README_zh-CN.md 25.2 KB
Newer Older
1
2
<div align="center">
  <img src="resources/mmdet3d-logo.png" width="600"/>
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
  <div>&nbsp;</div>
  <div align="center">
    <b><font size="5">OpenMMLab 官网</font></b>
    <sup>
      <a href="https://openmmlab.com">
        <i><font size="4">HOT</font></i>
      </a>
    </sup>
    &nbsp;&nbsp;&nbsp;&nbsp;
    <b><font size="5">OpenMMLab 开放平台</font></b>
    <sup>
      <a href="https://platform.openmmlab.com">
        <i><font size="4">TRY IT OUT</font></i>
      </a>
    </sup>
  </div>
  <div>&nbsp;</div>
20

Xiang Xu's avatar
Xiang Xu committed
21
[![PyPI](https://img.shields.io/pypi/v/mmdet3d)](https://pypi.org/project/mmdet3d)
Jingwei Zhang's avatar
Jingwei Zhang committed
22
[![docs](https://img.shields.io/badge/docs-latest-blue)](https://mmdetection3d.readthedocs.io/zh_CN/latest/)
23
[![badge](https://github.com/open-mmlab/mmdetection3d/workflows/build/badge.svg)](https://github.com/open-mmlab/mmdetection3d/actions)
Xiang Xu's avatar
Xiang Xu committed
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
[![codecov](https://codecov.io/gh/open-mmlab/mmdetection3d/branch/main/graph/badge.svg)](https://codecov.io/gh/open-mmlab/mmdetection3d)
[![license](https://img.shields.io/github/license/open-mmlab/mmdetection3d.svg)](https://github.com/open-mmlab/mmdetection3d/blob/main/LICENSE)
[![open issues](https://isitmaintained.com/badge/open/open-mmlab/mmdetection3d.svg)](https://github.com/open-mmlab/mmdetection3d/issues)
[![issue resolution](https://isitmaintained.com/badge/resolution/open-mmlab/mmdetection3d.svg)](https://github.com/open-mmlab/mmdetection3d/issues)

[📘使用文档](https://mmdetection3d.readthedocs.io/zh_CN/latest/) |
[🛠️安装教程](https://mmdetection3d.readthedocs.io/zh_CN/latest/get_started.html) |
[👀模型库](https://mmdetection3d.readthedocs.io/zh_CN/latest/model_zoo.html) |
[🆕更新日志](https://mmdetection3d.readthedocs.io/en/latest/notes/changelog.html) |
[🚀进行中的项目](https://github.com/open-mmlab/mmdetection3d/projects) |
[🤔报告问题](https://github.com/open-mmlab/mmdetection3d/issues/new/choose)

</div>

<div align="center">

[English](README.md) | 简体中文
41

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
</div>

<div align="center">
  <a href="https://openmmlab.medium.com/" style="text-decoration:none;">
    <img src="https://user-images.githubusercontent.com/25839884/219255827-67c1a27f-f8c5-46a9-811d-5e57448c61d1.png" width="3%" alt="" /></a>
  <img src="https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png" width="3%" alt="" />
  <a href="https://discord.com/channels/1037617289144569886/1046608014234370059" style="text-decoration:none;">
    <img src="https://user-images.githubusercontent.com/25839884/218347213-c080267f-cbb6-443e-8532-8e1ed9a58ea9.png" width="3%" alt="" /></a>
  <img src="https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png" width="3%" alt="" />
  <a href="https://twitter.com/OpenMMLab" style="text-decoration:none;">
    <img src="https://user-images.githubusercontent.com/25839884/218346637-d30c8a0f-3eba-4699-8131-512fb06d46db.png" width="3%" alt="" /></a>
  <img src="https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png" width="3%" alt="" />
  <a href="https://www.youtube.com/openmmlab" style="text-decoration:none;">
    <img src="https://user-images.githubusercontent.com/25839884/218346691-ceb2116a-465a-40af-8424-9f30d2348ca9.png" width="3%" alt="" /></a>
  <img src="https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png" width="3%" alt="" />
  <a href="https://space.bilibili.com/1293512903" style="text-decoration:none;">
    <img src="https://user-images.githubusercontent.com/25839884/219026751-d7d14cce-a7c9-4e82-9942-8375fca65b99.png" width="3%" alt="" /></a>
  <img src="https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png" width="3%" alt="" />
  <a href="https://www.zhihu.com/people/openmmlab" style="text-decoration:none;">
    <img src="https://user-images.githubusercontent.com/25839884/219026120-ba71e48b-6e94-4bd4-b4e9-b7d175b5e362.png" width="3%" alt="" /></a>
</div>

64
65
## 简介

Xiang Xu's avatar
Xiang Xu committed
66
MMDetection3D 是一个基于 PyTorch 的目标检测开源工具箱,下一代面向 3D 检测的平台。它是 [OpenMMlab](https://openmmlab.com/) 项目的一部分。
67

Xiang Xu's avatar
Xiang Xu committed
68
主分支代码目前支持 PyTorch 1.8 以上的版本。
69
70
71

![demo image](resources/mmdet3d_outdoor_demo.gif)

Xiang Xu's avatar
Xiang Xu committed
72
73
<details open>
<summary>主要特性</summary>
74
75
76
77
78
79
80

- **支持多模态/单模态的检测器**

  支持多模态/单模态检测器,包括 MVXNet,VoteNet,PointPillars 等。

- **支持户内/户外的数据集**

Xiang Xu's avatar
Xiang Xu committed
81
  支持室内/室外的 3D 检测数据集,包括 ScanNet,SUNRGB-D,Waymo,nuScenes,Lyft,KITTI。对于 nuScenes 数据集,我们也支持 [nuImages 数据集](https://github.com/open-mmlab/mmdetection3d/tree/main/configs/nuimages)
82
83
84

- **与 2D 检测器的自然整合**

85
  [MMDetection](https://github.com/open-mmlab/mmdetection/blob/3.x/docs/zh_cn/model_zoo.md) 支持的 **300+ 个模型,40+ 的论文算法**,和相关模块都可以在此代码库中训练或使用。
86
87
88

- **性能高**

89
  训练速度比其他代码库更快。下表可见主要的对比结果。更多的细节可见[基准测评文档](./docs/zh_cn/notes/benchmarks.md)。我们对比了每秒训练的样本数(值越高越好)。其他代码库不支持的模型被标记为 `✗`
90

91
92
  |       Methods       | MMDetection3D | [OpenPCDet](https://github.com/open-mmlab/OpenPCDet) | [votenet](https://github.com/facebookresearch/votenet) | [Det3D](https://github.com/poodarchu/Det3D) |
  | :-----------------: | :-----------: | :--------------------------------------------------: | :----------------------------------------------------: | :-----------------------------------------: |
93
94
95
96
97
  |       VoteNet       |      358      |                          ✗                           |                           77                           |                      ✗                      |
  |  PointPillars-car   |      141      |                          ✗                           |                           ✗                            |                     140                     |
  | PointPillars-3class |      107      |                          44                          |                           ✗                            |                      ✗                      |
  |       SECOND        |      40       |                          30                          |                           ✗                            |                      ✗                      |
  |       Part-A2       |      17       |                          14                          |                           ✗                            |                      ✗                      |
98

Xiang Xu's avatar
Xiang Xu committed
99
100
</details>

101
[MMDetection](https://github.com/open-mmlab/mmdetection)[MMCV](https://github.com/open-mmlab/mmcv) 一样,MMDetection3D 也可以作为一个库去支持各式各样的项目。
102

Xiang Xu's avatar
Xiang Xu committed
103
## 最新进展
104

Xiang Xu's avatar
Xiang Xu committed
105
### 亮点
106

Xiang Xu's avatar
Xiang Xu committed
107
**我们将 `1.1` 分支重命名为 `main` 并将默认分支从 `master` 切换到 `main`。我们鼓励用户迁移到最新版本,请参考 [迁移指南](docs/en/migration.md)以了解更多细节。**
108

Xiang Xu's avatar
Xiang Xu committed
109
我们在 SemanticKITTI 上构建了一个全面的点云语义分割基准,包括 Cylinder3D 、MinkUNet 和 SPVCNN 方法。其中,改进后的 MinkUNetv2 在验证集上可以达到 70.3 mIoU。我们还在 `projects` 中支持了 BEVFusion 的训练和全新的 3D 占有网格预测网络 TPVFormer。更多关于 3D 感知的新功能正在进行中。请继续关注!
Tai-Wang's avatar
Tai-Wang committed
110

Sun Jiahao's avatar
Sun Jiahao committed
111
112
113
114
115
116
**v1.2.0** 版本已经在 2023.7.4 发布:

-`mmdet3d/config`中支持 [新Config样式](https://mmengine.readthedocs.io/en/latest/advanced_tutorials/config.html#a-pure-python-style-configuration-file-beta)
-`projects` 中支持 [DSVT](<(https://arxiv.org/abs/2301.06051)>) 的推理
- 支持通过 `mim`[OpenDataLab](https://opendatalab.com/) 下载数据集

Xiang Xu's avatar
Xiang Xu committed
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
**v1.1.1** 版本已经在 2023.5.30 发布:

-`projects` 中支持 [TPVFormer](https://arxiv.org/pdf/2302.07817.pdf)
-`projects` 中支持 BEVFusion 的训练
- 支持基于激光雷达的 3D 语义分割基准

## 安装

请参考[快速入门文档](https://mmdetection3d.readthedocs.io/zh_CN/latest/get_started.html)进行安装。

## 教程

<details>
<summary>用户指南</summary>

- [训练 & 测试](https://mmdetection3d.readthedocs.io/zh_CN/latest/user_guides/index.html#train-test)
  - [学习配置文件](https://mmdetection3d.readthedocs.io/zh_CN/latest/user_guides/config.html)
  - [坐标系](https://mmdetection3d.readthedocs.io/zh_CN/latest/user_guides/coord_sys_tutorial.html)
  - [数据预处理](https://mmdetection3d.readthedocs.io/zh_CN/latest/user_guides/dataset_prepare.html)
  - [自定义数据预处理流程](https://mmdetection3d.readthedocs.io/zh_CN/latest/user_guides/data_pipeline.html)
  - [在标注数据集上测试和训练](https://mmdetection3d.readthedocs.io/zh_CN/latest/user_guides/train_test.html)
  - [推理](https://mmdetection3d.readthedocs.io/zh_CN/latest/user_guides/inference.html)
  - [在自定义数据集上进行训练](https://mmdetection3d.readthedocs.io/zh_CN/latest/user_guides/new_data_model.html)
- [实用工具](https://mmdetection3d.readthedocs.io/zh_CN/latest/user_guides/index.html#useful-tools)

</details>

<details>
<summary>进阶教程</summary>

- [数据集](https://mmdetection3d.readthedocs.io/zh_CN/latest/advanced_guides/index.html#datasets)
  - [KITTI 数据集](https://mmdetection3d.readthedocs.io/zh_CN/latest/advanced_guides/datasets/kitti.html)
  - [NuScenes 数据集](https://mmdetection3d.readthedocs.io/zh_CN/latest/advanced_guides/datasets/nuscenes.html)
  - [Lyft 数据集](https://mmdetection3d.readthedocs.io/zh_CN/latest/advanced_guides/datasets/lyft.html)
  - [Waymo 数据集](https://mmdetection3d.readthedocs.io/zh_CN/latest/advanced_guides/datasets/waymo.html)
  - [SUN RGB-D 数据集](https://mmdetection3d.readthedocs.io/zh_CN/latest/advanced_guides/datasets/sunrgbd.html)
  - [ScanNet 数据集](https://mmdetection3d.readthedocs.io/zh_CN/latest/advanced_guides/datasets/scannet.html)
  - [S3DIS 数据集](https://mmdetection3d.readthedocs.io/zh_CN/latest/advanced_guides/datasets/s3dis.html)
  - [SemanticKITTI 数据集](https://mmdetection3d.readthedocs.io/zh_CN/latest/advanced_guides/datasets/semantickitti.html)
- [支持的任务](https://mmdetection3d.readthedocs.io/zh_CN/latest/advanced_guides/index.html#supported-tasks)
  - [基于激光雷达的 3D 检测](https://mmdetection3d.readthedocs.io/zh_CN/latest/advanced_guides/supported_tasks/lidar_det3d.html)
  - [基于视觉的 3D 检测](https://mmdetection3d.readthedocs.io/zh_CN/latest/advanced_guides/supported_tasks/vision_det3d.html)
  - [基于激光雷达的 3D 语义分割](https://mmdetection3d.readthedocs.io/zh_CN/latest/advanced_guides/supported_tasks/lidar_sem_seg3d.html)
- [自定义项目](https://mmdetection3d.readthedocs.io/zh_CN/latest/advanced_guides/index.html#customization)
  - [自定义数据集](https://mmdetection3d.readthedocs.io/zh_CN/latest/advanced_guides/customize_dataset.html)
  - [自定义模型](https://mmdetection3d.readthedocs.io/zh_CN/latest/advanced_guides/customize_models.html)
  - [自定义运行时配置](https://mmdetection3d.readthedocs.io/zh_CN/latest/advanced_guides/customize_runtime.html)

</details>

## 基准测试和模型库
168
169
170

## 基准测试和模型库

Wenhao Wu's avatar
Wenhao Wu committed
171
测试结果和模型可以在[模型库](docs/zh_cn/model_zoo.md)中找到。
172

173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
<div align="center">
  <b>模块组件</b>
</div>
<table align="center">
  <tbody>
    <tr align="center" valign="bottom">
      <td>
        <b>主干网络</b>
      </td>
      <td>
        <b>检测头</b>
      </td>
      <td>
        <b>特性</b>
      </td>
    </tr>
    <tr valign="top">
      <td>
      <ul>
        <li><a href="configs/pointnet2">PointNet (CVPR'2017)</a></li>
        <li><a href="configs/pointnet2">PointNet++ (NeurIPS'2017)</a></li>
        <li><a href="configs/regnet">RegNet (CVPR'2020)</a></li>
        <li><a href="configs/dgcnn">DGCNN (TOG'2019)</a></li>
        <li>DLA (CVPR'2018)</li>
197
        <li>MinkResNet (CVPR'2019)</li>
198
        <li><a href="configs/minkunet">MinkUNet (CVPR'2019)</a></li>
199
        <li><a href="configs/cylinder3d">Cylinder3D (CVPR'2021)</a></li>
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
      </ul>
      </td>
      <td>
      <ul>
        <li><a href="configs/free_anchor">FreeAnchor (NeurIPS'2019)</a></li>
      </ul>
      </td>
      <td>
      <ul>
        <li><a href="configs/dynamic_voxelization">Dynamic Voxelization (CoRL'2019)</a></li>
      </ul>
      </td>
    </tr>
</td>
    </tr>
  </tbody>
</table>

<div align="center">
  <b>算法模型</b>
</div>
<table align="center">
  <tbody>
    <tr align="center" valign="middle">
      <td>
225
        <b>激光雷达 3D 目标检测</b>
226
227
      </td>
      <td>
228
        <b>相机 3D 目标检测</b>
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
      </td>
      <td>
        <b>多模态 3D 目标检测</b>
      </td>
      <td>
        <b>3D 语义分割</b>
      </td>
    </tr>
    <tr valign="top">
      <td>
        <li><b>室外</b></li>
        <ul>
            <li><a href="configs/second">SECOND (Sensor'2018)</a></li>
            <li><a href="configs/pointpillars">PointPillars (CVPR'2019)</a></li>
            <li><a href="configs/ssn">SSN (ECCV'2020)</a></li>
            <li><a href="configs/3dssd">3DSSD (CVPR'2020)</a></li>
Tai-Wang's avatar
Tai-Wang committed
245
            <li><a href="configs/sassd">SA-SSD (CVPR'2020)</a></li>
ChaimZhu's avatar
ChaimZhu committed
246
            <li><a href="configs/point_rcnn">PointRCNN (CVPR'2019)</a></li>
247
248
            <li><a href="configs/parta2">Part-A2 (TPAMI'2020)</a></li>
            <li><a href="configs/centerpoint">CenterPoint (CVPR'2021)</a></li>
249
250
            <li><a href="configs/pv_rcnn">PV-RCNN (CVPR'2020)</a></li>
            <li><a href="projects/CenterFormer">CenterFormer (ECCV'2022)</a></li>
251
252
253
254
255
256
        </ul>
        <li><b>室内</b></li>
        <ul>
            <li><a href="configs/votenet">VoteNet (ICCV'2019)</a></li>
            <li><a href="configs/h3dnet">H3DNet (ECCV'2020)</a></li>
            <li><a href="configs/groupfree3d">Group-Free-3D (ICCV'2021)</a></li>
257
            <li><a href="configs/fcaf3d">FCAF3D (ECCV'2022)</a></li>
258
            <li><a href="projects/TR3D">TR3D (ArXiv'2023)</a></li>
259
260
261
262
263
264
265
266
267
268
      </ul>
      </td>
      <td>
        <li><b>室外</b></li>
        <ul>
          <li><a href="configs/imvoxelnet">ImVoxelNet (WACV'2022)</a></li>
          <li><a href="configs/smoke">SMOKE (CVPRW'2020)</a></li>
          <li><a href="configs/fcos3d">FCOS3D (ICCVW'2021)</a></li>
          <li><a href="configs/pgd">PGD (CoRL'2021)</a></li>
          <li><a href="configs/monoflex">MonoFlex (CVPR'2021)</a></li>
269
270
          <li><a href="projects/DETR3D">DETR3D (CoRL'2021)</a></li>
          <li><a href="projects/PETR">PETR (ECCV'2022)</a></li>
271
        </ul>
272
273
274
275
        <li><b>Indoor</b></li>
        <ul>
          <li><a href="configs/imvoxelnet">ImVoxelNet (WACV'2022)</a></li>
        </ul>
276
277
278
279
280
      </td>
      <td>
        <li><b>室外</b></li>
        <ul>
          <li><a href="configs/mvxnet">MVXNet (ICRA'2019)</a></li>
281
          <li><a href="projects/BEVFusion">BEVFusion (ICRA'2023)</a></li>
282
283
284
285
286
287
288
        </ul>
        <li><b>室内</b></li>
        <ul>
          <li><a href="configs/imvotenet">ImVoteNet (CVPR'2020)</a></li>
        </ul>
      </td>
      <td>
289
290
        <li><b>室外</b></li>
        <ul>
291
          <li><a href="configs/minkunet">MinkUNet (CVPR'2019)</a></li>
292
          <li><a href="configs/spvcnn">SPVCNN (ECCV'2020)</a></li>
293
          <li><a href="configs/cylinder3d">Cylinder3D (CVPR'2021)</a></li>
294
          <li><a href="projects/TPVFormer">TPVFormer (CVPR'2023)</a></li>
295
        </ul>
296
297
298
299
300
301
302
303
304
305
306
307
308
        <li><b>室内</b></li>
        <ul>
          <li><a href="configs/pointnet2">PointNet++ (NeurIPS'2017)</a></li>
          <li><a href="configs/paconv">PAConv (CVPR'2021)</a></li>
          <li><a href="configs/dgcnn">DGCNN (TOG'2019)</a></li>
        </ul>
      </ul>
      </td>
    </tr>
</td>
    </tr>
  </tbody>
</table>
309

310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
|               | ResNet | VoVNet | Swin-T | PointNet++ | SECOND | DGCNN | RegNetX | DLA | MinkResNet | Cylinder3D | MinkUNet |
| :-----------: | :----: | :----: | :----: | :--------: | :----: | :---: | :-----: | :-: | :--------: | :--------: | :------: |
|    SECOND     |   ✗    |   ✗    |   ✗    |     ✗      |   ✓    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
| PointPillars  |   ✗    |   ✗    |   ✗    |     ✗      |   ✓    |   ✗   |    ✓    |  ✗  |     ✗      |     ✗      |    ✗     |
|  FreeAnchor   |   ✗    |   ✗    |   ✗    |     ✗      |   ✗    |   ✗   |    ✓    |  ✗  |     ✗      |     ✗      |    ✗     |
|    VoteNet    |   ✗    |   ✗    |   ✗    |     ✓      |   ✗    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
|    H3DNet     |   ✗    |   ✗    |   ✗    |     ✓      |   ✗    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
|     3DSSD     |   ✗    |   ✗    |   ✗    |     ✓      |   ✗    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
|    Part-A2    |   ✗    |   ✗    |   ✗    |     ✗      |   ✓    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
|    MVXNet     |   ✓    |   ✗    |   ✗    |     ✗      |   ✓    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
|  CenterPoint  |   ✗    |   ✗    |   ✗    |     ✗      |   ✓    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
|      SSN      |   ✗    |   ✗    |   ✗    |     ✗      |   ✗    |   ✗   |    ✓    |  ✗  |     ✗      |     ✗      |    ✗     |
|   ImVoteNet   |   ✓    |   ✗    |   ✗    |     ✓      |   ✗    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
|    FCOS3D     |   ✓    |   ✗    |   ✗    |     ✗      |   ✗    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
|  PointNet++   |   ✗    |   ✗    |   ✗    |     ✓      |   ✗    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
| Group-Free-3D |   ✗    |   ✗    |   ✗    |     ✓      |   ✗    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
|  ImVoxelNet   |   ✓    |   ✗    |   ✗    |     ✗      |   ✗    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
|    PAConv     |   ✗    |   ✗    |   ✗    |     ✓      |   ✗    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
|     DGCNN     |   ✗    |   ✗    |   ✗    |     ✗      |   ✗    |   ✓   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
|     SMOKE     |   ✗    |   ✗    |   ✗    |     ✗      |   ✗    |   ✗   |    ✗    |  ✓  |     ✗      |     ✗      |    ✗     |
|      PGD      |   ✓    |   ✗    |   ✗    |     ✗      |   ✗    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
|   MonoFlex    |   ✗    |   ✗    |   ✗    |     ✗      |   ✗    |   ✗   |    ✗    |  ✓  |     ✗      |     ✗      |    ✗     |
|    SA-SSD     |   ✗    |   ✗    |   ✗    |     ✗      |   ✓    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
|    FCAF3D     |   ✗    |   ✗    |   ✗    |     ✗      |   ✗    |   ✗   |    ✗    |  ✗  |     ✓      |     ✗      |    ✗     |
|    PV-RCNN    |   ✗    |   ✗    |   ✗    |     ✗      |   ✓    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
|  Cylinder3D   |   ✗    |   ✗    |   ✗    |     ✗      |   ✗    |   ✗   |    ✗    |  ✗  |     ✗      |     ✓      |    ✗     |
|   MinkUNet    |   ✗    |   ✗    |   ✗    |     ✗      |   ✗    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✓     |
|    SPVCNN     |   ✗    |   ✗    |   ✗    |     ✗      |   ✗    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✓     |
|   BEVFusion   |   ✗    |   ✗    |   ✓    |     ✗      |   ✓    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
| CenterFormer  |   ✗    |   ✗    |   ✗    |     ✗      |   ✓    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
|     TR3D      |   ✗    |   ✗    |   ✗    |     ✗      |   ✗    |   ✗   |    ✗    |  ✗  |     ✓      |     ✗      |    ✗     |
|    DETR3D     |   ✓    |   ✓    |   ✗    |     ✗      |   ✗    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
|     PETR      |   ✗    |   ✓    |   ✗    |     ✗      |   ✗    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
|   TPVFormer   |   ✓    |   ✗    |   ✗    |     ✗      |   ✗    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
344

345
**注意:**[MMDetection](https://github.com/open-mmlab/mmdetection/blob/3.x/docs/zh_cn/model_zoo.md) 支持的基于 2D 检测的 **300+ 个模型,40+ 的论文算法**在 MMDetection3D 中都可以被训练或使用。
346

Xiang Xu's avatar
Xiang Xu committed
347
348
349
## 常见问题

请参考 [FAQ](docs/zh_cn/notes/faq.md) 了解其他用户的常见问题。
350

Xiang Xu's avatar
Xiang Xu committed
351
## 贡献指南
352

Xiang Xu's avatar
Xiang Xu committed
353
我们感谢所有的贡献者为改进和提升 MMDetection3D 所作出的努力。请参考[贡献指南](docs/en/notes/contribution_guides.md)来了解参与项目贡献的相关指引。
354

Xiang Xu's avatar
Xiang Xu committed
355
## 致谢
VVsssssk's avatar
VVsssssk committed
356

Xiang Xu's avatar
Xiang Xu committed
357
MMDetection3D 是一款由来自不同高校和企业的研发人员共同参与贡献的开源项目。我们感谢所有为项目提供算法复现和新功能支持的贡献者,以及提供宝贵反馈的用户。我们希望这个工具箱和基准测试可以为社区提供灵活的代码工具,供用户复现已有算法并开发自己的新的 3D 检测模型。
VVsssssk's avatar
VVsssssk committed
358

359
360
## 引用

Xiang Xu's avatar
Xiang Xu committed
361
如果你觉得本项目对你的研究工作有所帮助,请参考如下 bibtex 引用 MMdetection3D:
362
363
364

```latex
@misc{mmdet3d2020,
Ziyi Wu's avatar
Ziyi Wu committed
365
    title={{MMDetection3D: OpenMMLab} next-generation platform for general {3D} object detection},
366
367
368
369
370
371
    author={MMDetection3D Contributors},
    howpublished = {\url{https://github.com/open-mmlab/mmdetection3d}},
    year={2020}
}
```

Xiang Xu's avatar
Xiang Xu committed
372
## 开源许可证
373

Xiang Xu's avatar
Xiang Xu committed
374
该项目采用 [Apache 2.0 开源许可证](LICENSE)
375
376
377

## OpenMMLab 的其他项目

VVsssssk's avatar
VVsssssk committed
378
- [MMEngine](https://github.com/open-mmlab/mmengine): OpenMMLab 深度学习模型训练基础库
379
- [MMCV](https://github.com/open-mmlab/mmcv): OpenMMLab 计算机视觉基础库
xiangxu-0103's avatar
xiangxu-0103 committed
380
- [MMEval](https://github.com/open-mmlab/mmeval): 统一开放的跨框架算法评测库
Wenhao Wu's avatar
Wenhao Wu committed
381
- [MIM](https://github.com/open-mmlab/mim): MIM 是 OpenMMlab 项目、算法、模型的统一入口
382
- [MMPreTrain](https://github.com/open-mmlab/mmpretrain): OpenMMLab 深度学习预训练工具箱
383
384
- [MMDetection](https://github.com/open-mmlab/mmdetection): OpenMMLab 目标检测工具箱
- [MMDetection3D](https://github.com/open-mmlab/mmdetection3d): OpenMMLab 新一代通用 3D 目标检测平台
385
- [MMRotate](https://github.com/open-mmlab/mmrotate): OpenMMLab 旋转框检测工具箱与测试基准
386
- [MMYOLO](https://github.com/open-mmlab/mmyolo): OpenMMLab YOLO 系列工具箱与测试基准
387
- [MMSegmentation](https://github.com/open-mmlab/mmsegmentation): OpenMMLab 语义分割工具箱
388
- [MMOCR](https://github.com/open-mmlab/mmocr): OpenMMLab 全流程文字检测识别理解工具包
389
- [MMPose](https://github.com/open-mmlab/mmpose): OpenMMLab 姿态估计工具箱
ChaimZhu's avatar
ChaimZhu committed
390
- [MMHuman3D](https://github.com/open-mmlab/mmhuman3d): OpenMMLab 人体参数化模型工具箱与测试基准
391
392
- [MMSelfSup](https://github.com/open-mmlab/mmselfsup): OpenMMLab 自监督学习工具箱与测试基准
- [MMRazor](https://github.com/open-mmlab/mmrazor): OpenMMLab 模型压缩工具箱与测试基准
393
394
395
396
- [MMFewShot](https://github.com/open-mmlab/mmfewshot): OpenMMLab 少样本学习工具箱与测试基准
- [MMAction2](https://github.com/open-mmlab/mmaction2): OpenMMLab 新一代视频理解工具箱
- [MMTracking](https://github.com/open-mmlab/mmtracking): OpenMMLab 一体化视频目标感知平台
- [MMFlow](https://github.com/open-mmlab/mmflow): OpenMMLab 光流估计工具箱与测试基准
397
- [MMagic](https://github.com/open-mmlab/mmagic): OpenMMLab 新一代人工智能内容生成(AIGC)工具箱
398
- [MMGeneration](https://github.com/open-mmlab/mmgeneration): OpenMMLab 图片视频生成模型工具箱
399
- [MMDeploy](https://github.com/open-mmlab/mmdeploy): OpenMMLab 模型部署框架
400
401
402

## 欢迎加入 OpenMMLab 社区

Xiang Xu's avatar
Xiang Xu committed
403
扫描下方的二维码可关注 OpenMMLab 团队的[知乎官方账号](https://www.zhihu.com/people/openmmlab),加入 OpenMMLab 团队的[官方交流 QQ 群](https://jq.qq.com/?_wv=1027&k=K0QI8ByU),或通过添加微信“Open小喵Lab”加入官方交流微信群。
404
405

<div align="center">
Xiang Xu's avatar
Xiang Xu committed
406
<img src="https://user-images.githubusercontent.com/58739961/187154320-f3312cdf-31f2-4316-9dbb-8d7b0e1b7e08.jpg" height="400" />  <img src="https://user-images.githubusercontent.com/25839884/203904835-62392033-02d4-4c73-a68c-c9e4c1e2b07f.jpg" height="400" />  <img src="https://user-images.githubusercontent.com/58739961/187151778-d17c1368-125f-4fde-adbe-38cc6eb3be98.jpg" height="400" />
407
408
409
410
411
412
413
414
415
416
417
418
</div>

我们会在 OpenMMLab 社区为大家

- 📢 分享 AI 框架的前沿核心技术
- 💻 解读 PyTorch 常用模块源码
- 📰 发布 OpenMMLab 的相关新闻
- 🚀 介绍 OpenMMLab 开发的前沿算法
- 🏃 获取更高效的问题答疑和意见反馈
- 🔥 提供与各行各业开发者充分交流的平台

干货满满 📘,等你来撩 💗,OpenMMLab 社区期待您的加入 👬