            Defaults to [0.0, 0.0].
449
        rot_range (list[float], optional): Object rotation range.
zhangwenwei's avatar
zhangwenwei committed
450
451
452
453
            Defaults to [-0.15707963267, 0.15707963267].
        num_try (int, optional): Number of times to try if the noise applied is
            invalid. Defaults to 100.
    """
zhangwenwei's avatar
zhangwenwei committed
454
455

    def __init__(self,
456
457
458
459
                 translation_std: List[float] = [0.25, 0.25, 0.25],
                 global_rot_range: List[float] = [0.0, 0.0],
                 rot_range: List[float] = [-0.15707963267, 0.15707963267],
                 num_try: int = 100) -> None:
zhangwenwei's avatar
zhangwenwei committed
460
        self.translation_std = translation_std
zhangwenwei's avatar
zhangwenwei committed
461
        self.global_rot_range = global_rot_range
zhangwenwei's avatar
zhangwenwei committed
462
        self.rot_range = rot_range
zhangwenwei's avatar
zhangwenwei committed
463
464
        self.num_try = num_try

465
466
    def transform(self, input_dict: dict) -> dict:
        """Transform function to apply noise to each ground truth in the scene.
467
468
469
470
471

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
472
            dict: Results after adding noise to each object,
473
474
                'points', 'gt_bboxes_3d' keys are updated in the result dict.
        """
zhangwenwei's avatar
zhangwenwei committed
475
476
        gt_bboxes_3d = input_dict['gt_bboxes_3d']
        points = input_dict['points']
zhangwenwei's avatar
zhangwenwei committed
477

478
        # TODO: this is inplace operation
479
        numpy_box = gt_bboxes_3d.tensor.numpy()
480
481
        numpy_points = points.tensor.numpy()

zhangwenwei's avatar
zhangwenwei committed
482
        noise_per_object_v3_(
483
            numpy_box,
484
            numpy_points,
zhangwenwei's avatar
zhangwenwei committed
485
486
            rotation_perturb=self.rot_range,
            center_noise_std=self.translation_std,
zhangwenwei's avatar
zhangwenwei committed
487
488
            global_random_rot_range=self.global_rot_range,
            num_try=self.num_try)
489
490

        input_dict['gt_bboxes_3d'] = gt_bboxes_3d.new_box(numpy_box)
491
        input_dict['points'] = points.new_point(numpy_points)
zhangwenwei's avatar
zhangwenwei committed
492
493
494
        return input_dict

    def __repr__(self):
495
        """str: Return a string that describes the module."""
zhangwenwei's avatar
zhangwenwei committed
496
        repr_str = self.__class__.__name__
497
498
499
500
        repr_str += f'(num_try={self.num_try},'
        repr_str += f' translation_std={self.translation_std},'
        repr_str += f' global_rot_range={self.global_rot_range},'
        repr_str += f' rot_range={self.rot_range})'
zhangwenwei's avatar
zhangwenwei committed
501
502
503
        return repr_str


504
@TRANSFORMS.register_module()
505
class GlobalAlignment(BaseTransform):
506
507
508
509
510
511
    """Apply global alignment to 3D scene points by rotation and translation.

    Args:
        rotation_axis (int): Rotation axis for points and bboxes rotation.

    Note:
512
513
        We do not record the applied rotation and translation as in
            GlobalRotScaleTrans. Because usually, we do not need to reverse
514
            the alignment step.
515
        For example, ScanNet 3D detection task uses aligned ground-truth
516
517
518
            bounding boxes for evaluation.
    """

519
    def __init__(self, rotation_axis: int) -> None:
520
521
        self.rotation_axis = rotation_axis

522
    def _trans_points(self, results: dict, trans_factor: np.ndarray) -> None:
523
524
525
526
527
528
529
530
531
        """Private function to translate points.

        Args:
            input_dict (dict): Result dict from loading pipeline.
            trans_factor (np.ndarray): Translation vector to be applied.

        Returns:
            dict: Results after translation, 'points' is updated in the dict.
        """
532
        results['points'].translate(trans_factor)
533

534
    def _rot_points(self, results: dict, rot_mat: np.ndarray) -> None:
535
536
537
538
539
540
541
542
543
544
        """Private function to rotate bounding boxes and points.

        Args:
            input_dict (dict): Result dict from loading pipeline.
            rot_mat (np.ndarray): Rotation matrix to be applied.

        Returns:
            dict: Results after rotation, 'points' is updated in the dict.
        """
        # input should be rot_mat_T so I transpose it here
545
        results['points'].rotate(rot_mat.T)
546

547
    def _check_rot_mat(self, rot_mat: np.ndarray) -> None:
548
549
550
551
552
553
554
555
556
557
558
559
        """Check if rotation matrix is valid for self.rotation_axis.

        Args:
            rot_mat (np.ndarray): Rotation matrix to be applied.
        """
        is_valid = np.allclose(np.linalg.det(rot_mat), 1.0)
        valid_array = np.zeros(3)
        valid_array[self.rotation_axis] = 1.0
        is_valid &= (rot_mat[self.rotation_axis, :] == valid_array).all()
        is_valid &= (rot_mat[:, self.rotation_axis] == valid_array).all()
        assert is_valid, f'invalid rotation matrix {rot_mat}'

560
    def transform(self, results: dict) -> dict:
561
562
563
564
565
566
        """Call function to shuffle points.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
567
            dict: Results after global alignment, 'points' and keys in
568
569
                input_dict['bbox3d_fields'] are updated in the result dict.
        """
570
        assert 'axis_align_matrix' in results, \
571
572
            'axis_align_matrix is not provided in GlobalAlignment'

573
        axis_align_matrix = results['axis_align_matrix']
574
575
576
577
578
579
        assert axis_align_matrix.shape == (4, 4), \
            f'invalid shape {axis_align_matrix.shape} for axis_align_matrix'
        rot_mat = axis_align_matrix[:3, :3]
        trans_vec = axis_align_matrix[:3, -1]

        self._check_rot_mat(rot_mat)
580
581
        self._rot_points(results, rot_mat)
        self._trans_points(results, trans_vec)
582

583
        return results
584
585

    def __repr__(self):
586
        """str: Return a string that describes the module."""
587
588
589
590
591
        repr_str = self.__class__.__name__
        repr_str += f'(rotation_axis={self.rotation_axis})'
        return repr_str


592
@TRANSFORMS.register_module()
jshilong's avatar
jshilong committed
593
class GlobalRotScaleTrans(BaseTransform):
zhangwenwei's avatar
zhangwenwei committed
594
    """Apply global rotation, scaling and translation to a 3D scene.
zhangwenwei's avatar
zhangwenwei committed
595

jshilong's avatar
jshilong committed
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
    Required Keys:

    - points (np.float32)
    - gt_bboxes_3d (np.float32)

    Modified Keys:

    - points (np.float32)
    - gt_bboxes_3d (np.float32)

    Added Keys:

    - points (np.float32)
    - pcd_trans (np.float32)
    - pcd_rotation (np.float32)
    - pcd_rotation_angle (np.float32)
    - pcd_scale_factor (np.float32)

zhangwenwei's avatar
zhangwenwei committed
614
    Args:
615
        rot_range (list[float], optional): Range of rotation angle.
liyinhao's avatar
liyinhao committed
616
            Defaults to [-0.78539816, 0.78539816] (close to [-pi/4, pi/4]).
617
        scale_ratio_range (list[float], optional): Range of scale ratio.
liyinhao's avatar
liyinhao committed
618
            Defaults to [0.95, 1.05].
619
620
        translation_std (list[float], optional): The standard deviation of
            translation noise applied to a scene, which
zhangwenwei's avatar
zhangwenwei committed
621
            is sampled from a gaussian distribution whose standard deviation
liyinhao's avatar
liyinhao committed
622
            is set by ``translation_std``. Defaults to [0, 0, 0]
623
        shift_height (bool, optional): Whether to shift height.
wuyuefeng's avatar
wuyuefeng committed
624
            (the fourth dimension of indoor points) when scaling.
liyinhao's avatar
liyinhao committed
625
            Defaults to False.
zhangwenwei's avatar
zhangwenwei committed
626
    """
zhangwenwei's avatar
zhangwenwei committed
627
628

    def __init__(self,
jshilong's avatar
jshilong committed
629
630
631
632
                 rot_range: List[float] = [-0.78539816, 0.78539816],
                 scale_ratio_range: List[float] = [0.95, 1.05],
                 translation_std: List[int] = [0, 0, 0],
                 shift_height: bool = False) -> None:
633
634
635
636
637
        seq_types = (list, tuple, np.ndarray)
        if not isinstance(rot_range, seq_types):
            assert isinstance(rot_range, (int, float)), \
                f'unsupported rot_range type {type(rot_range)}'
            rot_range = [-rot_range, rot_range]
zhangwenwei's avatar
zhangwenwei committed
638
        self.rot_range = rot_range
639
640
641

        assert isinstance(scale_ratio_range, seq_types), \
            f'unsupported scale_ratio_range type {type(scale_ratio_range)}'
jshilong's avatar
jshilong committed
642

zhangwenwei's avatar
zhangwenwei committed
643
        self.scale_ratio_range = scale_ratio_range
644
645
646
647
648
649
650

        if not isinstance(translation_std, seq_types):
            assert isinstance(translation_std, (int, float)), \
                f'unsupported translation_std type {type(translation_std)}'
            translation_std = [
                translation_std, translation_std, translation_std
            ]
651
652
        assert all([std >= 0 for std in translation_std]), \
            'translation_std should be positive'
zhangwenwei's avatar
zhangwenwei committed
653
        self.translation_std = translation_std
wuyuefeng's avatar
wuyuefeng committed
654
        self.shift_height = shift_height
zhangwenwei's avatar
zhangwenwei committed
655

jshilong's avatar
jshilong committed
656
    def _trans_bbox_points(self, input_dict: dict) -> None:
657
658
659
660
661
662
        """Private function to translate bounding boxes and points.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
663
            dict: Results after translation, 'points', 'pcd_trans'
jshilong's avatar
jshilong committed
664
665
            and `gt_bboxes_3d` is updated
            in the result dict.
666
        """
667
        translation_std = np.array(self.translation_std, dtype=np.float32)
zhangwenwei's avatar
zhangwenwei committed
668
669
        trans_factor = np.random.normal(scale=translation_std, size=3).T

670
        input_dict['points'].translate(trans_factor)
zhangwenwei's avatar
zhangwenwei committed
671
        input_dict['pcd_trans'] = trans_factor
jshilong's avatar
jshilong committed
672
673
        if 'gt_bboxes_3d' in input_dict:
            input_dict['gt_bboxes_3d'].translate(trans_factor)
zhangwenwei's avatar
zhangwenwei committed
674

jshilong's avatar
jshilong committed
675
    def _rot_bbox_points(self, input_dict: dict) -> None:
676
677
678
679
680
681
        """Private function to rotate bounding boxes and points.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
682
            dict: Results after rotation, 'points', 'pcd_rotation'
jshilong's avatar
jshilong committed
683
684
            and `gt_bboxes_3d` is updated
            in the result dict.
685
        """
zhangwenwei's avatar
zhangwenwei committed
686
        rotation = self.rot_range
zhangwenwei's avatar
zhangwenwei committed
687
        noise_rotation = np.random.uniform(rotation[0], rotation[1])
zhangwenwei's avatar
zhangwenwei committed
688

jshilong's avatar
jshilong committed
689
690
691
692
693
694
695
696
        if 'gt_bboxes_3d' in input_dict and \
                len(input_dict['gt_bboxes_3d'].tensor) != 0:
            # rotate points with bboxes
            points, rot_mat_T = input_dict['gt_bboxes_3d'].rotate(
                noise_rotation, input_dict['points'])
            input_dict['points'] = points
        else:
            # if no bbox in input_dict, only rotate points
697
            rot_mat_T = input_dict['points'].rotate(noise_rotation)
jshilong's avatar
jshilong committed
698
699
700
701
702

        input_dict['pcd_rotation'] = rot_mat_T
        input_dict['pcd_rotation_angle'] = noise_rotation

    def _scale_bbox_points(self, input_dict: dict) -> None:
703
704
705
706
707
708
        """Private function to scale bounding boxes and points.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
jshilong's avatar
jshilong committed
709
710
711
            dict: Results after scaling, 'points' and
            `gt_bboxes_3d` is updated
            in the result dict.
712
        """
zhangwenwei's avatar
zhangwenwei committed
713
        scale = input_dict['pcd_scale_factor']
714
715
        points = input_dict['points']
        points.scale(scale)
wuyuefeng's avatar
wuyuefeng committed
716
        if self.shift_height:
717
718
            assert 'height' in points.attribute_dims.keys(), \
                'setting shift_height=True but points have no height attribute'
719
720
            points.tensor[:, points.attribute_dims['height']] *= scale
        input_dict['points'] = points
wuyuefeng's avatar
wuyuefeng committed
721

jshilong's avatar
jshilong committed
722
723
724
        if 'gt_bboxes_3d' in input_dict and \
                len(input_dict['gt_bboxes_3d'].tensor) != 0:
            input_dict['gt_bboxes_3d'].scale(scale)
zhangwenwei's avatar
zhangwenwei committed
725

jshilong's avatar
jshilong committed
726
    def _random_scale(self, input_dict: dict) -> None:
727
728
729
730
731
732
        """Private function to randomly set the scale factor.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
jshilong's avatar
jshilong committed
733
734
            dict: Results after scaling, 'pcd_scale_factor'
            are updated in the result dict.
735
        """
zhangwenwei's avatar
zhangwenwei committed
736
737
738
        scale_factor = np.random.uniform(self.scale_ratio_range[0],
                                         self.scale_ratio_range[1])
        input_dict['pcd_scale_factor'] = scale_factor
zhangwenwei's avatar
zhangwenwei committed
739

jshilong's avatar
jshilong committed
740
    def transform(self, input_dict: dict) -> dict:
741
        """Private function to rotate, scale and translate bounding boxes and
742
743
744
745
746
747
748
        points.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after scaling, 'points', 'pcd_rotation',
jshilong's avatar
jshilong committed
749
750
            'pcd_scale_factor', 'pcd_trans' and `gt_bboxes_3d` is updated
            in the result dict.
751
        """
752
753
754
        if 'transformation_3d_flow' not in input_dict:
            input_dict['transformation_3d_flow'] = []

zhangwenwei's avatar
zhangwenwei committed
755
        self._rot_bbox_points(input_dict)
zhangwenwei's avatar
zhangwenwei committed
756

zhangwenwei's avatar
zhangwenwei committed
757
758
759
        if 'pcd_scale_factor' not in input_dict:
            self._random_scale(input_dict)
        self._scale_bbox_points(input_dict)
zhangwenwei's avatar
zhangwenwei committed
760

zhangwenwei's avatar
zhangwenwei committed
761
        self._trans_bbox_points(input_dict)
762
763

        input_dict['transformation_3d_flow'].extend(['R', 'S', 'T'])
zhangwenwei's avatar
zhangwenwei committed
764
765
766
        return input_dict

    def __repr__(self):
767
        """str: Return a string that describes the module."""
zhangwenwei's avatar
zhangwenwei committed
768
        repr_str = self.__class__.__name__
769
770
771
772
        repr_str += f'(rot_range={self.rot_range},'
        repr_str += f' scale_ratio_range={self.scale_ratio_range},'
        repr_str += f' translation_std={self.translation_std},'
        repr_str += f' shift_height={self.shift_height})'
zhangwenwei's avatar
zhangwenwei committed
773
774
775
        return repr_str


776
@TRANSFORMS.register_module()
ZCMax's avatar
ZCMax committed
777
class PointShuffle(BaseTransform):
778
    """Shuffle input points."""
zhangwenwei's avatar
zhangwenwei committed
779

ZCMax's avatar
ZCMax committed
780
    def transform(self, input_dict: dict) -> dict:
781
782
783
784
785
786
        """Call function to shuffle points.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
787
            dict: Results after filtering, 'points', 'pts_instance_mask'
788
                and 'pts_semantic_mask' keys are updated in the result dict.
789
        """
790
791
792
793
794
795
796
797
798
799
800
801
        idx = input_dict['points'].shuffle()
        idx = idx.numpy()

        pts_instance_mask = input_dict.get('pts_instance_mask', None)
        pts_semantic_mask = input_dict.get('pts_semantic_mask', None)

        if pts_instance_mask is not None:
            input_dict['pts_instance_mask'] = pts_instance_mask[idx]

        if pts_semantic_mask is not None:
            input_dict['pts_semantic_mask'] = pts_semantic_mask[idx]

zhangwenwei's avatar
zhangwenwei committed
802
803
804
        return input_dict

    def __repr__(self):
805
        """str: Return a string that describes the module."""
zhangwenwei's avatar
zhangwenwei committed
806
807
808
        return self.__class__.__name__


809
@TRANSFORMS.register_module()
810
class ObjectRangeFilter(BaseTransform):
811
812
    """Filter objects by the range.

813
814
815
816
817
818
819
820
    Required Keys:

    - gt_bboxes_3d

    Modified Keys:

    - gt_bboxes_3d

821
822
823
    Args:
        point_cloud_range (list[float]): Point cloud range.
    """
zhangwenwei's avatar
zhangwenwei committed
824

825
    def __init__(self, point_cloud_range: List[float]):
zhangwenwei's avatar
zhangwenwei committed
826
827
        self.pcd_range = np.array(point_cloud_range, dtype=np.float32)

828
829
    def transform(self, input_dict: dict) -> dict:
        """Transform function to filter objects by the range.
830
831
832
833
834

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
835
            dict: Results after filtering, 'gt_bboxes_3d', 'gt_labels_3d'
836
837
                keys are updated in the result dict.
        """
838
839
840
841
842
843
844
        # Check points instance type and initialise bev_range
        if isinstance(input_dict['gt_bboxes_3d'],
                      (LiDARInstance3DBoxes, DepthInstance3DBoxes)):
            bev_range = self.pcd_range[[0, 1, 3, 4]]
        elif isinstance(input_dict['gt_bboxes_3d'], CameraInstance3DBoxes):
            bev_range = self.pcd_range[[0, 2, 3, 5]]

zhangwenwei's avatar
zhangwenwei committed
845
        gt_bboxes_3d = input_dict['gt_bboxes_3d']
zhangwenwei's avatar
zhangwenwei committed
846
        gt_labels_3d = input_dict['gt_labels_3d']
847
        mask = gt_bboxes_3d.in_range_bev(bev_range)
zhangwenwei's avatar
zhangwenwei committed
848
        gt_bboxes_3d = gt_bboxes_3d[mask]
ZwwWayne's avatar
ZwwWayne committed
849
850
851
852
853
        # mask is a torch tensor but gt_labels_3d is still numpy array
        # using mask to index gt_labels_3d will cause bug when
        # len(gt_labels_3d) == 1, where mask=1 will be interpreted
        # as gt_labels_3d[1] and cause out of index error
        gt_labels_3d = gt_labels_3d[mask.numpy().astype(np.bool)]
zhangwenwei's avatar
zhangwenwei committed
854
855

        # limit rad to [-pi, pi]
856
857
        gt_bboxes_3d.limit_yaw(offset=0.5, period=2 * np.pi)
        input_dict['gt_bboxes_3d'] = gt_bboxes_3d
zhangwenwei's avatar
zhangwenwei committed
858
859
        input_dict['gt_labels_3d'] = gt_labels_3d

zhangwenwei's avatar
zhangwenwei committed
860
861
862
        return input_dict

    def __repr__(self):
863
        """str: Return a string that describes the module."""
zhangwenwei's avatar
zhangwenwei committed
864
        repr_str = self.__class__.__name__
865
        repr_str += f'(point_cloud_range={self.pcd_range.tolist()})'
zhangwenwei's avatar
zhangwenwei committed
866
867
868
        return repr_str


869
@TRANSFORMS.register_module()
870
class PointsRangeFilter(BaseTransform):
871
872
    """Filter points by the range.

873
874
875
876
877
878
879
880
881
882
    Required Keys:

    - points
    - pts_instance_mask (optional)

    Modified Keys:

    - points
    - pts_instance_mask (optional)

883
884
885
    Args:
        point_cloud_range (list[float]): Point cloud range.
    """
zhangwenwei's avatar
zhangwenwei committed
886

887
    def __init__(self, point_cloud_range: List[float]) -> None:
888
        self.pcd_range = np.array(point_cloud_range, dtype=np.float32)
zhangwenwei's avatar
zhangwenwei committed
889

890
891
    def transform(self, input_dict: dict) -> dict:
        """Transform function to filter points by the range.
892
893
894
895
896

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
897
            dict: Results after filtering, 'points', 'pts_instance_mask'
898
                and 'pts_semantic_mask' keys are updated in the result dict.
899
        """
zhangwenwei's avatar
zhangwenwei committed
900
        points = input_dict['points']
901
902
        points_mask = points.in_range_3d(self.pcd_range)
        clean_points = points[points_mask]
zhangwenwei's avatar
zhangwenwei committed
903
        input_dict['points'] = clean_points
904
905
906
907
908
909
910
911
912
913
914
        points_mask = points_mask.numpy()

        pts_instance_mask = input_dict.get('pts_instance_mask', None)
        pts_semantic_mask = input_dict.get('pts_semantic_mask', None)

        if pts_instance_mask is not None:
            input_dict['pts_instance_mask'] = pts_instance_mask[points_mask]

        if pts_semantic_mask is not None:
            input_dict['pts_semantic_mask'] = pts_semantic_mask[points_mask]

zhangwenwei's avatar
zhangwenwei committed
915
916
917
        return input_dict

    def __repr__(self):
918
        """str: Return a string that describes the module."""
zhangwenwei's avatar
zhangwenwei committed
919
        repr_str = self.__class__.__name__
920
        repr_str += f'(point_cloud_range={self.pcd_range.tolist()})'
zhangwenwei's avatar
zhangwenwei committed
921
        return repr_str
zhangwenwei's avatar
zhangwenwei committed
922
923


924
@TRANSFORMS.register_module()
925
class ObjectNameFilter(BaseTransform):
zhangwenwei's avatar
zhangwenwei committed
926
    """Filter GT objects by their names.
zhangwenwei's avatar
zhangwenwei committed
927

928
929
930
931
932
933
934
935
    Required Keys:

    - gt_labels_3d

    Modified Keys:

    - gt_labels_3d

zhangwenwei's avatar
zhangwenwei committed
936
    Args:
liyinhao's avatar
liyinhao committed
937
        classes (list[str]): List of class names to be kept for training.
zhangwenwei's avatar
zhangwenwei committed
938
939
    """

940
    def __init__(self, classes: List[str]) -> None:
zhangwenwei's avatar
zhangwenwei committed
941
942
943
        self.classes = classes
        self.labels = list(range(len(self.classes)))

944
945
    def transform(self, input_dict: dict) -> dict:
        """Transform function to filter objects by their names.
946
947
948
949
950

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
951
            dict: Results after filtering, 'gt_bboxes_3d', 'gt_labels_3d'
952
953
                keys are updated in the result dict.
        """
zhangwenwei's avatar
zhangwenwei committed
954
955
956
957
958
959
960
961
962
        gt_labels_3d = input_dict['gt_labels_3d']
        gt_bboxes_mask = np.array([n in self.labels for n in gt_labels_3d],
                                  dtype=np.bool_)
        input_dict['gt_bboxes_3d'] = input_dict['gt_bboxes_3d'][gt_bboxes_mask]
        input_dict['gt_labels_3d'] = input_dict['gt_labels_3d'][gt_bboxes_mask]

        return input_dict

    def __repr__(self):
963
        """str: Return a string that describes the module."""
zhangwenwei's avatar
zhangwenwei committed
964
965
966
        repr_str = self.__class__.__name__
        repr_str += f'(classes={self.classes})'
        return repr_str
wuyuefeng's avatar
wuyuefeng committed
967
968


969
970
@TRANSFORMS.register_module()
class PointSample(BaseTransform):
971
    """Point sample.
wuyuefeng's avatar
wuyuefeng committed
972
973
974

    Sampling data to a certain number.

975
    Required Keys:
976

977
978
979
980
981
    - points
    - pts_instance_mask (optional)
    - pts_semantic_mask (optional)

    Modified Keys:
982

983
984
985
986
    - points
    - pts_instance_mask (optional)
    - pts_semantic_mask (optional)

wuyuefeng's avatar
wuyuefeng committed
987
988
    Args:
        num_points (int): Number of points to be sampled.
989
        sample_range (float, optional): The range where to sample points.
990
991
992
993
            If not None, the points with depth larger than `sample_range` are
            prior to be sampled. Defaults to None.
        replace (bool, optional): Whether the sampling is with or without
            replacement. Defaults to False.
wuyuefeng's avatar
wuyuefeng committed
994
995
    """

996
997
    def __init__(self,
                 num_points: int,
998
999
                 sample_range: Optional[float] = None,
                 replace: bool = False) -> None:
wuyuefeng's avatar
wuyuefeng committed
1000
        self.num_points = num_points
1001
1002
1003
        self.sample_range = sample_range
        self.replace = replace

1004
1005
1006
1007
1008
1009
1010
1011
    def _points_random_sampling(
        self,
        points: BasePoints,
        num_samples: int,
        sample_range: Optional[float] = None,
        replace: bool = False,
        return_choices: bool = False
    ) -> Union[Tuple[BasePoints, np.ndarray], BasePoints]:
wuyuefeng's avatar
wuyuefeng committed
1012
1013
1014
1015
1016
        """Points random sampling.

        Sample points to a certain number.

        Args:
1017
            points (:obj:`BasePoints`): 3D Points.
wuyuefeng's avatar
wuyuefeng committed
1018
            num_samples (int): Number of samples to be sampled.
1019
            sample_range (float, optional): Indicating the range where the
1020
                points will be sampled. Defaults to None.
1021
            replace (bool, optional): Sampling with or without replacement.
1022
                Defaults to False.
1023
1024
            return_choices (bool, optional): Whether return choice.
                Defaults to False.
1025

wuyuefeng's avatar
wuyuefeng committed
1026
        Returns:
1027
1028
1029
            tuple[:obj:`BasePoints`, np.ndarray] | :obj:`BasePoints`:

                - points (:obj:`BasePoints`): 3D Points.
1030
                - choices (np.ndarray, optional): The generated random samples.
wuyuefeng's avatar
wuyuefeng committed
1031
        """
1032
        if not replace:
wuyuefeng's avatar
wuyuefeng committed
1033
            replace = (points.shape[0] < num_samples)
1034
1035
1036
        point_range = range(len(points))
        if sample_range is not None and not replace:
            # Only sampling the near points when len(points) >= num_samples
1037
            dist = np.linalg.norm(points.coord.numpy(), axis=1)
1038
1039
            far_inds = np.where(dist >= sample_range)[0]
            near_inds = np.where(dist < sample_range)[0]
1040
1041
1042
1043
            # in case there are too many far points
            if len(far_inds) > num_samples:
                far_inds = np.random.choice(
                    far_inds, num_samples, replace=False)
1044
1045
1046
1047
1048
1049
1050
            point_range = near_inds
            num_samples -= len(far_inds)
        choices = np.random.choice(point_range, num_samples, replace=replace)
        if sample_range is not None and not replace:
            choices = np.concatenate((far_inds, choices))
            # Shuffle points after sampling
            np.random.shuffle(choices)
wuyuefeng's avatar
wuyuefeng committed
1051
1052
1053
1054
1055
        if return_choices:
            return points[choices], choices
        else:
            return points[choices]

1056
    def transform(self, input_dict: dict) -> dict:
1057
        """Transform function to sample points to in indoor scenes.
1058
1059
1060

        Args:
            input_dict (dict): Result dict from loading pipeline.
1061

1062
        Returns:
1063
            dict: Results after sampling, 'points', 'pts_instance_mask'
1064
1065
                and 'pts_semantic_mask' keys are updated in the result dict.
        """
1066
        points = input_dict['points']
1067
1068
1069
1070
1071
1072
        points, choices = self._points_random_sampling(
            points,
            self.num_points,
            self.sample_range,
            self.replace,
            return_choices=True)
1073
        input_dict['points'] = points
1074

1075
1076
        pts_instance_mask = input_dict.get('pts_instance_mask', None)
        pts_semantic_mask = input_dict.get('pts_semantic_mask', None)
wuyuefeng's avatar
wuyuefeng committed
1077

1078
        if pts_instance_mask is not None:
wuyuefeng's avatar
wuyuefeng committed
1079
            pts_instance_mask = pts_instance_mask[choices]
1080
            input_dict['pts_instance_mask'] = pts_instance_mask
1081
1082
1083

        if pts_semantic_mask is not None:
            pts_semantic_mask = pts_semantic_mask[choices]
1084
            input_dict['pts_semantic_mask'] = pts_semantic_mask
wuyuefeng's avatar
wuyuefeng committed
1085

1086
        return input_dict
wuyuefeng's avatar
wuyuefeng committed
1087
1088

    def __repr__(self):
1089
        """str: Return a string that describes the module."""
wuyuefeng's avatar
wuyuefeng committed
1090
        repr_str = self.__class__.__name__
1091
        repr_str += f'(num_points={self.num_points},'
1092
1093
        repr_str += f' sample_range={self.sample_range},'
        repr_str += f' replace={self.replace})'
1094

1095
1096
1097
        return repr_str


1098
@TRANSFORMS.register_module()
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
class IndoorPointSample(PointSample):
    """Indoor point sample.

    Sampling data to a certain number.
    NOTE: IndoorPointSample is deprecated in favor of PointSample

    Args:
        num_points (int): Number of points to be sampled.
    """

    def __init__(self, *args, **kwargs):
        warnings.warn(
            'IndoorPointSample is deprecated in favor of PointSample')
        super(IndoorPointSample, self).__init__(*args, **kwargs)


1115
@TRANSFORMS.register_module()
ZCMax's avatar
ZCMax committed
1116
class IndoorPatchPointSample(BaseTransform):
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
    r"""Indoor point sample within a patch. Modified from `PointNet++ <https://
    github.com/charlesq34/pointnet2/blob/master/scannet/scannet_dataset.py>`_.

    Sampling data to a certain number for semantic segmentation.

    Args:
        num_points (int): Number of points to be sampled.
        block_size (float, optional): Size of a block to sample points from.
            Defaults to 1.5.
        sample_rate (float, optional): Stride used in sliding patch generation.
1127
1128
1129
            This parameter is unused in `IndoorPatchPointSample` and thus has
            been deprecated. We plan to remove it in the future.
            Defaults to None.
1130
1131
        ignore_index (int, optional): Label index that won't be used for the
            segmentation task. This is set in PointSegClassMapping as neg_cls.
1132
            If not None, will be used as a patch selection criterion.
1133
1134
1135
1136
1137
            Defaults to None.
        use_normalized_coord (bool, optional): Whether to use normalized xyz as
            additional features. Defaults to False.
        num_try (int, optional): Number of times to try if the patch selected
            is invalid. Defaults to 10.
1138
        enlarge_size (float, optional): Enlarge the sampled patch to
1139
            [-block_size / 2 - enlarge_size, block_size / 2 + enlarge_size] as
1140
            an augmentation. If None, set it as 0. Defaults to 0.2.
1141
        min_unique_num (int, optional): Minimum number of unique points
1142
1143
            the sampled patch should contain. If None, use PointNet++'s method
            to judge uniqueness. Defaults to None.
1144
1145
        eps (float, optional): A value added to patch boundary to guarantee
            points coverage. Defaults to 1e-2.
1146
1147
1148
1149
1150
1151

    Note:
        This transform should only be used in the training process of point
            cloud segmentation tasks. For the sliding patch generation and
            inference process in testing, please refer to the `slide_inference`
            function of `EncoderDecoder3D` class.
1152
1153
1154
    """

    def __init__(self,
ZCMax's avatar
ZCMax committed
1155
1156
1157
1158
1159
1160
1161
1162
1163
                 num_points: int,
                 block_size: float = 1.5,
                 sample_rate: Optional[float] = None,
                 ignore_index: Optional[int] = None,
                 use_normalized_coord: bool = False,
                 num_try: int = 10,
                 enlarge_size: float = 0.2,
                 min_unique_num: Optional[int] = None,
                 eps: float = 1e-2) -> None:
1164
1165
1166
1167
1168
        self.num_points = num_points
        self.block_size = block_size
        self.ignore_index = ignore_index
        self.use_normalized_coord = use_normalized_coord
        self.num_try = num_try
1169
        self.enlarge_size = enlarge_size if enlarge_size is not None else 0.0
1170
        self.min_unique_num = min_unique_num
1171
        self.eps = eps
1172
1173
1174
1175
1176

        if sample_rate is not None:
            warnings.warn(
                "'sample_rate' has been deprecated and will be removed in "
                'the future. Please remove them from your code.')
1177

ZCMax's avatar
ZCMax committed
1178
1179
1180
1181
    def _input_generation(self, coords: np.ndarray, patch_center: np.ndarray,
                          coord_max: np.ndarray, attributes: np.ndarray,
                          attribute_dims: dict,
                          point_type: type) -> BasePoints:
1182
1183
        """Generating model input.

1184
        Generate input by subtracting patch center and adding additional
1185
1186
1187
1188
1189
1190
1191
1192
1193
            features. Currently support colors and normalized xyz as features.

        Args:
            coords (np.ndarray): Sampled 3D Points.
            patch_center (np.ndarray): Center coordinate of the selected patch.
            coord_max (np.ndarray): Max coordinate of all 3D Points.
            attributes (np.ndarray): features of input points.
            attribute_dims (dict): Dictionary to indicate the meaning of extra
                dimension.
1194
            point_type (type): class of input points inherited from BasePoints.
1195
1196

        Returns:
1197
            :obj:`BasePoints`: The generated input data.
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
        """
        # subtract patch center, the z dimension is not centered
        centered_coords = coords.copy()
        centered_coords[:, 0] -= patch_center[0]
        centered_coords[:, 1] -= patch_center[1]

        if self.use_normalized_coord:
            normalized_coord = coords / coord_max
            attributes = np.concatenate([attributes, normalized_coord], axis=1)
            if attribute_dims is None:
                attribute_dims = dict()
            attribute_dims.update(
                dict(normalized_coord=[
                    attributes.shape[1], attributes.shape[1] +
                    1, attributes.shape[1] + 2
                ]))

        points = np.concatenate([centered_coords, attributes], axis=1)
        points = point_type(
            points, points_dim=points.shape[1], attribute_dims=attribute_dims)

        return points

1221
    def _patch_points_sampling(
1222
1223
            self, points: BasePoints,
            sem_mask: np.ndarray) -> Tuple[BasePoints, np.ndarray]:
1224
1225
1226
1227
1228
1229
        """Patch points sampling.

        First sample a valid patch.
        Then sample points within that patch to a certain number.

        Args:
1230
            points (:obj:`BasePoints`): 3D Points.
1231
1232
1233
            sem_mask (np.ndarray): semantic segmentation mask for input points.

        Returns:
1234
            tuple[:obj:`BasePoints`, np.ndarray]:
1235

1236
                - points (:obj:`BasePoints`): 3D Points.
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
                - choices (np.ndarray): The generated random samples.
        """
        coords = points.coord.numpy()
        attributes = points.tensor[:, 3:].numpy()
        attribute_dims = points.attribute_dims
        point_type = type(points)

        coord_max = np.amax(coords, axis=0)
        coord_min = np.amin(coords, axis=0)

1247
        for _ in range(self.num_try):
1248
1249
1250
            # random sample a point as patch center
            cur_center = coords[np.random.choice(coords.shape[0])]

1251
1252
            # boundary of a patch, which would be enlarged by
            # `self.enlarge_size` as an augmentation
1253
1254
1255
1256
1257
1258
1259
            cur_max = cur_center + np.array(
                [self.block_size / 2.0, self.block_size / 2.0, 0.0])
            cur_min = cur_center - np.array(
                [self.block_size / 2.0, self.block_size / 2.0, 0.0])
            cur_max[2] = coord_max[2]
            cur_min[2] = coord_min[2]
            cur_choice = np.sum(
1260
1261
                (coords >= (cur_min - self.enlarge_size)) *
                (coords <= (cur_max + self.enlarge_size)),
1262
1263
1264
1265
1266
1267
1268
                axis=1) == 3

            if not cur_choice.any():  # no points in this patch
                continue

            cur_coords = coords[cur_choice, :]
            cur_sem_mask = sem_mask[cur_choice]
1269
            point_idxs = np.where(cur_choice)[0]
1270
            mask = np.sum(
1271
1272
                (cur_coords >= (cur_min - self.eps)) * (cur_coords <=
                                                        (cur_max + self.eps)),
1273
                axis=1) == 3
1274

1275
1276
            # two criteria for patch sampling, adopted from PointNet++
            # 1. selected patch should contain enough unique points
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
            if self.min_unique_num is None:
                # use PointNet++'s method as default
                # [31, 31, 62] are just some big values used to transform
                # coords from 3d array to 1d and then check their uniqueness
                # this is used in all the ScanNet code following PointNet++
                vidx = np.ceil(
                    (cur_coords[mask, :] - cur_min) / (cur_max - cur_min) *
                    np.array([31.0, 31.0, 62.0]))
                vidx = np.unique(vidx[:, 0] * 31.0 * 62.0 + vidx[:, 1] * 62.0 +
                                 vidx[:, 2])
                flag1 = len(vidx) / 31.0 / 31.0 / 62.0 >= 0.02
            else:
1289
                # if `min_unique_num` is provided, directly compare with it
1290
                flag1 = mask.sum() >= self.min_unique_num
1291

1292
            # 2. selected patch should contain enough annotated points
1293
1294
1295
1296
1297
1298
1299
1300
1301
            if self.ignore_index is None:
                flag2 = True
            else:
                flag2 = np.sum(cur_sem_mask != self.ignore_index) / \
                               len(cur_sem_mask) >= 0.7

            if flag1 and flag2:
                break

1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
        # sample idx to `self.num_points`
        if point_idxs.size >= self.num_points:
            # no duplicate in sub-sampling
            choices = np.random.choice(
                point_idxs, self.num_points, replace=False)
        else:
            # do not use random choice here to avoid some points not counted
            dup = np.random.choice(point_idxs.size,
                                   self.num_points - point_idxs.size)
            idx_dup = np.concatenate(
                [np.arange(point_idxs.size),
                 np.array(dup)], 0)
            choices = point_idxs[idx_dup]
1315
1316
1317
1318
1319
1320
1321
1322

        # construct model input
        points = self._input_generation(coords[choices], cur_center, coord_max,
                                        attributes[choices], attribute_dims,
                                        point_type)

        return points, choices

ZCMax's avatar
ZCMax committed
1323
    def transform(self, input_dict: dict) -> dict:
1324
1325
1326
1327
1328
1329
        """Call function to sample points to in indoor scenes.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
1330
            dict: Results after sampling, 'points', 'pts_instance_mask'
1331
1332
                and 'pts_semantic_mask' keys are updated in the result dict.
        """
ZCMax's avatar
ZCMax committed
1333
        points = input_dict['points']
1334

ZCMax's avatar
ZCMax committed
1335
        assert 'pts_semantic_mask' in input_dict.keys(), \
1336
            'semantic mask should be provided in training and evaluation'
ZCMax's avatar
ZCMax committed
1337
        pts_semantic_mask = input_dict['pts_semantic_mask']
1338
1339
1340
1341

        points, choices = self._patch_points_sampling(points,
                                                      pts_semantic_mask)

ZCMax's avatar
ZCMax committed
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
        input_dict['points'] = points
        input_dict['pts_semantic_mask'] = pts_semantic_mask[choices]

        # 'eval_ann_info' will be passed to evaluator
        if 'eval_ann_info' in input_dict:
            input_dict['eval_ann_info']['pts_semantic_mask'] = \
                pts_semantic_mask[choices]

        pts_instance_mask = input_dict.get('pts_instance_mask', None)

1352
        if pts_instance_mask is not None:
ZCMax's avatar
ZCMax committed
1353
1354
1355
1356
1357
            input_dict['pts_instance_mask'] = pts_instance_mask[choices]
            # 'eval_ann_info' will be passed to evaluator
            if 'eval_ann_info' in input_dict:
                input_dict['eval_ann_info']['pts_instance_mask'] = \
                    pts_instance_mask[choices]
1358

ZCMax's avatar
ZCMax committed
1359
        return input_dict
1360
1361
1362
1363
1364
1365
1366
1367

    def __repr__(self):
        """str: Return a string that describes the module."""
        repr_str = self.__class__.__name__
        repr_str += f'(num_points={self.num_points},'
        repr_str += f' block_size={self.block_size},'
        repr_str += f' ignore_index={self.ignore_index},'
        repr_str += f' use_normalized_coord={self.use_normalized_coord},'
1368
1369
        repr_str += f' num_try={self.num_try},'
        repr_str += f' enlarge_size={self.enlarge_size},'
1370
1371
        repr_str += f' min_unique_num={self.min_unique_num},'
        repr_str += f' eps={self.eps})'
wuyuefeng's avatar
wuyuefeng committed
1372
        return repr_str
1373
1374


1375
@TRANSFORMS.register_module()
ZCMax's avatar
ZCMax committed
1376
class BackgroundPointsFilter(BaseTransform):
1377
1378
1379
1380
1381
1382
    """Filter background points near the bounding box.

    Args:
        bbox_enlarge_range (tuple[float], float): Bbox enlarge range.
    """

ZCMax's avatar
ZCMax committed
1383
    def __init__(self, bbox_enlarge_range: Union[Tuple[float], float]) -> None:
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
        assert (is_tuple_of(bbox_enlarge_range, float)
                and len(bbox_enlarge_range) == 3) \
            or isinstance(bbox_enlarge_range, float), \
            f'Invalid arguments bbox_enlarge_range {bbox_enlarge_range}'

        if isinstance(bbox_enlarge_range, float):
            bbox_enlarge_range = [bbox_enlarge_range] * 3
        self.bbox_enlarge_range = np.array(
            bbox_enlarge_range, dtype=np.float32)[np.newaxis, :]

ZCMax's avatar
ZCMax committed
1394
    def transform(self, input_dict: dict) -> dict:
1395
1396
1397
1398
1399
1400
        """Call function to filter points by the range.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
1401
            dict: Results after filtering, 'points', 'pts_instance_mask'
1402
                and 'pts_semantic_mask' keys are updated in the result dict.
1403
1404
1405
1406
        """
        points = input_dict['points']
        gt_bboxes_3d = input_dict['gt_bboxes_3d']

xiliu8006's avatar
xiliu8006 committed
1407
1408
1409
1410
        # avoid groundtruth being modified
        gt_bboxes_3d_np = gt_bboxes_3d.tensor.clone().numpy()
        gt_bboxes_3d_np[:, :3] = gt_bboxes_3d.gravity_center.clone().numpy()

1411
1412
        enlarged_gt_bboxes_3d = gt_bboxes_3d_np.copy()
        enlarged_gt_bboxes_3d[:, 3:6] += self.bbox_enlarge_range
xiliu8006's avatar
xiliu8006 committed
1413
        points_numpy = points.tensor.clone().numpy()
1414
1415
        foreground_masks = box_np_ops.points_in_rbbox(
            points_numpy, gt_bboxes_3d_np, origin=(0.5, 0.5, 0.5))
1416
        enlarge_foreground_masks = box_np_ops.points_in_rbbox(
1417
            points_numpy, enlarged_gt_bboxes_3d, origin=(0.5, 0.5, 0.5))
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
        foreground_masks = foreground_masks.max(1)
        enlarge_foreground_masks = enlarge_foreground_masks.max(1)
        valid_masks = ~np.logical_and(~foreground_masks,
                                      enlarge_foreground_masks)

        input_dict['points'] = points[valid_masks]
        pts_instance_mask = input_dict.get('pts_instance_mask', None)
        if pts_instance_mask is not None:
            input_dict['pts_instance_mask'] = pts_instance_mask[valid_masks]

        pts_semantic_mask = input_dict.get('pts_semantic_mask', None)
        if pts_semantic_mask is not None:
            input_dict['pts_semantic_mask'] = pts_semantic_mask[valid_masks]
        return input_dict

    def __repr__(self):
        """str: Return a string that describes the module."""
        repr_str = self.__class__.__name__
1436
        repr_str += f'(bbox_enlarge_range={self.bbox_enlarge_range.tolist()})'
1437
        return repr_str
1438
1439


1440
@TRANSFORMS.register_module()
1441
class VoxelBasedPointSampler(BaseTransform):
1442
1443
1444
1445
1446
1447
1448
    """Voxel based point sampler.

    Apply voxel sampling to multiple sweep points.

    Args:
        cur_sweep_cfg (dict): Config for sampling current points.
        prev_sweep_cfg (dict): Config for sampling previous points.
1449
        time_dim (int): Index that indicate the time dimension
1450
1451
1452
            for input points.
    """

1453
1454
1455
1456
    def __init__(self,
                 cur_sweep_cfg: dict,
                 prev_sweep_cfg: Optional[dict] = None,
                 time_dim: int = 3) -> None:
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
        self.cur_voxel_generator = VoxelGenerator(**cur_sweep_cfg)
        self.cur_voxel_num = self.cur_voxel_generator._max_voxels
        self.time_dim = time_dim
        if prev_sweep_cfg is not None:
            assert prev_sweep_cfg['max_num_points'] == \
                cur_sweep_cfg['max_num_points']
            self.prev_voxel_generator = VoxelGenerator(**prev_sweep_cfg)
            self.prev_voxel_num = self.prev_voxel_generator._max_voxels
        else:
            self.prev_voxel_generator = None
            self.prev_voxel_num = 0

1469
    def _sample_points(self, points: np.ndarray, sampler: VoxelGenerator,
1470
                       point_dim: int) -> np.ndarray:
1471
1472
1473
1474
1475
1476
        """Sample points for each points subset.

        Args:
            points (np.ndarray): Points subset to be sampled.
            sampler (VoxelGenerator): Voxel based sampler for
                each points subset.
1477
            point_dim (int): The dimension of each points
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495

        Returns:
            np.ndarray: Sampled points.
        """
        voxels, coors, num_points_per_voxel = sampler.generate(points)
        if voxels.shape[0] < sampler._max_voxels:
            padding_points = np.zeros([
                sampler._max_voxels - voxels.shape[0], sampler._max_num_points,
                point_dim
            ],
                                      dtype=points.dtype)
            padding_points[:] = voxels[0]
            sample_points = np.concatenate([voxels, padding_points], axis=0)
        else:
            sample_points = voxels

        return sample_points

1496
    def transform(self, results: dict) -> dict:
1497
1498
1499
1500
1501
1502
        """Call function to sample points from multiple sweeps.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
1503
            dict: Results after sampling, 'points', 'pts_instance_mask'
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
                and 'pts_semantic_mask' keys are updated in the result dict.
        """
        points = results['points']
        original_dim = points.shape[1]

        # TODO: process instance and semantic mask while _max_num_points
        # is larger than 1
        # Extend points with seg and mask fields
        map_fields2dim = []
        start_dim = original_dim
1514
1515
        points_numpy = points.tensor.numpy()
        extra_channel = [points_numpy]
1516
1517
1518
1519
1520
1521
1522
1523
1524
        for idx, key in enumerate(results['pts_mask_fields']):
            map_fields2dim.append((key, idx + start_dim))
            extra_channel.append(results[key][..., None])

        start_dim += len(results['pts_mask_fields'])
        for idx, key in enumerate(results['pts_seg_fields']):
            map_fields2dim.append((key, idx + start_dim))
            extra_channel.append(results[key][..., None])

1525
        points_numpy = np.concatenate(extra_channel, axis=-1)
1526
1527
1528
1529
1530

        # Split points into two part, current sweep points and
        # previous sweeps points.
        # TODO: support different sampling methods for next sweeps points
        # and previous sweeps points.
1531
1532
1533
        cur_points_flag = (points_numpy[:, self.time_dim] == 0)
        cur_sweep_points = points_numpy[cur_points_flag]
        prev_sweeps_points = points_numpy[~cur_points_flag]
1534
1535
1536
1537
1538
1539
1540
1541
1542
        if prev_sweeps_points.shape[0] == 0:
            prev_sweeps_points = cur_sweep_points

        # Shuffle points before sampling
        np.random.shuffle(cur_sweep_points)
        np.random.shuffle(prev_sweeps_points)

        cur_sweep_points = self._sample_points(cur_sweep_points,
                                               self.cur_voxel_generator,
1543
                                               points_numpy.shape[1])
1544
1545
1546
        if self.prev_voxel_generator is not None:
            prev_sweeps_points = self._sample_points(prev_sweeps_points,
                                                     self.prev_voxel_generator,
1547
                                                     points_numpy.shape[1])
1548

1549
1550
            points_numpy = np.concatenate(
                [cur_sweep_points, prev_sweeps_points], 0)
1551
        else:
1552
            points_numpy = cur_sweep_points
1553
1554

        if self.cur_voxel_generator._max_num_points == 1:
1555
1556
            points_numpy = points_numpy.squeeze(1)
        results['points'] = points.new_point(points_numpy[..., :original_dim])
1557

1558
        # Restore the corresponding seg and mask fields
1559
        for key, dim_index in map_fields2dim:
1560
            results[key] = points_numpy[..., dim_index]
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583

        return results

    def __repr__(self):
        """str: Return a string that describes the module."""

        def _auto_indent(repr_str, indent):
            repr_str = repr_str.split('\n')
            repr_str = [' ' * indent + t + '\n' for t in repr_str]
            repr_str = ''.join(repr_str)[:-1]
            return repr_str

        repr_str = self.__class__.__name__
        indent = 4
        repr_str += '(\n'
        repr_str += ' ' * indent + f'num_cur_sweep={self.cur_voxel_num},\n'
        repr_str += ' ' * indent + f'num_prev_sweep={self.prev_voxel_num},\n'
        repr_str += ' ' * indent + f'time_dim={self.time_dim},\n'
        repr_str += ' ' * indent + 'cur_voxel_generator=\n'
        repr_str += f'{_auto_indent(repr(self.cur_voxel_generator), 8)},\n'
        repr_str += ' ' * indent + 'prev_voxel_generator=\n'
        repr_str += f'{_auto_indent(repr(self.prev_voxel_generator), 8)})'
        return repr_str
1584
1585


1586
@TRANSFORMS.register_module()
ZCMax's avatar
ZCMax committed
1587
class AffineResize(BaseTransform):
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
    """Get the affine transform matrices to the target size.

    Different from :class:`RandomAffine` in MMDetection, this class can
    calculate the affine transform matrices while resizing the input image
    to a fixed size. The affine transform matrices include: 1) matrix
    transforming original image to the network input image size. 2) matrix
    transforming original image to the network output feature map size.

    Args:
        img_scale (tuple): Images scales for resizing.
        down_ratio (int): The down ratio of feature map.
            Actually the arg should be >= 1.
        bbox_clip_border (bool, optional): Whether clip the objects
            outside the border of the image. Defaults to True.
    """

ZCMax's avatar
ZCMax committed
1604
1605
1606
1607
    def __init__(self,
                 img_scale: Tuple,
                 down_ratio: int,
                 bbox_clip_border: bool = True) -> None:
1608
1609
1610
1611
1612

        self.img_scale = img_scale
        self.down_ratio = down_ratio
        self.bbox_clip_border = bbox_clip_border

ZCMax's avatar
ZCMax committed
1613
    def transform(self, results: dict) -> dict:
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
        """Call function to do affine transform to input image and labels.

        Args:
            results (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after affine resize, 'affine_aug', 'trans_mat'
                keys are added in the result dict.
        """
        # The results have gone through RandomShiftScale before AffineResize
        if 'center' not in results:
            img = results['img']
            height, width = img.shape[:2]
            center = np.array([width / 2, height / 2], dtype=np.float32)
            size = np.array([width, height], dtype=np.float32)
            results['affine_aug'] = False
        else:
            # The results did not go through RandomShiftScale before
            # AffineResize
            img = results['img']
            center = results['center']
            size = results['size']

        trans_affine = self._get_transform_matrix(center, size, self.img_scale)

        img = cv2.warpAffine(img, trans_affine[:2, :], self.img_scale)

        if isinstance(self.down_ratio, tuple):
            trans_mat = [
                self._get_transform_matrix(
                    center, size,
                    (self.img_scale[0] // ratio, self.img_scale[1] // ratio))
                for ratio in self.down_ratio
            ]  # (3, 3)
        else:
            trans_mat = self._get_transform_matrix(
                center, size, (self.img_scale[0] // self.down_ratio,
                               self.img_scale[1] // self.down_ratio))

        results['img'] = img
        results['img_shape'] = img.shape
        results['pad_shape'] = img.shape
        results['trans_mat'] = trans_mat

ZCMax's avatar
ZCMax committed
1658
1659
        if 'gt_bboxes' in results:
            self._affine_bboxes(results, trans_affine)
1660

ZCMax's avatar
ZCMax committed
1661
1662
        if 'centers_2d' in results:
            centers2d = self._affine_transform(results['centers_2d'],
1663
1664
1665
1666
1667
                                               trans_affine)
            valid_index = (centers2d[:, 0] >
                           0) & (centers2d[:, 0] <
                                 self.img_scale[0]) & (centers2d[:, 1] > 0) & (
                                     centers2d[:, 1] < self.img_scale[1])
ZCMax's avatar
ZCMax committed
1668
1669
1670
1671
            results['centers_2d'] = centers2d[valid_index]

            if 'gt_bboxes' in results:
                results['gt_bboxes'] = results['gt_bboxes'][valid_index]
1672
1673
1674
                if 'gt_bboxes_labels' in results:
                    results['gt_bboxes_labels'] = results['gt_bboxes_labels'][
                        valid_index]
ZCMax's avatar
ZCMax committed
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
                if 'gt_masks' in results:
                    raise NotImplementedError(
                        'AffineResize only supports bbox.')

            if 'gt_bboxes_3d' in results:
                results['gt_bboxes_3d'].tensor = results[
                    'gt_bboxes_3d'].tensor[valid_index]
                if 'gt_labels_3d' in results:
                    results['gt_labels_3d'] = results['gt_labels_3d'][
                        valid_index]
1685
1686
1687
1688
1689

            results['depths'] = results['depths'][valid_index]

        return results

ZCMax's avatar
ZCMax committed
1690
    def _affine_bboxes(self, results: dict, matrix: np.ndarray) -> None:
1691
1692
1693
1694
1695
1696
1697
1698
1699
        """Affine transform bboxes to input image.

        Args:
            results (dict): Result dict from loading pipeline.
            matrix (np.ndarray): Matrix transforming original
                image to the network input image size.
                shape: (3, 3)
        """

ZCMax's avatar
ZCMax committed
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
        bboxes = results['gt_bboxes']
        bboxes[:, :2] = self._affine_transform(bboxes[:, :2], matrix)
        bboxes[:, 2:] = self._affine_transform(bboxes[:, 2:], matrix)
        if self.bbox_clip_border:
            bboxes[:, [0, 2]] = bboxes[:, [0, 2]].clip(0,
                                                       self.img_scale[0] - 1)
            bboxes[:, [1, 3]] = bboxes[:, [1, 3]].clip(0,
                                                       self.img_scale[1] - 1)
        results['gt_bboxes'] = bboxes

    def _affine_transform(self, points: np.ndarray,
                          matrix: np.ndarray) -> np.ndarray:
1712
        """Affine transform bbox points to input image.
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729

        Args:
            points (np.ndarray): Points to be transformed.
                shape: (N, 2)
            matrix (np.ndarray): Affine transform matrix.
                shape: (3, 3)

        Returns:
            np.ndarray: Transformed points.
        """
        num_points = points.shape[0]
        hom_points_2d = np.concatenate((points, np.ones((num_points, 1))),
                                       axis=1)
        hom_points_2d = hom_points_2d.T
        affined_points = np.matmul(matrix, hom_points_2d).T
        return affined_points[:, :2]

ZCMax's avatar
ZCMax committed
1730
1731
    def _get_transform_matrix(self, center: Tuple, scale: Tuple,
                              output_scale: Tuple[float]) -> np.ndarray:
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
        """Get affine transform matrix.

        Args:
            center (tuple): Center of current image.
            scale (tuple): Scale of current image.
            output_scale (tuple[float]): The transform target image scales.

        Returns:
            np.ndarray: Affine transform matrix.
        """
        # TODO: further add rot and shift here.
        src_w = scale[0]
        dst_w = output_scale[0]
        dst_h = output_scale[1]

        src_dir = np.array([0, src_w * -0.5])
        dst_dir = np.array([0, dst_w * -0.5])

        src = np.zeros((3, 2), dtype=np.float32)
        dst = np.zeros((3, 2), dtype=np.float32)
        src[0, :] = center
        src[1, :] = center + src_dir
        dst[0, :] = np.array([dst_w * 0.5, dst_h * 0.5])
        dst[1, :] = np.array([dst_w * 0.5, dst_h * 0.5]) + dst_dir

        src[2, :] = self._get_ref_point(src[0, :], src[1, :])
        dst[2, :] = self._get_ref_point(dst[0, :], dst[1, :])

        get_matrix = cv2.getAffineTransform(src, dst)

        matrix = np.concatenate((get_matrix, [[0., 0., 1.]]))

        return matrix.astype(np.float32)

ZCMax's avatar
ZCMax committed
1766
1767
    def _get_ref_point(self, ref_point1: np.ndarray,
                       ref_point2: np.ndarray) -> np.ndarray:
1768
        """Get reference point to calculate affine transform matrix.
1769
1770

        While using opencv to calculate the affine matrix, we need at least
1771
        three corresponding points separately on original image and target
1772
1773
1774
1775
1776
1777
1778
        image. Here we use two points to get the the third reference point.
        """
        d = ref_point1 - ref_point2
        ref_point3 = ref_point2 + np.array([-d[1], d[0]])
        return ref_point3

    def __repr__(self):
1779
        """str: Return a string that describes the module."""
1780
1781
1782
1783
1784
1785
        repr_str = self.__class__.__name__
        repr_str += f'(img_scale={self.img_scale}, '
        repr_str += f'down_ratio={self.down_ratio}) '
        return repr_str


1786
@TRANSFORMS.register_module()
ZCMax's avatar
ZCMax committed
1787
class RandomShiftScale(BaseTransform):
1788
1789
1790
1791
    """Random shift scale.

    Different from the normal shift and scale function, it doesn't
    directly shift or scale image. It can record the shift and scale
1792
    infos into loading TRANSFORMS. It's designed to be used with
1793
1794
1795
1796
1797
1798
1799
    AffineResize together.

    Args:
        shift_scale (tuple[float]): Shift and scale range.
        aug_prob (float): The shifting and scaling probability.
    """

1800
    def __init__(self, shift_scale: Tuple[float], aug_prob: float) -> None:
1801
1802
1803
1804

        self.shift_scale = shift_scale
        self.aug_prob = aug_prob

ZCMax's avatar
ZCMax committed
1805
    def transform(self, results: dict) -> dict:
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
        """Call function to record random shift and scale infos.

        Args:
            results (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after random shift and scale, 'center', 'size'
                and 'affine_aug' keys are added in the result dict.
        """
        img = results['img']

        height, width = img.shape[:2]

        center = np.array([width / 2, height / 2], dtype=np.float32)
        size = np.array([width, height], dtype=np.float32)

        if random.random() < self.aug_prob:
            shift, scale = self.shift_scale[0], self.shift_scale[1]
            shift_ranges = np.arange(-shift, shift + 0.1, 0.1)
            center[0] += size[0] * random.choice(shift_ranges)
            center[1] += size[1] * random.choice(shift_ranges)
            scale_ranges = np.arange(1 - scale, 1 + scale + 0.1, 0.1)
            size *= random.choice(scale_ranges)
            results['affine_aug'] = True
        else:
            results['affine_aug'] = False

        results['center'] = center
        results['size'] = size

        return results

    def __repr__(self):
1839
        """str: Return a string that describes the module."""
1840
1841
1842
1843
        repr_str = self.__class__.__name__
        repr_str += f'(shift_scale={self.shift_scale}, '
        repr_str += f'aug_prob={self.aug_prob}) '
        return repr_str
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911


@TRANSFORMS.register_module()
class Resize3D(Resize):

    def _resize_3d(self, results):
        """Resize centers_2d and modify camera intrinisc with
        ``results['scale']``."""
        if 'centers_2d' in results:
            results['centers_2d'] *= results['scale_factor'][:2]
        results['cam2img'][0] *= np.array(results['scale_factor'][0])
        results['cam2img'][1] *= np.array(results['scale_factor'][1])

    def transform(self, results: dict) -> dict:
        """Transform function to resize images, bounding boxes, semantic
        segmentation map and keypoints.

        Args:
            results (dict): Result dict from loading pipeline.
        Returns:
            dict: Resized results, 'img', 'gt_bboxes', 'gt_seg_map',
            'gt_keypoints', 'scale', 'scale_factor', 'img_shape',
            and 'keep_ratio' keys are updated in result dict.
        """

        super(Resize3D, self).transform(results)
        self._resize_3d(results)
        return results


@TRANSFORMS.register_module()
class RandomResize3D(RandomResize):
    """The difference between RandomResize3D and RandomResize:

    1. Compared to RandomResize, this class would further
        check if scale is already set in results.
    2. During resizing, this class would modify the centers_2d
        and cam2img with ``results['scale']``.
    """

    def _resize_3d(self, results):
        """Resize centers_2d and modify camera intrinisc with
        ``results['scale']``."""
        if 'centers_2d' in results:
            results['centers_2d'] *= results['scale_factor'][:2]
        results['cam2img'][0] *= np.array(results['scale_factor'][0])
        results['cam2img'][1] *= np.array(results['scale_factor'][1])

    def transform(self, results):
        """Call function to resize images, bounding boxes, masks, semantic
        segmentation map.

        Compared to RandomResize, this function would further
        check if scale is already set in results.

        Args:
            results (dict): Result dict from loading pipeline.
        Returns:
            dict: Resized results, 'img_shape', 'pad_shape', 'scale_factor', \
                'keep_ratio' keys are added into result dict.
        """
        if 'scale' not in results:
            results['scale'] = self._random_scale()
        self.resize.scale = results['scale']
        results = self.resize(results)
        self._resize_3d(results)

        return results