det3d_dataset.py 14.6 KB
Newer Older
jshilong's avatar
jshilong committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
# Copyright (c) OpenMMLab. All rights reserved.
import copy
import tempfile
import warnings
from os import path as osp
from typing import Callable, List, Optional, Union

import mmcv
import numpy as np
from mmengine.dataset import BaseDataset

from mmdet3d.datasets import DATASETS
from ..core.bbox import get_box_type
from .pipelines import Compose
from .utils import extract_result_dict, get_loading_pipeline


@DATASETS.register_module()
class Det3DDataset(BaseDataset):
    """Base Class of 3D dataset.

    This is the base dataset of SUNRGB-D, ScanNet, nuScenes, and KITTI
    dataset.
    # TODO: doc link here for the standard data format

    Args:
        data_root (str, optional): The root directory for ``data_prefix`` and
            ``ann_file``. Defaults to None.
        ann_file (str): Annotation file path. Defaults to ''.
        metainfo (dict, optional): Meta information for dataset, such as class
            information. Defaults to None.
        data_prefix (dict, optional): Prefix for training data. Defaults to
            dict(pts='velodyne', img="").
        pipeline (list[dict], optional): Pipeline used for data processing.
            Defaults to None.
        modality (dict, optional): Modality to specify the sensor data used
            as input, it usually has following keys.

                - use_camera: bool
                - use_lidar: bool
            Defaults to `dict(use_lidar=True, use_camera=False)`
        box_type_3d (str, optional): Type of 3D box of this dataset.
            Based on the `box_type_3d`, the dataset will encapsulate the box
            to its original format then converted them to `box_type_3d`.
            Defaults to 'LiDAR'. Available options includes

            - 'LiDAR': Box in LiDAR coordinates, usually for
              outdoor point cloud 3d detection.
            - 'Depth': Box in depth coordinates, usually for
              indoor point cloud 3d detection.
            - 'Camera': Box in camera coordinates, usually
              for vision-based 3d detection.

        filter_empty_gt (bool, optional): Whether to filter the data with
            empty GT. Defaults to True.
        test_mode (bool, optional): Whether the dataset is in test mode.
            Defaults to False.
    """

    def __init__(self,
                 data_root: Optional[str] = None,
                 ann_file: str = '',
                 metainfo: Optional[dict] = None,
                 data_prefix: dict = dict(pts='velodyne', img=''),
                 pipeline: List[Union[dict, Callable]] = [],
                 modality: dict = dict(use_lidar=True, use_camera=False),
                 box_type_3d: dict = 'LiDAR',
                 filter_empty_gt: bool = True,
                 test_mode: bool = False,
                 file_client_args: dict = dict(backend='disk'),
                 **kwargs):
        # init file client
        self.file_client = mmcv.FileClient(**file_client_args)
        self.filter_empty_gt = filter_empty_gt
        _default_modality_keys = ('use_lidar', 'use_camera')
        if modality is None:
            modality = dict()

        # Defaults to False if not specify
        for key in _default_modality_keys:
            if key not in modality:
                modality[key] = False
        self.modality = modality
        assert self.modality['use_lidar'] or self.modality['use_camera'], (
            'Please specify the `modality` (`use_lidar` '
jshilong's avatar
jshilong committed
86
            f', `use_camera`) for {self.__class__.__name__}')
jshilong's avatar
jshilong committed
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393

        self.box_type_3d, self.box_mode_3d = get_box_type(box_type_3d)

        if metainfo is not None and 'CLASSES' in metainfo:
            # we allow to train on subset of self.METAINFO['CLASSES']
            # map unselected labels to -1
            self.label_mapping = {
                i: -1
                for i in range(len(self.METAINFO['CLASSES']))
            }
            self.label_mapping[-1] = -1
            for label_idx, name in enumerate(metainfo['CLASSES']):
                ori_label = self.METAINFO['CLASSES'].index(name)
                self.label_mapping[ori_label] = label_idx
        else:
            self.label_mapping = {
                i: i
                for i in range(len(self.METAINFO['CLASSES']))
            }
            self.label_mapping[-1] = -1

        super().__init__(
            ann_file=ann_file,
            metainfo=metainfo,
            data_root=data_root,
            data_prefix=data_prefix,
            pipeline=pipeline,
            test_mode=test_mode,
            **kwargs)

    def _remove_dontcare(self, ann_info):
        """Remove annotations that do not need to be cared.

        -1 indicate dontcare in MMDet3d.

        Args:
            ann_info (dict): Dict of annotation infos. The
                instance with label `-1` will be removed.

        Returns:
            dict: Annotations after filtering.
        """
        img_filtered_annotations = {}
        filter_mask = ann_info['gt_labels_3d'] > -1
        for key in ann_info.keys():
            img_filtered_annotations[key] = (ann_info[key][filter_mask])
        return img_filtered_annotations

    def get_ann_info(self, index: int) -> dict:
        """Get annotation info according to the given index.

        Use index to get the corresponding annotations, thus the
        evalhook could use this api.

        Args:
            index (int): Index of the annotation data to get.

        Returns:
            dict: annotation information.
        """
        data_info = self.get_data_info(index)
        # test model
        if 'ann_info' not in data_info:
            ann_info = self.parse_ann_info(data_info)
        else:
            ann_info = data_info['ann_info']

        return ann_info

    def parse_ann_info(self, info: dict) -> dict:
        """Process the `instances` in data info to `ann_info`

        In `Custom3DDataset`, we simply concatenate all the field
        in `instances` to `np.ndarray`, you can do the specific
        process in subclass. You have to convert `gt_bboxes_3d`
        to different coordinates according to the task.

        Args:
            info (dict): Info dict.

        Returns:
            dict: Processed `ann_info`
        """
        # add s or gt prefix for most keys after concat
        name_mapping = {
            'bbox_label': 'gt_labels',
            'bbox_label_3d': 'gt_labels_3d',
            'bbox': 'gt_bboxes',
            'bbox_3d': 'gt_bboxes_3d',
            'depth': 'depths',
            'center_2d': 'centers_2d',
            'attr_label': 'attr_labels'
        }

        instances = info['instances']
        keys = list(instances[0].keys())
        ann_info = dict()
        for ann_name in keys:
            temp_anns = [item[ann_name] for item in instances]
            if 'label' in ann_name:
                temp_anns = [self.label_mapping[item] for item in temp_anns]
            temp_anns = np.array(temp_anns)
            if ann_name in name_mapping:
                ann_name = name_mapping[ann_name]
            ann_info[ann_name] = temp_anns
        return ann_info

    def parse_data_info(self, info: dict) -> dict:
        """Process the raw data info.

        Convert all relative path of needed modality data file to
        the absolute path. And process
        the `instances` field to `ann_info` in training stage.

        Args:
            info (dict): Raw info dict.

        Returns:
            dict: Has `ann_info` in training stage. And
            all path has been converted to absolute path.
        """

        if self.modality['use_lidar']:
            info['lidar_points']['lidar_path'] = \
                osp.join(
                    self.data_prefix.get('pts', ''),
                    info['lidar_points']['lidar_path'])

        if self.modality['use_camera']:
            for cam_id, img_info in info['images'].items():
                if 'img_path' in img_info:
                    img_info['img_path'] = osp.join(
                        self.data_prefix.get('img', ''), img_info['img_path'])

        if not self.test_mode:
            info['ann_info'] = self.parse_ann_info(info)

        return info

    def prepare_data(self, index):
        """Data preparation for both training and testing stage.

        Called by `__getitem__`  of dataset.

        Args:
            index (int): Index for accessing the target data.

        Returns:
            dict: Data dict of the corresponding index.
        """
        input_dict = self.get_data_info(index)

        # deepcopy here to avoid inplace modification in pipeline.
        input_dict = copy.deepcopy(input_dict)

        # box_type_3d (str): 3D box type.
        input_dict['box_type_3d'] = self.box_type_3d
        # box_mode_3d (str): 3D box mode.
        input_dict['box_mode_3d'] = self.box_mode_3d

        # pre-pipline return None to random another in `__getitem__`
        if not self.test_mode and self.filter_empty_gt:
            if len(input_dict['ann_info']['gt_labels_3d']) == 0:
                return None

        example = self.pipeline(input_dict)
        if not self.test_mode and self.filter_empty_gt:
            # after pipeline drop the example with empty annotations
            # return None to random another in `__getitem__`
            if example is None or len(example['gt_labels_3d']) == 0:
                return None
        return example

    def format_results(self,
                       outputs,
                       pklfile_prefix=None,
                       submission_prefix=None):
        """Format the results to pkl file.

        Args:
            outputs (list[dict]): Testing results of the dataset.
            pklfile_prefix (str): The prefix of pkl files. It includes
                the file path and the prefix of filename, e.g., "a/b/prefix".
                If not specified, a temp file will be created. Default: None.

        Returns:
            tuple: (outputs, tmp_dir), outputs is the detection results,
                tmp_dir is the temporal directory created for saving json
                files when ``jsonfile_prefix`` is not specified.
        """
        if pklfile_prefix is None:
            tmp_dir = tempfile.TemporaryDirectory()
            pklfile_prefix = osp.join(tmp_dir.name, 'results')
            out = f'{pklfile_prefix}.pkl'
        mmcv.dump(outputs, out)
        return outputs, tmp_dir

    def evaluate(self,
                 results,
                 metric=None,
                 iou_thr=(0.25, 0.5),
                 logger=None,
                 show=False,
                 out_dir=None,
                 pipeline=None):
        """Evaluate.

        Evaluation in indoor protocol.

        Args:
            results (list[dict]): List of results.
            metric (str | list[str], optional): Metrics to be evaluated.
                Defaults to None.
            iou_thr (list[float]): AP IoU thresholds. Defaults to (0.25, 0.5).
            logger (logging.Logger | str, optional): Logger used for printing
                related information during evaluation. Defaults to None.
            show (bool, optional): Whether to visualize.
                Default: False.
            out_dir (str, optional): Path to save the visualization results.
                Default: None.
            pipeline (list[dict], optional): raw data loading for showing.
                Default: None.

        Returns:
            dict: Evaluation results.
        """
        from mmdet3d.core.evaluation import indoor_eval
        assert isinstance(
            results, list), f'Expect results to be list, got {type(results)}.'
        assert len(results) > 0, 'Expect length of results > 0.'
        assert len(results) == len(self.data_infos)
        assert isinstance(
            results[0], dict
        ), f'Expect elements in results to be dict, got {type(results[0])}.'
        gt_annos = [info['annos'] for info in self.data_infos]
        label2cat = {i: cat_id for i, cat_id in enumerate(self.CLASSES)}
        ret_dict = indoor_eval(
            gt_annos,
            results,
            iou_thr,
            label2cat,
            logger=logger,
            box_type_3d=self.box_type_3d,
            box_mode_3d=self.box_mode_3d)
        if show:
            self.show(results, out_dir, pipeline=pipeline)

        return ret_dict

    # TODO check this where does this method is used
    def _build_default_pipeline(self):
        """Build the default pipeline for this dataset."""
        raise NotImplementedError('_build_default_pipeline is not implemented '
                                  f'for dataset {self.__class__.__name__}')

    # TODO check this where does this method is used
    def _get_pipeline(self, pipeline):
        """Get data loading pipeline in self.show/evaluate function.

        Args:
            pipeline (list[dict]): Input pipeline. If None is given,
                get from self.pipeline.
        """
        if pipeline is None:
            if not hasattr(self, 'pipeline') or self.pipeline is None:
                warnings.warn(
                    'Use default pipeline for data loading, this may cause '
                    'errors when data is on ceph')
                return self._build_default_pipeline()
            loading_pipeline = get_loading_pipeline(self.pipeline.transforms)
            return Compose(loading_pipeline)
        return Compose(pipeline)

    # TODO check this where does this method is used
    def _extract_data(self, index, pipeline, key, load_annos=False):
        """Load data using input pipeline and extract data according to key.

        Args:
            index (int): Index for accessing the target data.
            pipeline (:obj:`Compose`): Composed data loading pipeline.
            key (str | list[str]): One single or a list of data key.
            load_annos (bool): Whether to load data annotations.
                If True, need to set self.test_mode as False before loading.

        Returns:
            np.ndarray | torch.Tensor | list[np.ndarray | torch.Tensor]:
                A single or a list of loaded data.
        """
        assert pipeline is not None, 'data loading pipeline is not provided'
        # when we want to load ground-truth via pipeline (e.g. bbox, seg mask)
        # we need to set self.test_mode as False so that we have 'annos'
        if load_annos:
            original_test_mode = self.test_mode
            self.test_mode = False
        input_dict = self.get_data_info(index)
        self.pre_pipeline(input_dict)
        example = pipeline(input_dict)

        # extract data items according to keys
        if isinstance(key, str):
            data = extract_result_dict(example, key)
        else:
            data = [extract_result_dict(example, k) for k in key]
        if load_annos:
            self.test_mode = original_test_mode

        return data