transforms_3d.py 68.3 KB
Newer Older
dingchang's avatar
dingchang committed
1
# Copyright (c) OpenMMLab. All rights reserved.
2
import random
3
import warnings
ZCMax's avatar
ZCMax committed
4
from typing import Dict, List, Optional, Tuple, Union
5
6
7

import cv2
import numpy as np
8
from mmcv.transforms import BaseTransform
9
from mmengine import is_tuple_of
zhangwenwei's avatar
zhangwenwei committed
10

zhangshilong's avatar
zhangshilong committed
11
from mmdet3d.models.task_modules import VoxelGenerator
12
from mmdet3d.registry import TRANSFORMS
zhangshilong's avatar
zhangshilong committed
13
14
15
16
17
from mmdet3d.structures import (CameraInstance3DBoxes, DepthInstance3DBoxes,
                                LiDARInstance3DBoxes)
from mmdet3d.structures.ops import box_np_ops
from mmdet3d.structures.points import BasePoints
from mmdet.datasets.transforms import RandomFlip
zhangwenwei's avatar
zhangwenwei committed
18
19
20
from .data_augment_utils import noise_per_object_v3_


21
@TRANSFORMS.register_module()
ZCMax's avatar
ZCMax committed
22
class RandomDropPointsColor(BaseTransform):
23
24
25
26
27
28
29
    r"""Randomly set the color of points to all zeros.

    Once this transform is executed, all the points' color will be dropped.
    Refer to `PAConv <https://github.com/CVMI-Lab/PAConv/blob/main/scene_seg/
    util/transform.py#L223>`_ for more details.

    Args:
30
        drop_ratio (float, optional): The probability of dropping point colors.
31
32
33
            Defaults to 0.2.
    """

ZCMax's avatar
ZCMax committed
34
    def __init__(self, drop_ratio: float = 0.2) -> None:
35
36
37
38
        assert isinstance(drop_ratio, (int, float)) and 0 <= drop_ratio <= 1, \
            f'invalid drop_ratio value {drop_ratio}'
        self.drop_ratio = drop_ratio

ZCMax's avatar
ZCMax committed
39
    def transform(self, input_dict: dict) -> dict:
40
41
42
43
44
45
        """Call function to drop point colors.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
46
            dict: Results after color dropping,
47
48
49
50
51
52
53
                'points' key is updated in the result dict.
        """
        points = input_dict['points']
        assert points.attribute_dims is not None and \
            'color' in points.attribute_dims, \
            'Expect points have color attribute'

54
55
56
57
58
59
60
        # this if-expression is a bit strange
        # `RandomDropPointsColor` is used in training 3D segmentor PAConv
        # we discovered in our experiments that, using
        # `if np.random.rand() > 1.0 - self.drop_ratio` consistently leads to
        # better results than using `if np.random.rand() < self.drop_ratio`
        # so we keep this hack in our codebase
        if np.random.rand() > 1.0 - self.drop_ratio:
61
62
63
64
65
66
67
68
69
70
            points.color = points.color * 0.0
        return input_dict

    def __repr__(self):
        """str: Return a string that describes the module."""
        repr_str = self.__class__.__name__
        repr_str += f'(drop_ratio={self.drop_ratio})'
        return repr_str


71
@TRANSFORMS.register_module()
zhangwenwei's avatar
zhangwenwei committed
72
73
74
75
76
77
78
class RandomFlip3D(RandomFlip):
    """Flip the points & bbox.

    If the input dict contains the key "flip", then the flag will be used,
    otherwise it will be randomly decided by a ratio specified in the init
    method.

jshilong's avatar
jshilong committed
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97

    Required Keys:

    - points (np.float32)
    - gt_bboxes_3d (np.float32)

    Modified Keys:

    - points (np.float32)
    - gt_bboxes_3d (np.float32)

    Added Keys:

    - points (np.float32)
    - pcd_trans (np.float32)
    - pcd_rotation (np.float32)
    - pcd_rotation_angle (np.float32)
    - pcd_scale_factor (np.float32)

zhangwenwei's avatar
zhangwenwei committed
98
    Args:
zhangwenwei's avatar
zhangwenwei committed
99
100
101
        sync_2d (bool, optional): Whether to apply flip according to the 2D
            images. If True, it will apply the same flip as that to 2D images.
            If False, it will decide whether to flip randomly and independently
liyinhao's avatar
liyinhao committed
102
            to that of 2D images. Defaults to True.
wuyuefeng's avatar
wuyuefeng committed
103
        flip_ratio_bev_horizontal (float, optional): The flipping probability
liyinhao's avatar
liyinhao committed
104
            in horizontal direction. Defaults to 0.0.
wuyuefeng's avatar
wuyuefeng committed
105
        flip_ratio_bev_vertical (float, optional): The flipping probability
liyinhao's avatar
liyinhao committed
106
            in vertical direction. Defaults to 0.0.
zhangwenwei's avatar
zhangwenwei committed
107
108
    """

wuyuefeng's avatar
wuyuefeng committed
109
    def __init__(self,
jshilong's avatar
jshilong committed
110
111
112
113
114
115
116
                 sync_2d: bool = True,
                 flip_ratio_bev_horizontal: float = 0.0,
                 flip_ratio_bev_vertical: float = 0.0,
                 **kwargs) -> None:
        # `flip_ratio_bev_horizontal` is equal to
        # for flip prob of 2d image when
        # `sync_2d` is True
wuyuefeng's avatar
wuyuefeng committed
117
        super(RandomFlip3D, self).__init__(
jshilong's avatar
jshilong committed
118
            prob=flip_ratio_bev_horizontal, direction='horizontal', **kwargs)
zhangwenwei's avatar
zhangwenwei committed
119
        self.sync_2d = sync_2d
jshilong's avatar
jshilong committed
120
        self.flip_ratio_bev_horizontal = flip_ratio_bev_horizontal
wuyuefeng's avatar
wuyuefeng committed
121
122
123
124
125
126
127
128
129
130
        self.flip_ratio_bev_vertical = flip_ratio_bev_vertical
        if flip_ratio_bev_horizontal is not None:
            assert isinstance(
                flip_ratio_bev_horizontal,
                (int, float)) and 0 <= flip_ratio_bev_horizontal <= 1
        if flip_ratio_bev_vertical is not None:
            assert isinstance(
                flip_ratio_bev_vertical,
                (int, float)) and 0 <= flip_ratio_bev_vertical <= 1

jshilong's avatar
jshilong committed
131
132
133
    def random_flip_data_3d(self,
                            input_dict: dict,
                            direction: str = 'horizontal') -> None:
134
135
        """Flip 3D data randomly.

jshilong's avatar
jshilong committed
136
137
138
139
140
141
142
        `random_flip_data_3d` should take these situations into consideration:

        - 1. LIDAR-based 3d detection
        - 2. LIDAR-based 3d segmentation
        - 3. vision-only detection
        - 4. multi-modality 3d detection.

143
144
        Args:
            input_dict (dict): Result dict from loading pipeline.
145
146
            direction (str, optional): Flip direction.
                Default: 'horizontal'.
147
148

        Returns:
149
            dict: Flipped results, 'points', 'bbox3d_fields' keys are
150
151
                updated in the result dict.
        """
wuyuefeng's avatar
wuyuefeng committed
152
        assert direction in ['horizontal', 'vertical']
jshilong's avatar
jshilong committed
153
154

        if 'gt_bboxes_3d' in input_dict:
155
            if 'points' in input_dict:
jshilong's avatar
jshilong committed
156
                input_dict['points'] = input_dict['gt_bboxes_3d'].flip(
157
158
                    direction, points=input_dict['points'])
            else:
jshilong's avatar
jshilong committed
159
160
161
162
163
164
                # vision-only detection
                input_dict['gt_bboxes_3d'].flip(direction)
        else:
            input_dict['points'].flip(direction)

        if 'centers_2d' in input_dict:
165
166
            assert self.sync_2d is True and direction == 'horizontal', \
                'Only support sync_2d=True and horizontal flip with images'
jshilong's avatar
jshilong committed
167
168
            # TODO fix this ori_shape and other keys in vision based model
            # TODO ori_shape to img_shape
169
            w = input_dict['ori_shape'][1]
jshilong's avatar
jshilong committed
170
171
            input_dict['centers_2d'][..., 0] = \
                w - input_dict['centers_2d'][..., 0]
172
173
            # need to modify the horizontal position of camera center
            # along u-axis in the image (flip like centers2d)
174
            # ['cam2img'][0][2] = c_u
175
176
            # see more details and examples at
            # https://github.com/open-mmlab/mmdetection3d/pull/744
177
            input_dict['cam2img'][0][2] = w - input_dict['cam2img'][0][2]
zhangwenwei's avatar
zhangwenwei committed
178

jshilong's avatar
jshilong committed
179
    def transform(self, input_dict: dict) -> dict:
180
        """Call function to flip points, values in the ``bbox3d_fields`` and
181
182
183
184
185
186
        also flip 2D image and its annotations.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
187
188
            dict: Flipped results, 'flip', 'flip_direction',
                'pcd_horizontal_flip' and 'pcd_vertical_flip' keys are added
189
190
                into result dict.
        """
191
        # flip 2D image and its annotations
jshilong's avatar
jshilong committed
192
193
        if 'img' in input_dict:
            super(RandomFlip3D, self).transform(input_dict)
zhangwenwei's avatar
zhangwenwei committed
194

jshilong's avatar
jshilong committed
195
        if self.sync_2d and 'img' in input_dict:
wuyuefeng's avatar
wuyuefeng committed
196
197
            input_dict['pcd_horizontal_flip'] = input_dict['flip']
            input_dict['pcd_vertical_flip'] = False
zhangwenwei's avatar
zhangwenwei committed
198
        else:
wuyuefeng's avatar
wuyuefeng committed
199
200
            if 'pcd_horizontal_flip' not in input_dict:
                flip_horizontal = True if np.random.rand(
jshilong's avatar
jshilong committed
201
                ) < self.flip_ratio_bev_horizontal else False
wuyuefeng's avatar
wuyuefeng committed
202
203
204
205
206
207
                input_dict['pcd_horizontal_flip'] = flip_horizontal
            if 'pcd_vertical_flip' not in input_dict:
                flip_vertical = True if np.random.rand(
                ) < self.flip_ratio_bev_vertical else False
                input_dict['pcd_vertical_flip'] = flip_vertical

208
209
210
        if 'transformation_3d_flow' not in input_dict:
            input_dict['transformation_3d_flow'] = []

wuyuefeng's avatar
wuyuefeng committed
211
212
        if input_dict['pcd_horizontal_flip']:
            self.random_flip_data_3d(input_dict, 'horizontal')
213
            input_dict['transformation_3d_flow'].extend(['HF'])
wuyuefeng's avatar
wuyuefeng committed
214
215
        if input_dict['pcd_vertical_flip']:
            self.random_flip_data_3d(input_dict, 'vertical')
216
            input_dict['transformation_3d_flow'].extend(['VF'])
zhangwenwei's avatar
zhangwenwei committed
217
218
        return input_dict

zhangwenwei's avatar
zhangwenwei committed
219
    def __repr__(self):
220
        """str: Return a string that describes the module."""
wuyuefeng's avatar
wuyuefeng committed
221
        repr_str = self.__class__.__name__
222
        repr_str += f'(sync_2d={self.sync_2d},'
223
        repr_str += f' flip_ratio_bev_vertical={self.flip_ratio_bev_vertical})'
wuyuefeng's avatar
wuyuefeng committed
224
        return repr_str
zhangwenwei's avatar
zhangwenwei committed
225

zhangwenwei's avatar
zhangwenwei committed
226

227
@TRANSFORMS.register_module()
ZCMax's avatar
ZCMax committed
228
class RandomJitterPoints(BaseTransform):
229
230
    """Randomly jitter point coordinates.

231
    Different from the global translation in ``GlobalRotScaleTrans``, here we
232
233
234
235
        apply different noises to each point in a scene.

    Args:
        jitter_std (list[float]): The standard deviation of jittering noise.
236
237
            This applies random noise to all points in a 3D scene, which is
            sampled from a gaussian distribution whose standard deviation is
238
            set by ``jitter_std``. Defaults to [0.01, 0.01, 0.01]
239
        clip_range (list[float]): Clip the randomly generated jitter
240
241
242
243
            noise into this range. If None is given, don't perform clipping.
            Defaults to [-0.05, 0.05]

    Note:
244
        This transform should only be used in point cloud segmentation tasks
245
246
247
248
249
            because we don't transform ground-truth bboxes accordingly.
        For similar transform in detection task, please refer to `ObjectNoise`.
    """

    def __init__(self,
ZCMax's avatar
ZCMax committed
250
251
                 jitter_std: List[float] = [0.01, 0.01, 0.01],
                 clip_range: List[float] = [-0.05, 0.05]) -> None:
252
253
254
255
256
257
258
259
260
261
262
263
264
265
        seq_types = (list, tuple, np.ndarray)
        if not isinstance(jitter_std, seq_types):
            assert isinstance(jitter_std, (int, float)), \
                f'unsupported jitter_std type {type(jitter_std)}'
            jitter_std = [jitter_std, jitter_std, jitter_std]
        self.jitter_std = jitter_std

        if clip_range is not None:
            if not isinstance(clip_range, seq_types):
                assert isinstance(clip_range, (int, float)), \
                    f'unsupported clip_range type {type(clip_range)}'
                clip_range = [-clip_range, clip_range]
        self.clip_range = clip_range

ZCMax's avatar
ZCMax committed
266
    def transform(self, input_dict: dict) -> dict:
267
268
269
270
271
272
        """Call function to jitter all the points in the scene.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
273
            dict: Results after adding noise to each point,
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
                'points' key is updated in the result dict.
        """
        points = input_dict['points']
        jitter_std = np.array(self.jitter_std, dtype=np.float32)
        jitter_noise = \
            np.random.randn(points.shape[0], 3) * jitter_std[None, :]
        if self.clip_range is not None:
            jitter_noise = np.clip(jitter_noise, self.clip_range[0],
                                   self.clip_range[1])

        points.translate(jitter_noise)
        return input_dict

    def __repr__(self):
        """str: Return a string that describes the module."""
        repr_str = self.__class__.__name__
        repr_str += f'(jitter_std={self.jitter_std},'
        repr_str += f' clip_range={self.clip_range})'
        return repr_str


295
296
@TRANSFORMS.register_module()
class ObjectSample(BaseTransform):
zhangwenwei's avatar
zhangwenwei committed
297
    """Sample GT objects to the data.
zhangwenwei's avatar
zhangwenwei committed
298

299
300
301
302
303
304
305
306
307
308
    Required Keys:

    - points
    - ann_info
    - gt_bboxes_3d
    - gt_labels_3d
    - img (optional)
    - gt_bboxes (optional)

    Modified Keys:
309

310
311
312
313
314
315
316
317
318
319
    - points
    - gt_bboxes_3d
    - gt_labels_3d
    - img (optional)
    - gt_bboxes (optional)

    Added Keys:

    - plane (optional)

zhangwenwei's avatar
zhangwenwei committed
320
321
322
323
    Args:
        db_sampler (dict): Config dict of the database sampler.
        sample_2d (bool): Whether to also paste 2D image patch to the images
            This should be true when applying multi-modality cut-and-paste.
liyinhao's avatar
liyinhao committed
324
            Defaults to False.
325
        use_ground_plane (bool): Whether to use ground plane to adjust the
326
            3D labels.
zhangwenwei's avatar
zhangwenwei committed
327
    """
zhangwenwei's avatar
zhangwenwei committed
328

329
330
331
332
    def __init__(self,
                 db_sampler: dict,
                 sample_2d: bool = False,
                 use_ground_plane: bool = False):
zhangwenwei's avatar
zhangwenwei committed
333
334
335
336
        self.sampler_cfg = db_sampler
        self.sample_2d = sample_2d
        if 'type' not in db_sampler.keys():
            db_sampler['type'] = 'DataBaseSampler'
337
        self.db_sampler = TRANSFORMS.build(db_sampler)
338
        self.use_ground_plane = use_ground_plane
zhangwenwei's avatar
zhangwenwei committed
339
340

    @staticmethod
341
342
    def remove_points_in_boxes(points: BasePoints,
                               boxes: np.ndarray) -> np.ndarray:
343
344
345
        """Remove the points in the sampled bounding boxes.

        Args:
346
            points (:obj:`BasePoints`): Input point cloud array.
347
348
349
350
351
            boxes (np.ndarray): Sampled ground truth boxes.

        Returns:
            np.ndarray: Points with those in the boxes removed.
        """
352
        masks = box_np_ops.points_in_rbbox(points.coord.numpy(), boxes)
zhangwenwei's avatar
zhangwenwei committed
353
354
355
        points = points[np.logical_not(masks.any(-1))]
        return points

356
357
    def transform(self, input_dict: dict) -> dict:
        """Transform function to sample ground truth objects to the data.
358
359
360
361
362

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
363
364
            dict: Results after object sampling augmentation,
                'points', 'gt_bboxes_3d', 'gt_labels_3d' keys are updated
365
366
                in the result dict.
        """
zhangwenwei's avatar
zhangwenwei committed
367
        gt_bboxes_3d = input_dict['gt_bboxes_3d']
zhangwenwei's avatar
zhangwenwei committed
368
369
        gt_labels_3d = input_dict['gt_labels_3d']

ChaimZhu's avatar
ChaimZhu committed
370
371
        if self.use_ground_plane:
            ground_plane = input_dict.get('plane', None)
372
373
            assert ground_plane is not None, '`use_ground_plane` is True ' \
                                             'but find plane is None'
374
375
        else:
            ground_plane = None
zhangwenwei's avatar
zhangwenwei committed
376
377
378
        # change to float for blending operation
        points = input_dict['points']
        if self.sample_2d:
wuyuefeng's avatar
wuyuefeng committed
379
            img = input_dict['img']
zhangwenwei's avatar
zhangwenwei committed
380
381
382
            gt_bboxes_2d = input_dict['gt_bboxes']
            # Assume for now 3D & 2D bboxes are the same
            sampled_dict = self.db_sampler.sample_all(
383
384
385
386
                gt_bboxes_3d.tensor.numpy(),
                gt_labels_3d,
                gt_bboxes_2d=gt_bboxes_2d,
                img=img)
zhangwenwei's avatar
zhangwenwei committed
387
388
        else:
            sampled_dict = self.db_sampler.sample_all(
389
390
391
392
                gt_bboxes_3d.tensor.numpy(),
                gt_labels_3d,
                img=None,
                ground_plane=ground_plane)
zhangwenwei's avatar
zhangwenwei committed
393
394
395
396

        if sampled_dict is not None:
            sampled_gt_bboxes_3d = sampled_dict['gt_bboxes_3d']
            sampled_points = sampled_dict['points']
zhangwenwei's avatar
zhangwenwei committed
397
            sampled_gt_labels = sampled_dict['gt_labels_3d']
zhangwenwei's avatar
zhangwenwei committed
398

zhangwenwei's avatar
zhangwenwei committed
399
400
            gt_labels_3d = np.concatenate([gt_labels_3d, sampled_gt_labels],
                                          axis=0)
401
402
403
            gt_bboxes_3d = gt_bboxes_3d.new_box(
                np.concatenate(
                    [gt_bboxes_3d.tensor.numpy(), sampled_gt_bboxes_3d]))
zhangwenwei's avatar
zhangwenwei committed
404

zhangwenwei's avatar
zhangwenwei committed
405
406
            points = self.remove_points_in_boxes(points, sampled_gt_bboxes_3d)
            # check the points dimension
407
            points = points.cat([sampled_points, points])
zhangwenwei's avatar
zhangwenwei committed
408
409
410
411
412

            if self.sample_2d:
                sampled_gt_bboxes_2d = sampled_dict['gt_bboxes_2d']
                gt_bboxes_2d = np.concatenate(
                    [gt_bboxes_2d, sampled_gt_bboxes_2d]).astype(np.float32)
zhangwenwei's avatar
zhangwenwei committed
413

zhangwenwei's avatar
zhangwenwei committed
414
                input_dict['gt_bboxes'] = gt_bboxes_2d
wuyuefeng's avatar
wuyuefeng committed
415
                input_dict['img'] = sampled_dict['img']
zhangwenwei's avatar
zhangwenwei committed
416
417

        input_dict['gt_bboxes_3d'] = gt_bboxes_3d
WRH's avatar
WRH committed
418
        input_dict['gt_labels_3d'] = gt_labels_3d.astype(np.int64)
zhangwenwei's avatar
zhangwenwei committed
419
        input_dict['points'] = points
zhangwenwei's avatar
zhangwenwei committed
420

zhangwenwei's avatar
zhangwenwei committed
421
422
423
        return input_dict

    def __repr__(self):
424
        """str: Return a string that describes the module."""
425
426
427
428
429
430
431
432
433
        repr_str = self.__class__.__name__
        repr_str += f' sample_2d={self.sample_2d},'
        repr_str += f' data_root={self.sampler_cfg.data_root},'
        repr_str += f' info_path={self.sampler_cfg.info_path},'
        repr_str += f' rate={self.sampler_cfg.rate},'
        repr_str += f' prepare={self.sampler_cfg.prepare},'
        repr_str += f' classes={self.sampler_cfg.classes},'
        repr_str += f' sample_groups={self.sampler_cfg.sample_groups}'
        return repr_str
zhangwenwei's avatar
zhangwenwei committed
434
435


436
437
@TRANSFORMS.register_module()
class ObjectNoise(BaseTransform):
zhangwenwei's avatar
zhangwenwei committed
438
    """Apply noise to each GT objects in the scene.
zhangwenwei's avatar
zhangwenwei committed
439

440
441
442
443
444
445
446
447
448
449
    Required Keys:

    - points
    - gt_bboxes_3d

    Modified Keys:

    - points
    - gt_bboxes_3d

zhangwenwei's avatar
zhangwenwei committed
450
    Args:
451
        translation_std (list[float], optional): Standard deviation of the
zhangwenwei's avatar
zhangwenwei committed
452
453
            distribution where translation noise are sampled from.
            Defaults to [0.25, 0.25, 0.25].
454
        global_rot_range (list[float], optional): Global rotation to the scene.
zhangwenwei's avatar
zhangwenwei committed
455
            Defaults to [0.0, 0.0].
456
        rot_range (list[float], optional): Object rotation range.
zhangwenwei's avatar
zhangwenwei committed
457
458
459
460
            Defaults to [-0.15707963267, 0.15707963267].
        num_try (int, optional): Number of times to try if the noise applied is
            invalid. Defaults to 100.
    """
zhangwenwei's avatar
zhangwenwei committed
461
462

    def __init__(self,
463
464
465
466
                 translation_std: list = [0.25, 0.25, 0.25],
                 global_rot_range: list = [0.0, 0.0],
                 rot_range: list = [-0.15707963267, 0.15707963267],
                 num_try: int = 100):
zhangwenwei's avatar
zhangwenwei committed
467
        self.translation_std = translation_std
zhangwenwei's avatar
zhangwenwei committed
468
        self.global_rot_range = global_rot_range
zhangwenwei's avatar
zhangwenwei committed
469
        self.rot_range = rot_range
zhangwenwei's avatar
zhangwenwei committed
470
471
        self.num_try = num_try

472
473
    def transform(self, input_dict: dict) -> dict:
        """Transform function to apply noise to each ground truth in the scene.
474
475
476
477
478

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
479
            dict: Results after adding noise to each object,
480
481
                'points', 'gt_bboxes_3d' keys are updated in the result dict.
        """
zhangwenwei's avatar
zhangwenwei committed
482
483
        gt_bboxes_3d = input_dict['gt_bboxes_3d']
        points = input_dict['points']
zhangwenwei's avatar
zhangwenwei committed
484

485
        # TODO: this is inplace operation
486
        numpy_box = gt_bboxes_3d.tensor.numpy()
487
488
        numpy_points = points.tensor.numpy()

zhangwenwei's avatar
zhangwenwei committed
489
        noise_per_object_v3_(
490
            numpy_box,
491
            numpy_points,
zhangwenwei's avatar
zhangwenwei committed
492
493
            rotation_perturb=self.rot_range,
            center_noise_std=self.translation_std,
zhangwenwei's avatar
zhangwenwei committed
494
495
            global_random_rot_range=self.global_rot_range,
            num_try=self.num_try)
496
497

        input_dict['gt_bboxes_3d'] = gt_bboxes_3d.new_box(numpy_box)
498
        input_dict['points'] = points.new_point(numpy_points)
zhangwenwei's avatar
zhangwenwei committed
499
500
501
        return input_dict

    def __repr__(self):
502
        """str: Return a string that describes the module."""
zhangwenwei's avatar
zhangwenwei committed
503
        repr_str = self.__class__.__name__
504
505
506
507
        repr_str += f'(num_try={self.num_try},'
        repr_str += f' translation_std={self.translation_std},'
        repr_str += f' global_rot_range={self.global_rot_range},'
        repr_str += f' rot_range={self.rot_range})'
zhangwenwei's avatar
zhangwenwei committed
508
509
510
        return repr_str


511
@TRANSFORMS.register_module()
512
class GlobalAlignment(BaseTransform):
513
514
515
516
517
518
    """Apply global alignment to 3D scene points by rotation and translation.

    Args:
        rotation_axis (int): Rotation axis for points and bboxes rotation.

    Note:
519
520
        We do not record the applied rotation and translation as in
            GlobalRotScaleTrans. Because usually, we do not need to reverse
521
            the alignment step.
522
        For example, ScanNet 3D detection task uses aligned ground-truth
523
524
525
            bounding boxes for evaluation.
    """

526
    def __init__(self, rotation_axis: int) -> None:
527
528
        self.rotation_axis = rotation_axis

529
    def _trans_points(self, results: Dict, trans_factor: np.ndarray) -> None:
530
531
532
533
534
535
536
537
538
        """Private function to translate points.

        Args:
            input_dict (dict): Result dict from loading pipeline.
            trans_factor (np.ndarray): Translation vector to be applied.

        Returns:
            dict: Results after translation, 'points' is updated in the dict.
        """
539
        results['points'].translate(trans_factor)
540

541
    def _rot_points(self, results: Dict, rot_mat: np.ndarray) -> None:
542
543
544
545
546
547
548
549
550
551
        """Private function to rotate bounding boxes and points.

        Args:
            input_dict (dict): Result dict from loading pipeline.
            rot_mat (np.ndarray): Rotation matrix to be applied.

        Returns:
            dict: Results after rotation, 'points' is updated in the dict.
        """
        # input should be rot_mat_T so I transpose it here
552
        results['points'].rotate(rot_mat.T)
553

554
    def _check_rot_mat(self, rot_mat: np.ndarray) -> None:
555
556
557
558
559
560
561
562
563
564
565
566
        """Check if rotation matrix is valid for self.rotation_axis.

        Args:
            rot_mat (np.ndarray): Rotation matrix to be applied.
        """
        is_valid = np.allclose(np.linalg.det(rot_mat), 1.0)
        valid_array = np.zeros(3)
        valid_array[self.rotation_axis] = 1.0
        is_valid &= (rot_mat[self.rotation_axis, :] == valid_array).all()
        is_valid &= (rot_mat[:, self.rotation_axis] == valid_array).all()
        assert is_valid, f'invalid rotation matrix {rot_mat}'

567
    def transform(self, results: Dict) -> Dict:
568
569
570
571
572
573
        """Call function to shuffle points.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
574
            dict: Results after global alignment, 'points' and keys in
575
576
                input_dict['bbox3d_fields'] are updated in the result dict.
        """
577
        assert 'axis_align_matrix' in results, \
578
579
            'axis_align_matrix is not provided in GlobalAlignment'

580
        axis_align_matrix = results['axis_align_matrix']
581
582
583
584
585
586
        assert axis_align_matrix.shape == (4, 4), \
            f'invalid shape {axis_align_matrix.shape} for axis_align_matrix'
        rot_mat = axis_align_matrix[:3, :3]
        trans_vec = axis_align_matrix[:3, -1]

        self._check_rot_mat(rot_mat)
587
588
        self._rot_points(results, rot_mat)
        self._trans_points(results, trans_vec)
589

590
        return results
591
592
593
594
595
596
597

    def __repr__(self):
        repr_str = self.__class__.__name__
        repr_str += f'(rotation_axis={self.rotation_axis})'
        return repr_str


598
@TRANSFORMS.register_module()
jshilong's avatar
jshilong committed
599
class GlobalRotScaleTrans(BaseTransform):
zhangwenwei's avatar
zhangwenwei committed
600
    """Apply global rotation, scaling and translation to a 3D scene.
zhangwenwei's avatar
zhangwenwei committed
601

jshilong's avatar
jshilong committed
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
    Required Keys:

    - points (np.float32)
    - gt_bboxes_3d (np.float32)

    Modified Keys:

    - points (np.float32)
    - gt_bboxes_3d (np.float32)

    Added Keys:

    - points (np.float32)
    - pcd_trans (np.float32)
    - pcd_rotation (np.float32)
    - pcd_rotation_angle (np.float32)
    - pcd_scale_factor (np.float32)

zhangwenwei's avatar
zhangwenwei committed
620
    Args:
621
        rot_range (list[float], optional): Range of rotation angle.
liyinhao's avatar
liyinhao committed
622
            Defaults to [-0.78539816, 0.78539816] (close to [-pi/4, pi/4]).
623
        scale_ratio_range (list[float], optional): Range of scale ratio.
liyinhao's avatar
liyinhao committed
624
            Defaults to [0.95, 1.05].
625
626
        translation_std (list[float], optional): The standard deviation of
            translation noise applied to a scene, which
zhangwenwei's avatar
zhangwenwei committed
627
            is sampled from a gaussian distribution whose standard deviation
liyinhao's avatar
liyinhao committed
628
            is set by ``translation_std``. Defaults to [0, 0, 0]
629
        shift_height (bool, optional): Whether to shift height.
wuyuefeng's avatar
wuyuefeng committed
630
            (the fourth dimension of indoor points) when scaling.
liyinhao's avatar
liyinhao committed
631
            Defaults to False.
zhangwenwei's avatar
zhangwenwei committed
632
    """
zhangwenwei's avatar
zhangwenwei committed
633
634

    def __init__(self,
jshilong's avatar
jshilong committed
635
636
637
638
                 rot_range: List[float] = [-0.78539816, 0.78539816],
                 scale_ratio_range: List[float] = [0.95, 1.05],
                 translation_std: List[int] = [0, 0, 0],
                 shift_height: bool = False) -> None:
639
640
641
642
643
        seq_types = (list, tuple, np.ndarray)
        if not isinstance(rot_range, seq_types):
            assert isinstance(rot_range, (int, float)), \
                f'unsupported rot_range type {type(rot_range)}'
            rot_range = [-rot_range, rot_range]
zhangwenwei's avatar
zhangwenwei committed
644
        self.rot_range = rot_range
645
646
647

        assert isinstance(scale_ratio_range, seq_types), \
            f'unsupported scale_ratio_range type {type(scale_ratio_range)}'
jshilong's avatar
jshilong committed
648

zhangwenwei's avatar
zhangwenwei committed
649
        self.scale_ratio_range = scale_ratio_range
650
651
652
653
654
655
656

        if not isinstance(translation_std, seq_types):
            assert isinstance(translation_std, (int, float)), \
                f'unsupported translation_std type {type(translation_std)}'
            translation_std = [
                translation_std, translation_std, translation_std
            ]
657
658
        assert all([std >= 0 for std in translation_std]), \
            'translation_std should be positive'
zhangwenwei's avatar
zhangwenwei committed
659
        self.translation_std = translation_std
wuyuefeng's avatar
wuyuefeng committed
660
        self.shift_height = shift_height
zhangwenwei's avatar
zhangwenwei committed
661

jshilong's avatar
jshilong committed
662
    def _trans_bbox_points(self, input_dict: dict) -> None:
663
664
665
666
667
668
        """Private function to translate bounding boxes and points.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
669
            dict: Results after translation, 'points', 'pcd_trans'
jshilong's avatar
jshilong committed
670
671
            and `gt_bboxes_3d` is updated
            in the result dict.
672
        """
673
        translation_std = np.array(self.translation_std, dtype=np.float32)
zhangwenwei's avatar
zhangwenwei committed
674
675
        trans_factor = np.random.normal(scale=translation_std, size=3).T

676
        input_dict['points'].translate(trans_factor)
zhangwenwei's avatar
zhangwenwei committed
677
        input_dict['pcd_trans'] = trans_factor
jshilong's avatar
jshilong committed
678
679
        if 'gt_bboxes_3d' in input_dict:
            input_dict['gt_bboxes_3d'].translate(trans_factor)
zhangwenwei's avatar
zhangwenwei committed
680

jshilong's avatar
jshilong committed
681
    def _rot_bbox_points(self, input_dict: dict) -> None:
682
683
684
685
686
687
        """Private function to rotate bounding boxes and points.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
688
            dict: Results after rotation, 'points', 'pcd_rotation'
jshilong's avatar
jshilong committed
689
690
            and `gt_bboxes_3d` is updated
            in the result dict.
691
        """
zhangwenwei's avatar
zhangwenwei committed
692
        rotation = self.rot_range
zhangwenwei's avatar
zhangwenwei committed
693
        noise_rotation = np.random.uniform(rotation[0], rotation[1])
zhangwenwei's avatar
zhangwenwei committed
694

jshilong's avatar
jshilong committed
695
696
697
698
699
700
701
702
        if 'gt_bboxes_3d' in input_dict and \
                len(input_dict['gt_bboxes_3d'].tensor) != 0:
            # rotate points with bboxes
            points, rot_mat_T = input_dict['gt_bboxes_3d'].rotate(
                noise_rotation, input_dict['points'])
            input_dict['points'] = points
        else:
            # if no bbox in input_dict, only rotate points
703
            rot_mat_T = input_dict['points'].rotate(noise_rotation)
jshilong's avatar
jshilong committed
704
705
706
707
708

        input_dict['pcd_rotation'] = rot_mat_T
        input_dict['pcd_rotation_angle'] = noise_rotation

    def _scale_bbox_points(self, input_dict: dict) -> None:
709
710
711
712
713
714
        """Private function to scale bounding boxes and points.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
jshilong's avatar
jshilong committed
715
716
717
            dict: Results after scaling, 'points' and
            `gt_bboxes_3d` is updated
            in the result dict.
718
        """
zhangwenwei's avatar
zhangwenwei committed
719
        scale = input_dict['pcd_scale_factor']
720
721
        points = input_dict['points']
        points.scale(scale)
wuyuefeng's avatar
wuyuefeng committed
722
        if self.shift_height:
723
724
            assert 'height' in points.attribute_dims.keys(), \
                'setting shift_height=True but points have no height attribute'
725
726
            points.tensor[:, points.attribute_dims['height']] *= scale
        input_dict['points'] = points
wuyuefeng's avatar
wuyuefeng committed
727

jshilong's avatar
jshilong committed
728
729
730
        if 'gt_bboxes_3d' in input_dict and \
                len(input_dict['gt_bboxes_3d'].tensor) != 0:
            input_dict['gt_bboxes_3d'].scale(scale)
zhangwenwei's avatar
zhangwenwei committed
731

jshilong's avatar
jshilong committed
732
    def _random_scale(self, input_dict: dict) -> None:
733
734
735
736
737
738
        """Private function to randomly set the scale factor.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
jshilong's avatar
jshilong committed
739
740
            dict: Results after scaling, 'pcd_scale_factor'
            are updated in the result dict.
741
        """
zhangwenwei's avatar
zhangwenwei committed
742
743
744
        scale_factor = np.random.uniform(self.scale_ratio_range[0],
                                         self.scale_ratio_range[1])
        input_dict['pcd_scale_factor'] = scale_factor
zhangwenwei's avatar
zhangwenwei committed
745

jshilong's avatar
jshilong committed
746
    def transform(self, input_dict: dict) -> dict:
747
        """Private function to rotate, scale and translate bounding boxes and
748
749
750
751
752
753
754
        points.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after scaling, 'points', 'pcd_rotation',
jshilong's avatar
jshilong committed
755
756
            'pcd_scale_factor', 'pcd_trans' and `gt_bboxes_3d` is updated
            in the result dict.
757
        """
758
759
760
        if 'transformation_3d_flow' not in input_dict:
            input_dict['transformation_3d_flow'] = []

zhangwenwei's avatar
zhangwenwei committed
761
        self._rot_bbox_points(input_dict)
zhangwenwei's avatar
zhangwenwei committed
762

zhangwenwei's avatar
zhangwenwei committed
763
764
765
        if 'pcd_scale_factor' not in input_dict:
            self._random_scale(input_dict)
        self._scale_bbox_points(input_dict)
zhangwenwei's avatar
zhangwenwei committed
766

zhangwenwei's avatar
zhangwenwei committed
767
        self._trans_bbox_points(input_dict)
768
769

        input_dict['transformation_3d_flow'].extend(['R', 'S', 'T'])
zhangwenwei's avatar
zhangwenwei committed
770
771
772
        return input_dict

    def __repr__(self):
773
        """str: Return a string that describes the module."""
zhangwenwei's avatar
zhangwenwei committed
774
        repr_str = self.__class__.__name__
775
776
777
778
        repr_str += f'(rot_range={self.rot_range},'
        repr_str += f' scale_ratio_range={self.scale_ratio_range},'
        repr_str += f' translation_std={self.translation_std},'
        repr_str += f' shift_height={self.shift_height})'
zhangwenwei's avatar
zhangwenwei committed
779
780
781
        return repr_str


782
@TRANSFORMS.register_module()
ZCMax's avatar
ZCMax committed
783
class PointShuffle(BaseTransform):
784
    """Shuffle input points."""
zhangwenwei's avatar
zhangwenwei committed
785

ZCMax's avatar
ZCMax committed
786
    def transform(self, input_dict: dict) -> dict:
787
788
789
790
791
792
        """Call function to shuffle points.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
793
            dict: Results after filtering, 'points', 'pts_instance_mask'
794
                and 'pts_semantic_mask' keys are updated in the result dict.
795
        """
796
797
798
799
800
801
802
803
804
805
806
807
        idx = input_dict['points'].shuffle()
        idx = idx.numpy()

        pts_instance_mask = input_dict.get('pts_instance_mask', None)
        pts_semantic_mask = input_dict.get('pts_semantic_mask', None)

        if pts_instance_mask is not None:
            input_dict['pts_instance_mask'] = pts_instance_mask[idx]

        if pts_semantic_mask is not None:
            input_dict['pts_semantic_mask'] = pts_semantic_mask[idx]

zhangwenwei's avatar
zhangwenwei committed
808
809
810
811
812
813
        return input_dict

    def __repr__(self):
        return self.__class__.__name__


814
@TRANSFORMS.register_module()
815
class ObjectRangeFilter(BaseTransform):
816
817
    """Filter objects by the range.

818
819
820
821
822
823
824
825
    Required Keys:

    - gt_bboxes_3d

    Modified Keys:

    - gt_bboxes_3d

826
827
828
    Args:
        point_cloud_range (list[float]): Point cloud range.
    """
zhangwenwei's avatar
zhangwenwei committed
829

830
    def __init__(self, point_cloud_range: list):
zhangwenwei's avatar
zhangwenwei committed
831
832
        self.pcd_range = np.array(point_cloud_range, dtype=np.float32)

833
834
    def transform(self, input_dict: dict) -> dict:
        """Transform function to filter objects by the range.
835
836
837
838
839

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
840
            dict: Results after filtering, 'gt_bboxes_3d', 'gt_labels_3d'
841
842
                keys are updated in the result dict.
        """
843
844
845
846
847
848
849
        # Check points instance type and initialise bev_range
        if isinstance(input_dict['gt_bboxes_3d'],
                      (LiDARInstance3DBoxes, DepthInstance3DBoxes)):
            bev_range = self.pcd_range[[0, 1, 3, 4]]
        elif isinstance(input_dict['gt_bboxes_3d'], CameraInstance3DBoxes):
            bev_range = self.pcd_range[[0, 2, 3, 5]]

zhangwenwei's avatar
zhangwenwei committed
850
        gt_bboxes_3d = input_dict['gt_bboxes_3d']
zhangwenwei's avatar
zhangwenwei committed
851
        gt_labels_3d = input_dict['gt_labels_3d']
852
        mask = gt_bboxes_3d.in_range_bev(bev_range)
zhangwenwei's avatar
zhangwenwei committed
853
        gt_bboxes_3d = gt_bboxes_3d[mask]
ZwwWayne's avatar
ZwwWayne committed
854
855
856
857
858
        # mask is a torch tensor but gt_labels_3d is still numpy array
        # using mask to index gt_labels_3d will cause bug when
        # len(gt_labels_3d) == 1, where mask=1 will be interpreted
        # as gt_labels_3d[1] and cause out of index error
        gt_labels_3d = gt_labels_3d[mask.numpy().astype(np.bool)]
zhangwenwei's avatar
zhangwenwei committed
859
860

        # limit rad to [-pi, pi]
861
862
        gt_bboxes_3d.limit_yaw(offset=0.5, period=2 * np.pi)
        input_dict['gt_bboxes_3d'] = gt_bboxes_3d
zhangwenwei's avatar
zhangwenwei committed
863
864
        input_dict['gt_labels_3d'] = gt_labels_3d

zhangwenwei's avatar
zhangwenwei committed
865
866
867
        return input_dict

    def __repr__(self):
868
        """str: Return a string that describes the module."""
zhangwenwei's avatar
zhangwenwei committed
869
        repr_str = self.__class__.__name__
870
        repr_str += f'(point_cloud_range={self.pcd_range.tolist()})'
zhangwenwei's avatar
zhangwenwei committed
871
872
873
        return repr_str


874
@TRANSFORMS.register_module()
875
class PointsRangeFilter(BaseTransform):
876
877
    """Filter points by the range.

878
879
880
881
882
883
884
885
886
887
    Required Keys:

    - points
    - pts_instance_mask (optional)

    Modified Keys:

    - points
    - pts_instance_mask (optional)

888
889
890
    Args:
        point_cloud_range (list[float]): Point cloud range.
    """
zhangwenwei's avatar
zhangwenwei committed
891

892
    def __init__(self, point_cloud_range: list):
893
        self.pcd_range = np.array(point_cloud_range, dtype=np.float32)
zhangwenwei's avatar
zhangwenwei committed
894

895
896
    def transform(self, input_dict: dict) -> dict:
        """Transform function to filter points by the range.
897
898
899
900
901

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
902
            dict: Results after filtering, 'points', 'pts_instance_mask'
903
                and 'pts_semantic_mask' keys are updated in the result dict.
904
        """
zhangwenwei's avatar
zhangwenwei committed
905
        points = input_dict['points']
906
907
        points_mask = points.in_range_3d(self.pcd_range)
        clean_points = points[points_mask]
zhangwenwei's avatar
zhangwenwei committed
908
        input_dict['points'] = clean_points
909
910
911
912
913
914
915
916
917
918
919
        points_mask = points_mask.numpy()

        pts_instance_mask = input_dict.get('pts_instance_mask', None)
        pts_semantic_mask = input_dict.get('pts_semantic_mask', None)

        if pts_instance_mask is not None:
            input_dict['pts_instance_mask'] = pts_instance_mask[points_mask]

        if pts_semantic_mask is not None:
            input_dict['pts_semantic_mask'] = pts_semantic_mask[points_mask]

zhangwenwei's avatar
zhangwenwei committed
920
921
922
        return input_dict

    def __repr__(self):
923
        """str: Return a string that describes the module."""
zhangwenwei's avatar
zhangwenwei committed
924
        repr_str = self.__class__.__name__
925
        repr_str += f'(point_cloud_range={self.pcd_range.tolist()})'
zhangwenwei's avatar
zhangwenwei committed
926
        return repr_str
zhangwenwei's avatar
zhangwenwei committed
927
928


929
@TRANSFORMS.register_module()
930
class ObjectNameFilter(BaseTransform):
zhangwenwei's avatar
zhangwenwei committed
931
    """Filter GT objects by their names.
zhangwenwei's avatar
zhangwenwei committed
932

933
934
935
936
937
938
939
940
    Required Keys:

    - gt_labels_3d

    Modified Keys:

    - gt_labels_3d

zhangwenwei's avatar
zhangwenwei committed
941
    Args:
liyinhao's avatar
liyinhao committed
942
        classes (list[str]): List of class names to be kept for training.
zhangwenwei's avatar
zhangwenwei committed
943
944
    """

945
    def __init__(self, classes: list):
zhangwenwei's avatar
zhangwenwei committed
946
947
948
        self.classes = classes
        self.labels = list(range(len(self.classes)))

949
950
    def transform(self, input_dict: dict) -> dict:
        """Transform function to filter objects by their names.
951
952
953
954
955

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
956
            dict: Results after filtering, 'gt_bboxes_3d', 'gt_labels_3d'
957
958
                keys are updated in the result dict.
        """
zhangwenwei's avatar
zhangwenwei committed
959
960
961
962
963
964
965
966
967
        gt_labels_3d = input_dict['gt_labels_3d']
        gt_bboxes_mask = np.array([n in self.labels for n in gt_labels_3d],
                                  dtype=np.bool_)
        input_dict['gt_bboxes_3d'] = input_dict['gt_bboxes_3d'][gt_bboxes_mask]
        input_dict['gt_labels_3d'] = input_dict['gt_labels_3d'][gt_bboxes_mask]

        return input_dict

    def __repr__(self):
968
        """str: Return a string that describes the module."""
zhangwenwei's avatar
zhangwenwei committed
969
970
971
        repr_str = self.__class__.__name__
        repr_str += f'(classes={self.classes})'
        return repr_str
wuyuefeng's avatar
wuyuefeng committed
972
973


974
975
@TRANSFORMS.register_module()
class PointSample(BaseTransform):
976
    """Point sample.
wuyuefeng's avatar
wuyuefeng committed
977
978
979

    Sampling data to a certain number.

980
    Required Keys:
981

982
983
984
985
986
    - points
    - pts_instance_mask (optional)
    - pts_semantic_mask (optional)

    Modified Keys:
987

988
989
990
991
    - points
    - pts_instance_mask (optional)
    - pts_semantic_mask (optional)

wuyuefeng's avatar
wuyuefeng committed
992
993
    Args:
        num_points (int): Number of points to be sampled.
994
        sample_range (float, optional): The range where to sample points.
995
996
997
998
            If not None, the points with depth larger than `sample_range` are
            prior to be sampled. Defaults to None.
        replace (bool, optional): Whether the sampling is with or without
            replacement. Defaults to False.
wuyuefeng's avatar
wuyuefeng committed
999
1000
    """

1001
1002
1003
1004
    def __init__(self,
                 num_points: int,
                 sample_range: float = None,
                 replace: bool = False):
wuyuefeng's avatar
wuyuefeng committed
1005
        self.num_points = num_points
1006
1007
1008
1009
1010
1011
1012
1013
1014
        self.sample_range = sample_range
        self.replace = replace

    def _points_random_sampling(self,
                                points,
                                num_samples,
                                sample_range=None,
                                replace=False,
                                return_choices=False):
wuyuefeng's avatar
wuyuefeng committed
1015
1016
1017
1018
1019
        """Points random sampling.

        Sample points to a certain number.

        Args:
1020
            points (np.ndarray | :obj:`BasePoints`): 3D Points.
wuyuefeng's avatar
wuyuefeng committed
1021
            num_samples (int): Number of samples to be sampled.
1022
            sample_range (float, optional): Indicating the range where the
1023
                points will be sampled. Defaults to None.
1024
1025
1026
1027
            replace (bool, optional): Sampling with or without replacement.
                Defaults to None.
            return_choices (bool, optional): Whether return choice.
                Defaults to False.
wuyuefeng's avatar
wuyuefeng committed
1028
        Returns:
1029
            tuple[np.ndarray] | np.ndarray:
1030
                - points (np.ndarray | :obj:`BasePoints`): 3D Points.
1031
                - choices (np.ndarray, optional): The generated random samples.
wuyuefeng's avatar
wuyuefeng committed
1032
        """
1033
        if not replace:
wuyuefeng's avatar
wuyuefeng committed
1034
            replace = (points.shape[0] < num_samples)
1035
1036
1037
        point_range = range(len(points))
        if sample_range is not None and not replace:
            # Only sampling the near points when len(points) >= num_samples
1038
1039
1040
            dist = np.linalg.norm(points.tensor, axis=1)
            far_inds = np.where(dist >= sample_range)[0]
            near_inds = np.where(dist < sample_range)[0]
1041
1042
1043
1044
            # in case there are too many far points
            if len(far_inds) > num_samples:
                far_inds = np.random.choice(
                    far_inds, num_samples, replace=False)
1045
1046
1047
1048
1049
1050
1051
            point_range = near_inds
            num_samples -= len(far_inds)
        choices = np.random.choice(point_range, num_samples, replace=replace)
        if sample_range is not None and not replace:
            choices = np.concatenate((far_inds, choices))
            # Shuffle points after sampling
            np.random.shuffle(choices)
wuyuefeng's avatar
wuyuefeng committed
1052
1053
1054
1055
1056
        if return_choices:
            return points[choices], choices
        else:
            return points[choices]

1057
    def transform(self, input_dict: dict) -> dict:
1058
        """Transform function to sample points to in indoor scenes.
1059
1060
1061
1062

        Args:
            input_dict (dict): Result dict from loading pipeline.
        Returns:
1063
            dict: Results after sampling, 'points', 'pts_instance_mask'
1064
1065
                and 'pts_semantic_mask' keys are updated in the result dict.
        """
1066
        points = input_dict['points']
1067
1068
1069
1070
1071
1072
        points, choices = self._points_random_sampling(
            points,
            self.num_points,
            self.sample_range,
            self.replace,
            return_choices=True)
1073
        input_dict['points'] = points
1074

1075
1076
        pts_instance_mask = input_dict.get('pts_instance_mask', None)
        pts_semantic_mask = input_dict.get('pts_semantic_mask', None)
wuyuefeng's avatar
wuyuefeng committed
1077

1078
        if pts_instance_mask is not None:
wuyuefeng's avatar
wuyuefeng committed
1079
            pts_instance_mask = pts_instance_mask[choices]
1080
            input_dict['pts_instance_mask'] = pts_instance_mask
1081
1082
1083

        if pts_semantic_mask is not None:
            pts_semantic_mask = pts_semantic_mask[choices]
1084
            input_dict['pts_semantic_mask'] = pts_semantic_mask
wuyuefeng's avatar
wuyuefeng committed
1085

1086
        return input_dict
wuyuefeng's avatar
wuyuefeng committed
1087
1088

    def __repr__(self):
1089
        """str: Return a string that describes the module."""
wuyuefeng's avatar
wuyuefeng committed
1090
        repr_str = self.__class__.__name__
1091
        repr_str += f'(num_points={self.num_points},'
1092
1093
        repr_str += f' sample_range={self.sample_range},'
        repr_str += f' replace={self.replace})'
1094

1095
1096
1097
        return repr_str


1098
@TRANSFORMS.register_module()
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
class IndoorPointSample(PointSample):
    """Indoor point sample.

    Sampling data to a certain number.
    NOTE: IndoorPointSample is deprecated in favor of PointSample

    Args:
        num_points (int): Number of points to be sampled.
    """

    def __init__(self, *args, **kwargs):
        warnings.warn(
            'IndoorPointSample is deprecated in favor of PointSample')
        super(IndoorPointSample, self).__init__(*args, **kwargs)


1115
@TRANSFORMS.register_module()
ZCMax's avatar
ZCMax committed
1116
class IndoorPatchPointSample(BaseTransform):
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
    r"""Indoor point sample within a patch. Modified from `PointNet++ <https://
    github.com/charlesq34/pointnet2/blob/master/scannet/scannet_dataset.py>`_.

    Sampling data to a certain number for semantic segmentation.

    Args:
        num_points (int): Number of points to be sampled.
        block_size (float, optional): Size of a block to sample points from.
            Defaults to 1.5.
        sample_rate (float, optional): Stride used in sliding patch generation.
1127
1128
1129
            This parameter is unused in `IndoorPatchPointSample` and thus has
            been deprecated. We plan to remove it in the future.
            Defaults to None.
1130
1131
        ignore_index (int, optional): Label index that won't be used for the
            segmentation task. This is set in PointSegClassMapping as neg_cls.
1132
            If not None, will be used as a patch selection criterion.
1133
1134
1135
1136
1137
            Defaults to None.
        use_normalized_coord (bool, optional): Whether to use normalized xyz as
            additional features. Defaults to False.
        num_try (int, optional): Number of times to try if the patch selected
            is invalid. Defaults to 10.
1138
        enlarge_size (float, optional): Enlarge the sampled patch to
1139
            [-block_size / 2 - enlarge_size, block_size / 2 + enlarge_size] as
1140
            an augmentation. If None, set it as 0. Defaults to 0.2.
1141
        min_unique_num (int, optional): Minimum number of unique points
1142
1143
            the sampled patch should contain. If None, use PointNet++'s method
            to judge uniqueness. Defaults to None.
1144
1145
        eps (float, optional): A value added to patch boundary to guarantee
            points coverage. Defaults to 1e-2.
1146
1147
1148
1149
1150
1151

    Note:
        This transform should only be used in the training process of point
            cloud segmentation tasks. For the sliding patch generation and
            inference process in testing, please refer to the `slide_inference`
            function of `EncoderDecoder3D` class.
1152
1153
1154
    """

    def __init__(self,
ZCMax's avatar
ZCMax committed
1155
1156
1157
1158
1159
1160
1161
1162
1163
                 num_points: int,
                 block_size: float = 1.5,
                 sample_rate: Optional[float] = None,
                 ignore_index: Optional[int] = None,
                 use_normalized_coord: bool = False,
                 num_try: int = 10,
                 enlarge_size: float = 0.2,
                 min_unique_num: Optional[int] = None,
                 eps: float = 1e-2) -> None:
1164
1165
1166
1167
1168
        self.num_points = num_points
        self.block_size = block_size
        self.ignore_index = ignore_index
        self.use_normalized_coord = use_normalized_coord
        self.num_try = num_try
1169
        self.enlarge_size = enlarge_size if enlarge_size is not None else 0.0
1170
        self.min_unique_num = min_unique_num
1171
        self.eps = eps
1172
1173
1174
1175
1176

        if sample_rate is not None:
            warnings.warn(
                "'sample_rate' has been deprecated and will be removed in "
                'the future. Please remove them from your code.')
1177

ZCMax's avatar
ZCMax committed
1178
1179
1180
1181
    def _input_generation(self, coords: np.ndarray, patch_center: np.ndarray,
                          coord_max: np.ndarray, attributes: np.ndarray,
                          attribute_dims: dict,
                          point_type: type) -> BasePoints:
1182
1183
        """Generating model input.

1184
        Generate input by subtracting patch center and adding additional
1185
1186
1187
1188
1189
1190
1191
1192
1193
            features. Currently support colors and normalized xyz as features.

        Args:
            coords (np.ndarray): Sampled 3D Points.
            patch_center (np.ndarray): Center coordinate of the selected patch.
            coord_max (np.ndarray): Max coordinate of all 3D Points.
            attributes (np.ndarray): features of input points.
            attribute_dims (dict): Dictionary to indicate the meaning of extra
                dimension.
1194
            point_type (type): class of input points inherited from BasePoints.
1195
1196

        Returns:
1197
            :obj:`BasePoints`: The generated input data.
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
        """
        # subtract patch center, the z dimension is not centered
        centered_coords = coords.copy()
        centered_coords[:, 0] -= patch_center[0]
        centered_coords[:, 1] -= patch_center[1]

        if self.use_normalized_coord:
            normalized_coord = coords / coord_max
            attributes = np.concatenate([attributes, normalized_coord], axis=1)
            if attribute_dims is None:
                attribute_dims = dict()
            attribute_dims.update(
                dict(normalized_coord=[
                    attributes.shape[1], attributes.shape[1] +
                    1, attributes.shape[1] + 2
                ]))

        points = np.concatenate([centered_coords, attributes], axis=1)
        points = point_type(
            points, points_dim=points.shape[1], attribute_dims=attribute_dims)

        return points

ZCMax's avatar
ZCMax committed
1221
1222
    def _patch_points_sampling(self, points: BasePoints,
                               sem_mask: np.ndarray) -> BasePoints:
1223
1224
1225
1226
1227
1228
        """Patch points sampling.

        First sample a valid patch.
        Then sample points within that patch to a certain number.

        Args:
1229
            points (:obj:`BasePoints`): 3D Points.
1230
1231
1232
            sem_mask (np.ndarray): semantic segmentation mask for input points.

        Returns:
1233
            tuple[:obj:`BasePoints`, np.ndarray] | :obj:`BasePoints`:
1234

1235
                - points (:obj:`BasePoints`): 3D Points.
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
                - choices (np.ndarray): The generated random samples.
        """
        coords = points.coord.numpy()
        attributes = points.tensor[:, 3:].numpy()
        attribute_dims = points.attribute_dims
        point_type = type(points)

        coord_max = np.amax(coords, axis=0)
        coord_min = np.amin(coords, axis=0)

1246
        for _ in range(self.num_try):
1247
1248
1249
            # random sample a point as patch center
            cur_center = coords[np.random.choice(coords.shape[0])]

1250
1251
            # boundary of a patch, which would be enlarged by
            # `self.enlarge_size` as an augmentation
1252
1253
1254
1255
1256
1257
1258
            cur_max = cur_center + np.array(
                [self.block_size / 2.0, self.block_size / 2.0, 0.0])
            cur_min = cur_center - np.array(
                [self.block_size / 2.0, self.block_size / 2.0, 0.0])
            cur_max[2] = coord_max[2]
            cur_min[2] = coord_min[2]
            cur_choice = np.sum(
1259
1260
                (coords >= (cur_min - self.enlarge_size)) *
                (coords <= (cur_max + self.enlarge_size)),
1261
1262
1263
1264
1265
1266
1267
                axis=1) == 3

            if not cur_choice.any():  # no points in this patch
                continue

            cur_coords = coords[cur_choice, :]
            cur_sem_mask = sem_mask[cur_choice]
1268
            point_idxs = np.where(cur_choice)[0]
1269
            mask = np.sum(
1270
1271
                (cur_coords >= (cur_min - self.eps)) * (cur_coords <=
                                                        (cur_max + self.eps)),
1272
                axis=1) == 3
1273

1274
1275
            # two criteria for patch sampling, adopted from PointNet++
            # 1. selected patch should contain enough unique points
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
            if self.min_unique_num is None:
                # use PointNet++'s method as default
                # [31, 31, 62] are just some big values used to transform
                # coords from 3d array to 1d and then check their uniqueness
                # this is used in all the ScanNet code following PointNet++
                vidx = np.ceil(
                    (cur_coords[mask, :] - cur_min) / (cur_max - cur_min) *
                    np.array([31.0, 31.0, 62.0]))
                vidx = np.unique(vidx[:, 0] * 31.0 * 62.0 + vidx[:, 1] * 62.0 +
                                 vidx[:, 2])
                flag1 = len(vidx) / 31.0 / 31.0 / 62.0 >= 0.02
            else:
1288
                # if `min_unique_num` is provided, directly compare with it
1289
                flag1 = mask.sum() >= self.min_unique_num
1290

1291
            # 2. selected patch should contain enough annotated points
1292
1293
1294
1295
1296
1297
1298
1299
1300
            if self.ignore_index is None:
                flag2 = True
            else:
                flag2 = np.sum(cur_sem_mask != self.ignore_index) / \
                               len(cur_sem_mask) >= 0.7

            if flag1 and flag2:
                break

1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
        # sample idx to `self.num_points`
        if point_idxs.size >= self.num_points:
            # no duplicate in sub-sampling
            choices = np.random.choice(
                point_idxs, self.num_points, replace=False)
        else:
            # do not use random choice here to avoid some points not counted
            dup = np.random.choice(point_idxs.size,
                                   self.num_points - point_idxs.size)
            idx_dup = np.concatenate(
                [np.arange(point_idxs.size),
                 np.array(dup)], 0)
            choices = point_idxs[idx_dup]
1314
1315
1316
1317
1318
1319
1320
1321

        # construct model input
        points = self._input_generation(coords[choices], cur_center, coord_max,
                                        attributes[choices], attribute_dims,
                                        point_type)

        return points, choices

ZCMax's avatar
ZCMax committed
1322
    def transform(self, input_dict: dict) -> dict:
1323
1324
1325
1326
1327
1328
        """Call function to sample points to in indoor scenes.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
1329
            dict: Results after sampling, 'points', 'pts_instance_mask'
1330
1331
                and 'pts_semantic_mask' keys are updated in the result dict.
        """
ZCMax's avatar
ZCMax committed
1332
        points = input_dict['points']
1333

ZCMax's avatar
ZCMax committed
1334
        assert 'pts_semantic_mask' in input_dict.keys(), \
1335
            'semantic mask should be provided in training and evaluation'
ZCMax's avatar
ZCMax committed
1336
        pts_semantic_mask = input_dict['pts_semantic_mask']
1337
1338
1339
1340

        points, choices = self._patch_points_sampling(points,
                                                      pts_semantic_mask)

ZCMax's avatar
ZCMax committed
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
        input_dict['points'] = points
        input_dict['pts_semantic_mask'] = pts_semantic_mask[choices]

        # 'eval_ann_info' will be passed to evaluator
        if 'eval_ann_info' in input_dict:
            input_dict['eval_ann_info']['pts_semantic_mask'] = \
                pts_semantic_mask[choices]

        pts_instance_mask = input_dict.get('pts_instance_mask', None)

1351
        if pts_instance_mask is not None:
ZCMax's avatar
ZCMax committed
1352
1353
1354
1355
1356
            input_dict['pts_instance_mask'] = pts_instance_mask[choices]
            # 'eval_ann_info' will be passed to evaluator
            if 'eval_ann_info' in input_dict:
                input_dict['eval_ann_info']['pts_instance_mask'] = \
                    pts_instance_mask[choices]
1357

ZCMax's avatar
ZCMax committed
1358
        return input_dict
1359
1360
1361
1362
1363
1364
1365
1366

    def __repr__(self):
        """str: Return a string that describes the module."""
        repr_str = self.__class__.__name__
        repr_str += f'(num_points={self.num_points},'
        repr_str += f' block_size={self.block_size},'
        repr_str += f' ignore_index={self.ignore_index},'
        repr_str += f' use_normalized_coord={self.use_normalized_coord},'
1367
1368
        repr_str += f' num_try={self.num_try},'
        repr_str += f' enlarge_size={self.enlarge_size},'
1369
1370
        repr_str += f' min_unique_num={self.min_unique_num},'
        repr_str += f' eps={self.eps})'
wuyuefeng's avatar
wuyuefeng committed
1371
        return repr_str
1372
1373


1374
@TRANSFORMS.register_module()
ZCMax's avatar
ZCMax committed
1375
class BackgroundPointsFilter(BaseTransform):
1376
1377
1378
1379
1380
1381
    """Filter background points near the bounding box.

    Args:
        bbox_enlarge_range (tuple[float], float): Bbox enlarge range.
    """

ZCMax's avatar
ZCMax committed
1382
    def __init__(self, bbox_enlarge_range: Union[Tuple[float], float]) -> None:
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
        assert (is_tuple_of(bbox_enlarge_range, float)
                and len(bbox_enlarge_range) == 3) \
            or isinstance(bbox_enlarge_range, float), \
            f'Invalid arguments bbox_enlarge_range {bbox_enlarge_range}'

        if isinstance(bbox_enlarge_range, float):
            bbox_enlarge_range = [bbox_enlarge_range] * 3
        self.bbox_enlarge_range = np.array(
            bbox_enlarge_range, dtype=np.float32)[np.newaxis, :]

ZCMax's avatar
ZCMax committed
1393
    def transform(self, input_dict: dict) -> dict:
1394
1395
1396
1397
1398
1399
        """Call function to filter points by the range.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
1400
            dict: Results after filtering, 'points', 'pts_instance_mask'
1401
                and 'pts_semantic_mask' keys are updated in the result dict.
1402
1403
1404
1405
        """
        points = input_dict['points']
        gt_bboxes_3d = input_dict['gt_bboxes_3d']

xiliu8006's avatar
xiliu8006 committed
1406
1407
1408
1409
        # avoid groundtruth being modified
        gt_bboxes_3d_np = gt_bboxes_3d.tensor.clone().numpy()
        gt_bboxes_3d_np[:, :3] = gt_bboxes_3d.gravity_center.clone().numpy()

1410
1411
        enlarged_gt_bboxes_3d = gt_bboxes_3d_np.copy()
        enlarged_gt_bboxes_3d[:, 3:6] += self.bbox_enlarge_range
xiliu8006's avatar
xiliu8006 committed
1412
        points_numpy = points.tensor.clone().numpy()
1413
1414
        foreground_masks = box_np_ops.points_in_rbbox(
            points_numpy, gt_bboxes_3d_np, origin=(0.5, 0.5, 0.5))
1415
        enlarge_foreground_masks = box_np_ops.points_in_rbbox(
1416
            points_numpy, enlarged_gt_bboxes_3d, origin=(0.5, 0.5, 0.5))
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
        foreground_masks = foreground_masks.max(1)
        enlarge_foreground_masks = enlarge_foreground_masks.max(1)
        valid_masks = ~np.logical_and(~foreground_masks,
                                      enlarge_foreground_masks)

        input_dict['points'] = points[valid_masks]
        pts_instance_mask = input_dict.get('pts_instance_mask', None)
        if pts_instance_mask is not None:
            input_dict['pts_instance_mask'] = pts_instance_mask[valid_masks]

        pts_semantic_mask = input_dict.get('pts_semantic_mask', None)
        if pts_semantic_mask is not None:
            input_dict['pts_semantic_mask'] = pts_semantic_mask[valid_masks]
        return input_dict

    def __repr__(self):
        """str: Return a string that describes the module."""
        repr_str = self.__class__.__name__
1435
        repr_str += f'(bbox_enlarge_range={self.bbox_enlarge_range.tolist()})'
1436
        return repr_str
1437
1438


1439
@TRANSFORMS.register_module()
1440
1441
1442
1443
1444
1445
1446
1447
class VoxelBasedPointSampler(object):
    """Voxel based point sampler.

    Apply voxel sampling to multiple sweep points.

    Args:
        cur_sweep_cfg (dict): Config for sampling current points.
        prev_sweep_cfg (dict): Config for sampling previous points.
1448
        time_dim (int): Index that indicate the time dimension
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
            for input points.
    """

    def __init__(self, cur_sweep_cfg, prev_sweep_cfg=None, time_dim=3):
        self.cur_voxel_generator = VoxelGenerator(**cur_sweep_cfg)
        self.cur_voxel_num = self.cur_voxel_generator._max_voxels
        self.time_dim = time_dim
        if prev_sweep_cfg is not None:
            assert prev_sweep_cfg['max_num_points'] == \
                cur_sweep_cfg['max_num_points']
            self.prev_voxel_generator = VoxelGenerator(**prev_sweep_cfg)
            self.prev_voxel_num = self.prev_voxel_generator._max_voxels
        else:
            self.prev_voxel_generator = None
            self.prev_voxel_num = 0

    def _sample_points(self, points, sampler, point_dim):
        """Sample points for each points subset.

        Args:
            points (np.ndarray): Points subset to be sampled.
            sampler (VoxelGenerator): Voxel based sampler for
                each points subset.
1472
            point_dim (int): The dimension of each points
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497

        Returns:
            np.ndarray: Sampled points.
        """
        voxels, coors, num_points_per_voxel = sampler.generate(points)
        if voxels.shape[0] < sampler._max_voxels:
            padding_points = np.zeros([
                sampler._max_voxels - voxels.shape[0], sampler._max_num_points,
                point_dim
            ],
                                      dtype=points.dtype)
            padding_points[:] = voxels[0]
            sample_points = np.concatenate([voxels, padding_points], axis=0)
        else:
            sample_points = voxels

        return sample_points

    def __call__(self, results):
        """Call function to sample points from multiple sweeps.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
1498
            dict: Results after sampling, 'points', 'pts_instance_mask'
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
                and 'pts_semantic_mask' keys are updated in the result dict.
        """
        points = results['points']
        original_dim = points.shape[1]

        # TODO: process instance and semantic mask while _max_num_points
        # is larger than 1
        # Extend points with seg and mask fields
        map_fields2dim = []
        start_dim = original_dim
1509
1510
        points_numpy = points.tensor.numpy()
        extra_channel = [points_numpy]
1511
1512
1513
1514
1515
1516
1517
1518
1519
        for idx, key in enumerate(results['pts_mask_fields']):
            map_fields2dim.append((key, idx + start_dim))
            extra_channel.append(results[key][..., None])

        start_dim += len(results['pts_mask_fields'])
        for idx, key in enumerate(results['pts_seg_fields']):
            map_fields2dim.append((key, idx + start_dim))
            extra_channel.append(results[key][..., None])

1520
        points_numpy = np.concatenate(extra_channel, axis=-1)
1521
1522
1523
1524
1525

        # Split points into two part, current sweep points and
        # previous sweeps points.
        # TODO: support different sampling methods for next sweeps points
        # and previous sweeps points.
1526
1527
1528
        cur_points_flag = (points_numpy[:, self.time_dim] == 0)
        cur_sweep_points = points_numpy[cur_points_flag]
        prev_sweeps_points = points_numpy[~cur_points_flag]
1529
1530
1531
1532
1533
1534
1535
1536
1537
        if prev_sweeps_points.shape[0] == 0:
            prev_sweeps_points = cur_sweep_points

        # Shuffle points before sampling
        np.random.shuffle(cur_sweep_points)
        np.random.shuffle(prev_sweeps_points)

        cur_sweep_points = self._sample_points(cur_sweep_points,
                                               self.cur_voxel_generator,
1538
                                               points_numpy.shape[1])
1539
1540
1541
        if self.prev_voxel_generator is not None:
            prev_sweeps_points = self._sample_points(prev_sweeps_points,
                                                     self.prev_voxel_generator,
1542
                                                     points_numpy.shape[1])
1543

1544
1545
            points_numpy = np.concatenate(
                [cur_sweep_points, prev_sweeps_points], 0)
1546
        else:
1547
            points_numpy = cur_sweep_points
1548
1549

        if self.cur_voxel_generator._max_num_points == 1:
1550
1551
            points_numpy = points_numpy.squeeze(1)
        results['points'] = points.new_point(points_numpy[..., :original_dim])
1552

1553
        # Restore the corresponding seg and mask fields
1554
        for key, dim_index in map_fields2dim:
1555
            results[key] = points_numpy[..., dim_index]
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578

        return results

    def __repr__(self):
        """str: Return a string that describes the module."""

        def _auto_indent(repr_str, indent):
            repr_str = repr_str.split('\n')
            repr_str = [' ' * indent + t + '\n' for t in repr_str]
            repr_str = ''.join(repr_str)[:-1]
            return repr_str

        repr_str = self.__class__.__name__
        indent = 4
        repr_str += '(\n'
        repr_str += ' ' * indent + f'num_cur_sweep={self.cur_voxel_num},\n'
        repr_str += ' ' * indent + f'num_prev_sweep={self.prev_voxel_num},\n'
        repr_str += ' ' * indent + f'time_dim={self.time_dim},\n'
        repr_str += ' ' * indent + 'cur_voxel_generator=\n'
        repr_str += f'{_auto_indent(repr(self.cur_voxel_generator), 8)},\n'
        repr_str += ' ' * indent + 'prev_voxel_generator=\n'
        repr_str += f'{_auto_indent(repr(self.prev_voxel_generator), 8)})'
        return repr_str
1579
1580


1581
@TRANSFORMS.register_module()
ZCMax's avatar
ZCMax committed
1582
class AffineResize(BaseTransform):
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
    """Get the affine transform matrices to the target size.

    Different from :class:`RandomAffine` in MMDetection, this class can
    calculate the affine transform matrices while resizing the input image
    to a fixed size. The affine transform matrices include: 1) matrix
    transforming original image to the network input image size. 2) matrix
    transforming original image to the network output feature map size.

    Args:
        img_scale (tuple): Images scales for resizing.
        down_ratio (int): The down ratio of feature map.
            Actually the arg should be >= 1.
        bbox_clip_border (bool, optional): Whether clip the objects
            outside the border of the image. Defaults to True.
    """

ZCMax's avatar
ZCMax committed
1599
1600
1601
1602
    def __init__(self,
                 img_scale: Tuple,
                 down_ratio: int,
                 bbox_clip_border: bool = True) -> None:
1603
1604
1605
1606
1607

        self.img_scale = img_scale
        self.down_ratio = down_ratio
        self.bbox_clip_border = bbox_clip_border

ZCMax's avatar
ZCMax committed
1608
    def transform(self, results: dict) -> dict:
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
        """Call function to do affine transform to input image and labels.

        Args:
            results (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after affine resize, 'affine_aug', 'trans_mat'
                keys are added in the result dict.
        """
        # The results have gone through RandomShiftScale before AffineResize
        if 'center' not in results:
            img = results['img']
            height, width = img.shape[:2]
            center = np.array([width / 2, height / 2], dtype=np.float32)
            size = np.array([width, height], dtype=np.float32)
            results['affine_aug'] = False
        else:
            # The results did not go through RandomShiftScale before
            # AffineResize
            img = results['img']
            center = results['center']
            size = results['size']

        trans_affine = self._get_transform_matrix(center, size, self.img_scale)

        img = cv2.warpAffine(img, trans_affine[:2, :], self.img_scale)

        if isinstance(self.down_ratio, tuple):
            trans_mat = [
                self._get_transform_matrix(
                    center, size,
                    (self.img_scale[0] // ratio, self.img_scale[1] // ratio))
                for ratio in self.down_ratio
            ]  # (3, 3)
        else:
            trans_mat = self._get_transform_matrix(
                center, size, (self.img_scale[0] // self.down_ratio,
                               self.img_scale[1] // self.down_ratio))

        results['img'] = img
        results['img_shape'] = img.shape
        results['pad_shape'] = img.shape
        results['trans_mat'] = trans_mat

ZCMax's avatar
ZCMax committed
1653
1654
        if 'gt_bboxes' in results:
            self._affine_bboxes(results, trans_affine)
1655

ZCMax's avatar
ZCMax committed
1656
1657
        if 'centers_2d' in results:
            centers2d = self._affine_transform(results['centers_2d'],
1658
1659
1660
1661
1662
                                               trans_affine)
            valid_index = (centers2d[:, 0] >
                           0) & (centers2d[:, 0] <
                                 self.img_scale[0]) & (centers2d[:, 1] > 0) & (
                                     centers2d[:, 1] < self.img_scale[1])
ZCMax's avatar
ZCMax committed
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
            results['centers_2d'] = centers2d[valid_index]

            if 'gt_bboxes' in results:
                results['gt_bboxes'] = results['gt_bboxes'][valid_index]
                if 'gt_labels' in results:
                    results['gt_labels'] = results['gt_labels'][valid_index]
                if 'gt_masks' in results:
                    raise NotImplementedError(
                        'AffineResize only supports bbox.')

            if 'gt_bboxes_3d' in results:
                results['gt_bboxes_3d'].tensor = results[
                    'gt_bboxes_3d'].tensor[valid_index]
                if 'gt_labels_3d' in results:
                    results['gt_labels_3d'] = results['gt_labels_3d'][
                        valid_index]
1679
1680
1681
1682
1683

            results['depths'] = results['depths'][valid_index]

        return results

ZCMax's avatar
ZCMax committed
1684
    def _affine_bboxes(self, results: dict, matrix: np.ndarray) -> None:
1685
1686
1687
1688
1689
1690
1691
1692
1693
        """Affine transform bboxes to input image.

        Args:
            results (dict): Result dict from loading pipeline.
            matrix (np.ndarray): Matrix transforming original
                image to the network input image size.
                shape: (3, 3)
        """

ZCMax's avatar
ZCMax committed
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
        bboxes = results['gt_bboxes']
        bboxes[:, :2] = self._affine_transform(bboxes[:, :2], matrix)
        bboxes[:, 2:] = self._affine_transform(bboxes[:, 2:], matrix)
        if self.bbox_clip_border:
            bboxes[:, [0, 2]] = bboxes[:, [0, 2]].clip(0,
                                                       self.img_scale[0] - 1)
            bboxes[:, [1, 3]] = bboxes[:, [1, 3]].clip(0,
                                                       self.img_scale[1] - 1)
        results['gt_bboxes'] = bboxes

    def _affine_transform(self, points: np.ndarray,
                          matrix: np.ndarray) -> np.ndarray:
1706
        """Affine transform bbox points to input image.
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723

        Args:
            points (np.ndarray): Points to be transformed.
                shape: (N, 2)
            matrix (np.ndarray): Affine transform matrix.
                shape: (3, 3)

        Returns:
            np.ndarray: Transformed points.
        """
        num_points = points.shape[0]
        hom_points_2d = np.concatenate((points, np.ones((num_points, 1))),
                                       axis=1)
        hom_points_2d = hom_points_2d.T
        affined_points = np.matmul(matrix, hom_points_2d).T
        return affined_points[:, :2]

ZCMax's avatar
ZCMax committed
1724
1725
    def _get_transform_matrix(self, center: Tuple, scale: Tuple,
                              output_scale: Tuple[float]) -> np.ndarray:
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
        """Get affine transform matrix.

        Args:
            center (tuple): Center of current image.
            scale (tuple): Scale of current image.
            output_scale (tuple[float]): The transform target image scales.

        Returns:
            np.ndarray: Affine transform matrix.
        """
        # TODO: further add rot and shift here.
        src_w = scale[0]
        dst_w = output_scale[0]
        dst_h = output_scale[1]

        src_dir = np.array([0, src_w * -0.5])
        dst_dir = np.array([0, dst_w * -0.5])

        src = np.zeros((3, 2), dtype=np.float32)
        dst = np.zeros((3, 2), dtype=np.float32)
        src[0, :] = center
        src[1, :] = center + src_dir
        dst[0, :] = np.array([dst_w * 0.5, dst_h * 0.5])
        dst[1, :] = np.array([dst_w * 0.5, dst_h * 0.5]) + dst_dir

        src[2, :] = self._get_ref_point(src[0, :], src[1, :])
        dst[2, :] = self._get_ref_point(dst[0, :], dst[1, :])

        get_matrix = cv2.getAffineTransform(src, dst)

        matrix = np.concatenate((get_matrix, [[0., 0., 1.]]))

        return matrix.astype(np.float32)

ZCMax's avatar
ZCMax committed
1760
1761
    def _get_ref_point(self, ref_point1: np.ndarray,
                       ref_point2: np.ndarray) -> np.ndarray:
1762
        """Get reference point to calculate affine transform matrix.
1763
1764

        While using opencv to calculate the affine matrix, we need at least
1765
        three corresponding points separately on original image and target
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
        image. Here we use two points to get the the third reference point.
        """
        d = ref_point1 - ref_point2
        ref_point3 = ref_point2 + np.array([-d[1], d[0]])
        return ref_point3

    def __repr__(self):
        repr_str = self.__class__.__name__
        repr_str += f'(img_scale={self.img_scale}, '
        repr_str += f'down_ratio={self.down_ratio}) '
        return repr_str


1779
@TRANSFORMS.register_module()
ZCMax's avatar
ZCMax committed
1780
class RandomShiftScale(BaseTransform):
1781
1782
1783
1784
    """Random shift scale.

    Different from the normal shift and scale function, it doesn't
    directly shift or scale image. It can record the shift and scale
1785
    infos into loading TRANSFORMS. It's designed to be used with
1786
1787
1788
1789
1790
1791
1792
    AffineResize together.

    Args:
        shift_scale (tuple[float]): Shift and scale range.
        aug_prob (float): The shifting and scaling probability.
    """

ZCMax's avatar
ZCMax committed
1793
    def __init__(self, shift_scale: Tuple[float], aug_prob: float):
1794
1795
1796
1797

        self.shift_scale = shift_scale
        self.aug_prob = aug_prob

ZCMax's avatar
ZCMax committed
1798
    def transform(self, results: dict) -> dict:
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
        """Call function to record random shift and scale infos.

        Args:
            results (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after random shift and scale, 'center', 'size'
                and 'affine_aug' keys are added in the result dict.
        """
        img = results['img']

        height, width = img.shape[:2]

        center = np.array([width / 2, height / 2], dtype=np.float32)
        size = np.array([width, height], dtype=np.float32)

        if random.random() < self.aug_prob:
            shift, scale = self.shift_scale[0], self.shift_scale[1]
            shift_ranges = np.arange(-shift, shift + 0.1, 0.1)
            center[0] += size[0] * random.choice(shift_ranges)
            center[1] += size[1] * random.choice(shift_ranges)
            scale_ranges = np.arange(1 - scale, 1 + scale + 0.1, 0.1)
            size *= random.choice(scale_ranges)
            results['affine_aug'] = True
        else:
            results['affine_aug'] = False

        results['center'] = center
        results['size'] = size

        return results

    def __repr__(self):
        repr_str = self.__class__.__name__
        repr_str += f'(shift_scale={self.shift_scale}, '
        repr_str += f'aug_prob={self.aug_prob}) '
        return repr_str