det3d_dataset.py 13.3 KB
Newer Older
jshilong's avatar
jshilong committed
1
2
3
4
5
# Copyright (c) OpenMMLab. All rights reserved.
import copy
from os import path as osp
from typing import Callable, List, Optional, Union

6
import mmengine
jshilong's avatar
jshilong committed
7
8
9
10
import numpy as np
from mmengine.dataset import BaseDataset

from mmdet3d.datasets import DATASETS
zhangshilong's avatar
zhangshilong committed
11
from mmdet3d.structures import get_box_type
jshilong's avatar
jshilong committed
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28


@DATASETS.register_module()
class Det3DDataset(BaseDataset):
    """Base Class of 3D dataset.

    This is the base dataset of SUNRGB-D, ScanNet, nuScenes, and KITTI
    dataset.
    # TODO: doc link here for the standard data format

    Args:
        data_root (str, optional): The root directory for ``data_prefix`` and
            ``ann_file``. Defaults to None.
        ann_file (str): Annotation file path. Defaults to ''.
        metainfo (dict, optional): Meta information for dataset, such as class
            information. Defaults to None.
        data_prefix (dict, optional): Prefix for training data. Defaults to
29
            dict(pts='velodyne', img='').
jshilong's avatar
jshilong committed
30
31
32
        pipeline (list[dict], optional): Pipeline used for data processing.
            Defaults to None.
        modality (dict, optional): Modality to specify the sensor data used
33
            as input, it usually has following keys:
jshilong's avatar
jshilong committed
34
35
36
37

                - use_camera: bool
                - use_lidar: bool
            Defaults to `dict(use_lidar=True, use_camera=False)`
jshilong's avatar
jshilong committed
38
39
        default_cam_key (str, optional): The default camera name adopted.
            Defaults to None.
jshilong's avatar
jshilong committed
40
41
42
        box_type_3d (str, optional): Type of 3D box of this dataset.
            Based on the `box_type_3d`, the dataset will encapsulate the box
            to its original format then converted them to `box_type_3d`.
43
            Defaults to 'LiDAR'. Available options includes:
jshilong's avatar
jshilong committed
44
45
46
47
48
49
50
51

            - 'LiDAR': Box in LiDAR coordinates, usually for
              outdoor point cloud 3d detection.
            - 'Depth': Box in depth coordinates, usually for
              indoor point cloud 3d detection.
            - 'Camera': Box in camera coordinates, usually
              for vision-based 3d detection.

52
        filter_empty_gt (bool, optional): Whether to filter the data with
jshilong's avatar
jshilong committed
53
            empty GT. Defaults to True.
54
        test_mode (bool, optional): Whether the dataset is in test mode.
jshilong's avatar
jshilong committed
55
            Defaults to False.
56
57
58
59
60
        load_eval_anns (bool, optional): Whether to load annotations
            in test_mode, the annotation will be save in `eval_ann_infos`,
            which can be used in Evaluator. Defaults to True.
        file_client_args (dict, optional): Configuration of file client.
            Defaults to dict(backend='disk').
jshilong's avatar
jshilong committed
61
62
63
64
65
66
67
68
69
    """

    def __init__(self,
                 data_root: Optional[str] = None,
                 ann_file: str = '',
                 metainfo: Optional[dict] = None,
                 data_prefix: dict = dict(pts='velodyne', img=''),
                 pipeline: List[Union[dict, Callable]] = [],
                 modality: dict = dict(use_lidar=True, use_camera=False),
jshilong's avatar
jshilong committed
70
                 default_cam_key: str = None,
jshilong's avatar
jshilong committed
71
72
73
                 box_type_3d: dict = 'LiDAR',
                 filter_empty_gt: bool = True,
                 test_mode: bool = False,
jshilong's avatar
jshilong committed
74
                 load_eval_anns=True,
jshilong's avatar
jshilong committed
75
                 file_client_args: dict = dict(backend='disk'),
76
                 **kwargs) -> None:
jshilong's avatar
jshilong committed
77
        # init file client
78
        self.file_client = mmengine.FileClient(**file_client_args)
jshilong's avatar
jshilong committed
79
        self.filter_empty_gt = filter_empty_gt
jshilong's avatar
jshilong committed
80
        self.load_eval_anns = load_eval_anns
jshilong's avatar
jshilong committed
81
82
83
84
85
86
87
88
89
        _default_modality_keys = ('use_lidar', 'use_camera')
        if modality is None:
            modality = dict()

        # Defaults to False if not specify
        for key in _default_modality_keys:
            if key not in modality:
                modality[key] = False
        self.modality = modality
jshilong's avatar
jshilong committed
90
        self.default_cam_key = default_cam_key
jshilong's avatar
jshilong committed
91
92
        assert self.modality['use_lidar'] or self.modality['use_camera'], (
            'Please specify the `modality` (`use_lidar` '
jshilong's avatar
jshilong committed
93
            f', `use_camera`) for {self.__class__.__name__}')
jshilong's avatar
jshilong committed
94
95

        self.box_type_3d, self.box_mode_3d = get_box_type(box_type_3d)
VVsssssk's avatar
VVsssssk committed
96

jshilong's avatar
jshilong committed
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
        if metainfo is not None and 'CLASSES' in metainfo:
            # we allow to train on subset of self.METAINFO['CLASSES']
            # map unselected labels to -1
            self.label_mapping = {
                i: -1
                for i in range(len(self.METAINFO['CLASSES']))
            }
            self.label_mapping[-1] = -1
            for label_idx, name in enumerate(metainfo['CLASSES']):
                ori_label = self.METAINFO['CLASSES'].index(name)
                self.label_mapping[ori_label] = label_idx
        else:
            self.label_mapping = {
                i: i
                for i in range(len(self.METAINFO['CLASSES']))
            }
            self.label_mapping[-1] = -1

        super().__init__(
            ann_file=ann_file,
            metainfo=metainfo,
            data_root=data_root,
            data_prefix=data_prefix,
            pipeline=pipeline,
            test_mode=test_mode,
            **kwargs)

VVsssssk's avatar
VVsssssk committed
124
125
126
127
        # can be accessed by other component in runner
        self.metainfo['box_type_3d'] = box_type_3d
        self.metainfo['label_mapping'] = self.label_mapping

128
    def _remove_dontcare(self, ann_info: dict) -> dict:
jshilong's avatar
jshilong committed
129
130
131
132
133
134
135
136
137
138
139
140
141
142
        """Remove annotations that do not need to be cared.

        -1 indicate dontcare in MMDet3d.

        Args:
            ann_info (dict): Dict of annotation infos. The
                instance with label `-1` will be removed.

        Returns:
            dict: Annotations after filtering.
        """
        img_filtered_annotations = {}
        filter_mask = ann_info['gt_labels_3d'] > -1
        for key in ann_info.keys():
zhangshilong's avatar
zhangshilong committed
143
144
145
146
            if key != 'instances':
                img_filtered_annotations[key] = (ann_info[key][filter_mask])
            else:
                img_filtered_annotations[key] = ann_info[key]
jshilong's avatar
jshilong committed
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
        return img_filtered_annotations

    def get_ann_info(self, index: int) -> dict:
        """Get annotation info according to the given index.

        Use index to get the corresponding annotations, thus the
        evalhook could use this api.

        Args:
            index (int): Index of the annotation data to get.

        Returns:
            dict: annotation information.
        """
        data_info = self.get_data_info(index)
        # test model
        if 'ann_info' not in data_info:
            ann_info = self.parse_ann_info(data_info)
        else:
            ann_info = data_info['ann_info']

        return ann_info

170
    def parse_ann_info(self, info: dict) -> Optional[dict]:
jshilong's avatar
jshilong committed
171
172
173
174
175
176
177
178
179
180
181
        """Process the `instances` in data info to `ann_info`

        In `Custom3DDataset`, we simply concatenate all the field
        in `instances` to `np.ndarray`, you can do the specific
        process in subclass. You have to convert `gt_bboxes_3d`
        to different coordinates according to the task.

        Args:
            info (dict): Info dict.

        Returns:
182
            dict | None: Processed `ann_info`
jshilong's avatar
jshilong committed
183
184
        """
        # add s or gt prefix for most keys after concat
zhangshilong's avatar
zhangshilong committed
185
186
        # we only process 3d annotations here, the corresponding
        # 2d annotation process is in the `LoadAnnotations3D`
zhangshilong's avatar
zhangshilong committed
187
        # in `transforms`
jshilong's avatar
jshilong committed
188
189
        name_mapping = {
            'bbox_label_3d': 'gt_labels_3d',
190
191
            'bbox_label': 'gt_bboxes_labels',
            'bbox': 'gt_bboxes',
jshilong's avatar
jshilong committed
192
193
194
            'bbox_3d': 'gt_bboxes_3d',
            'depth': 'depths',
            'center_2d': 'centers_2d',
ChaimZhu's avatar
ChaimZhu committed
195
196
            'attr_label': 'attr_labels',
            'velocity': 'velocities',
jshilong's avatar
jshilong committed
197
198
        }
        instances = info['instances']
199
200
201
202
203
204
205
        # empty gt
        if len(instances) == 0:
            return None
        else:
            keys = list(instances[0].keys())
            ann_info = dict()
            for ann_name in keys:
zhangshilong's avatar
zhangshilong committed
206
207
                temp_anns = [item[ann_name] for item in instances]
                # map the original dataset label to training label
208
                if 'label' in ann_name and ann_name != 'attr_label':
zhangshilong's avatar
zhangshilong committed
209
210
211
                    temp_anns = [
                        self.label_mapping[item] for item in temp_anns
                    ]
212
                if ann_name in name_mapping:
ChaimZhu's avatar
ChaimZhu committed
213
214
215
                    mapped_ann_name = name_mapping[ann_name]
                else:
                    mapped_ann_name = ann_name
216
217
218

                if 'label' in ann_name:
                    temp_anns = np.array(temp_anns).astype(np.int64)
ChaimZhu's avatar
ChaimZhu committed
219
                elif ann_name in name_mapping:
220
                    temp_anns = np.array(temp_anns).astype(np.float32)
ChaimZhu's avatar
ChaimZhu committed
221
222
                else:
                    temp_anns = np.array(temp_anns)
223

ChaimZhu's avatar
ChaimZhu committed
224
                ann_info[mapped_ann_name] = temp_anns
zhangshilong's avatar
zhangshilong committed
225
            ann_info['instances'] = info['instances']
jshilong's avatar
jshilong committed
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
        return ann_info

    def parse_data_info(self, info: dict) -> dict:
        """Process the raw data info.

        Convert all relative path of needed modality data file to
        the absolute path. And process
        the `instances` field to `ann_info` in training stage.

        Args:
            info (dict): Raw info dict.

        Returns:
            dict: Has `ann_info` in training stage. And
            all path has been converted to absolute path.
        """

        if self.modality['use_lidar']:
            info['lidar_points']['lidar_path'] = \
                osp.join(
                    self.data_prefix.get('pts', ''),
                    info['lidar_points']['lidar_path'])

ChaimZhu's avatar
ChaimZhu committed
249
            info['num_pts_feats'] = info['lidar_points']['num_pts_feats']
jshilong's avatar
jshilong committed
250
            info['lidar_path'] = info['lidar_points']['lidar_path']
VVsssssk's avatar
VVsssssk committed
251
252
253
254
255
256
257
258
259
260
            if 'lidar_sweeps' in info:
                for sweep in info['lidar_sweeps']:
                    file_suffix = sweep['lidar_points']['lidar_path'].split(
                        '/')[-1]
                    if 'samples' in sweep['lidar_points']['lidar_path']:
                        sweep['lidar_points']['lidar_path'] = osp.join(
                            self.data_prefix['pts'], file_suffix)
                    else:
                        sweep['lidar_points']['lidar_path'] = osp.join(
                            self.data_prefix['sweeps'], file_suffix)
jshilong's avatar
jshilong committed
261

jshilong's avatar
jshilong committed
262
263
264
        if self.modality['use_camera']:
            for cam_id, img_info in info['images'].items():
                if 'img_path' in img_info:
VVsssssk's avatar
VVsssssk committed
265
266
267
268
269
270
                    if cam_id in self.data_prefix:
                        cam_prefix = self.data_prefix[cam_id]
                    else:
                        cam_prefix = self.data_prefix.get('img', '')
                    img_info['img_path'] = osp.join(cam_prefix,
                                                    img_info['img_path'])
jshilong's avatar
jshilong committed
271
272
273
274
275
276
277
278
279
280
281
282
283
284
            if self.default_cam_key is not None:
                info['img_path'] = info['images'][
                    self.default_cam_key]['img_path']
                if 'lidar2cam' in info['images'][self.default_cam_key]:
                    info['lidar2cam'] = np.array(
                        info['images'][self.default_cam_key]['lidar2cam'])
                if 'cam2img' in info['images'][self.default_cam_key]:
                    info['cam2img'] = np.array(
                        info['images'][self.default_cam_key]['cam2img'])
                if 'lidar2img' in info['images'][self.default_cam_key]:
                    info['lidar2img'] = np.array(
                        info['images'][self.default_cam_key]['lidar2img'])
                else:
                    info['lidar2img'] = info['cam2img'] @ info['lidar2cam']
jshilong's avatar
jshilong committed
285
286

        if not self.test_mode:
Tai-Wang's avatar
Tai-Wang committed
287
            # used in training
jshilong's avatar
jshilong committed
288
            info['ann_info'] = self.parse_ann_info(info)
jshilong's avatar
jshilong committed
289
290
        if self.test_mode and self.load_eval_anns:
            info['eval_ann_info'] = self.parse_ann_info(info)
jshilong's avatar
jshilong committed
291
292
293

        return info

294
    def prepare_data(self, index: int) -> Optional[dict]:
jshilong's avatar
jshilong committed
295
296
297
298
299
300
301
302
        """Data preparation for both training and testing stage.

        Called by `__getitem__`  of dataset.

        Args:
            index (int): Index for accessing the target data.

        Returns:
303
            dict | None: Data dict of the corresponding index.
jshilong's avatar
jshilong committed
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
        """
        input_dict = self.get_data_info(index)

        # deepcopy here to avoid inplace modification in pipeline.
        input_dict = copy.deepcopy(input_dict)

        # box_type_3d (str): 3D box type.
        input_dict['box_type_3d'] = self.box_type_3d
        # box_mode_3d (str): 3D box mode.
        input_dict['box_mode_3d'] = self.box_mode_3d

        # pre-pipline return None to random another in `__getitem__`
        if not self.test_mode and self.filter_empty_gt:
            if len(input_dict['ann_info']['gt_labels_3d']) == 0:
                return None

        example = self.pipeline(input_dict)
        if not self.test_mode and self.filter_empty_gt:
            # after pipeline drop the example with empty annotations
            # return None to random another in `__getitem__`
324
            if example is None or len(
325
                    example['data_samples'].gt_instances_3d.labels_3d) == 0:
jshilong's avatar
jshilong committed
326
327
                return None
        return example
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344

    def get_cat_ids(self, idx: int) -> List[int]:
        """Get category ids by index. Dataset wrapped by ClassBalancedDataset
        must implement this method.

        The ``CBGSDataset`` or ``ClassBalancedDataset``requires a subclass
        which implements this method.

        Args:
            idx (int): The index of data.

        Returns:
            set[int]: All categories in the sample of specified index.
        """
        info = self.get_data_info(idx)
        gt_labels = info['ann_info']['gt_labels_3d'].tolist()
        return set(gt_labels)