test_detectors.py 21.4 KB
Newer Older
dingchang's avatar
dingchang committed
1
# Copyright (c) OpenMMLab. All rights reserved.
liyinhao's avatar
liyinhao committed
2
3
4
5
6
7
8
import copy
import numpy as np
import pytest
import random
import torch
from os.path import dirname, exists, join

twang's avatar
twang committed
9
10
from mmdet3d.core.bbox import (CameraInstance3DBoxes, DepthInstance3DBoxes,
                               LiDARInstance3DBoxes)
liyinhao's avatar
liyinhao committed
11
12
13
14
15
16
17
18
19
20
21
22
23
24
from mmdet3d.models.builder import build_detector


def _setup_seed(seed):
    torch.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)
    np.random.seed(seed)
    random.seed(seed)
    torch.backends.cudnn.deterministic = True


def _get_config_directory():
    """Find the predefined detector config directory."""
    try:
25
26
        # Assume we are running in the source mmdetection3d repo
        repo_dpath = dirname(dirname(dirname(__file__)))
liyinhao's avatar
liyinhao committed
27
28
    except NameError:
        # For IPython development when this __file__ is not defined
29
30
        import mmdet3d
        repo_dpath = dirname(dirname(mmdet3d.__file__))
liyinhao's avatar
liyinhao committed
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
    config_dpath = join(repo_dpath, 'configs')
    if not exists(config_dpath):
        raise Exception('Cannot find config path')
    return config_dpath


def _get_config_module(fname):
    """Load a configuration as a python module."""
    from mmcv import Config
    config_dpath = _get_config_directory()
    config_fpath = join(config_dpath, fname)
    config_mod = Config.fromfile(config_fpath)
    return config_mod


def _get_model_cfg(fname):
    """Grab configs necessary to create a model.

49
50
    These are deep copied to allow for safe modification of parameters without
    influencing other tests.
liyinhao's avatar
liyinhao committed
51
52
53
54
55
56
57
58
59
60
    """
    config = _get_config_module(fname)
    model = copy.deepcopy(config.model)

    return model


def _get_detector_cfg(fname):
    """Grab configs necessary to create a detector.

61
62
    These are deep copied to allow for safe modification of parameters without
    influencing other tests.
liyinhao's avatar
liyinhao committed
63
64
65
66
    """
    import mmcv
    config = _get_config_module(fname)
    model = copy.deepcopy(config.model)
67
68
    train_cfg = mmcv.Config(copy.deepcopy(config.model.train_cfg))
    test_cfg = mmcv.Config(copy.deepcopy(config.model.test_cfg))
liyinhao's avatar
liyinhao committed
69

yinchimaoliang's avatar
yinchimaoliang committed
70
71
72
    model.update(train_cfg=train_cfg)
    model.update(test_cfg=test_cfg)
    return model
liyinhao's avatar
liyinhao committed
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116


def test_get_dynamic_voxelnet():
    if not torch.cuda.is_available():
        pytest.skip('test requires GPU and torch+cuda')

    dynamic_voxelnet_cfg = _get_model_cfg(
        'dynamic_voxelization/dv_second_secfpn_6x8_80e_kitti-3d-car.py')
    self = build_detector(dynamic_voxelnet_cfg).cuda()
    points_0 = torch.rand([2010, 4], device='cuda')
    points_1 = torch.rand([2020, 4], device='cuda')
    points = [points_0, points_1]
    feats = self.extract_feat(points, None)
    assert feats[0].shape == torch.Size([2, 512, 200, 176])


def test_voxel_net():
    if not torch.cuda.is_available():
        pytest.skip('test requires GPU and torch+cuda')
    _setup_seed(0)
    voxel_net_cfg = _get_detector_cfg(
        'second/hv_second_secfpn_6x8_80e_kitti-3d-3class.py')

    self = build_detector(voxel_net_cfg).cuda()
    points_0 = torch.rand([2010, 4], device='cuda')
    points_1 = torch.rand([2020, 4], device='cuda')
    points = [points_0, points_1]
    gt_bbox_0 = LiDARInstance3DBoxes(torch.rand([10, 7], device='cuda'))
    gt_bbox_1 = LiDARInstance3DBoxes(torch.rand([10, 7], device='cuda'))
    gt_bboxes = [gt_bbox_0, gt_bbox_1]
    gt_labels_0 = torch.randint(0, 3, [10], device='cuda')
    gt_labels_1 = torch.randint(0, 3, [10], device='cuda')
    gt_labels = [gt_labels_0, gt_labels_1]
    img_meta_0 = dict(box_type_3d=LiDARInstance3DBoxes)
    img_meta_1 = dict(box_type_3d=LiDARInstance3DBoxes)
    img_metas = [img_meta_0, img_meta_1]

    # test forward_train
    losses = self.forward_train(points, img_metas, gt_bboxes, gt_labels)
    assert losses['loss_cls'][0] >= 0
    assert losses['loss_bbox'][0] >= 0
    assert losses['loss_dir'][0] >= 0

    # test simple_test
117
118
    with torch.no_grad():
        results = self.simple_test(points, img_metas)
119
120
121
    boxes_3d = results[0]['boxes_3d']
    scores_3d = results[0]['scores_3d']
    labels_3d = results[0]['labels_3d']
liyinhao's avatar
liyinhao committed
122
123
124
125
126
    assert boxes_3d.tensor.shape == (50, 7)
    assert scores_3d.shape == torch.Size([50])
    assert labels_3d.shape == torch.Size([50])


127
128
129
130
def test_3dssd():
    if not torch.cuda.is_available():
        pytest.skip('test requires GPU and torch+cuda')
    _setup_seed(0)
131
    ssd3d_cfg = _get_detector_cfg('3dssd/3dssd_4x4_kitti-3d-car.py')
132
133
134
135
136
137
138
139
140
141
    self = build_detector(ssd3d_cfg).cuda()
    points_0 = torch.rand([2000, 4], device='cuda')
    points_1 = torch.rand([2000, 4], device='cuda')
    points = [points_0, points_1]
    img_meta_0 = dict(box_type_3d=DepthInstance3DBoxes)
    img_meta_1 = dict(box_type_3d=DepthInstance3DBoxes)
    img_metas = [img_meta_0, img_meta_1]
    gt_bbox_0 = DepthInstance3DBoxes(torch.rand([10, 7], device='cuda'))
    gt_bbox_1 = DepthInstance3DBoxes(torch.rand([10, 7], device='cuda'))
    gt_bboxes = [gt_bbox_0, gt_bbox_1]
142
143
    gt_labels_0 = torch.zeros([10], device='cuda').long()
    gt_labels_1 = torch.zeros([10], device='cuda').long()
144
145
146
147
148
    gt_labels = [gt_labels_0, gt_labels_1]

    # test forward_train
    losses = self.forward_train(points, img_metas, gt_bboxes, gt_labels)
    assert losses['vote_loss'] >= 0
149
    assert losses['centerness_loss'] >= 0
150
151
152
    assert losses['center_loss'] >= 0
    assert losses['dir_class_loss'] >= 0
    assert losses['dir_res_loss'] >= 0
153
    assert losses['corner_loss'] >= 0
154
155
156
    assert losses['size_res_loss'] >= 0

    # test simple_test
157
158
    with torch.no_grad():
        results = self.simple_test(points, img_metas)
159
160
161
162
163
164
165
166
167
    boxes_3d = results[0]['boxes_3d']
    scores_3d = results[0]['scores_3d']
    labels_3d = results[0]['labels_3d']
    assert boxes_3d.tensor.shape[0] >= 0
    assert boxes_3d.tensor.shape[1] == 7
    assert scores_3d.shape[0] >= 0
    assert labels_3d.shape[0] >= 0


liyinhao's avatar
liyinhao committed
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
def test_vote_net():
    if not torch.cuda.is_available():
        pytest.skip('test requires GPU and torch+cuda')

    _setup_seed(0)
    vote_net_cfg = _get_detector_cfg(
        'votenet/votenet_16x8_sunrgbd-3d-10class.py')
    self = build_detector(vote_net_cfg).cuda()
    points_0 = torch.rand([2000, 4], device='cuda')
    points_1 = torch.rand([2000, 4], device='cuda')
    points = [points_0, points_1]
    img_meta_0 = dict(box_type_3d=DepthInstance3DBoxes)
    img_meta_1 = dict(box_type_3d=DepthInstance3DBoxes)
    img_metas = [img_meta_0, img_meta_1]
    gt_bbox_0 = DepthInstance3DBoxes(torch.rand([10, 7], device='cuda'))
    gt_bbox_1 = DepthInstance3DBoxes(torch.rand([10, 7], device='cuda'))
    gt_bboxes = [gt_bbox_0, gt_bbox_1]
    gt_labels_0 = torch.randint(0, 10, [10], device='cuda')
    gt_labels_1 = torch.randint(0, 10, [10], device='cuda')
    gt_labels = [gt_labels_0, gt_labels_1]

    # test forward_train
    losses = self.forward_train(points, img_metas, gt_bboxes, gt_labels)
    assert losses['vote_loss'] >= 0
    assert losses['objectness_loss'] >= 0
    assert losses['semantic_loss'] >= 0
    assert losses['center_loss'] >= 0
    assert losses['dir_class_loss'] >= 0
    assert losses['dir_res_loss'] >= 0
    assert losses['size_class_loss'] >= 0
    assert losses['size_res_loss'] >= 0

    # test simple_test
201
202
    with torch.no_grad():
        results = self.simple_test(points, img_metas)
203
204
205
    boxes_3d = results[0]['boxes_3d']
    scores_3d = results[0]['scores_3d']
    labels_3d = results[0]['labels_3d']
liyinhao's avatar
liyinhao committed
206
207
208
209
210
211
212
213
214
215
216
217
218
    assert boxes_3d.tensor.shape[0] >= 0
    assert boxes_3d.tensor.shape[1] == 7
    assert scores_3d.shape[0] >= 0
    assert labels_3d.shape[0] >= 0


def test_parta2():
    if not torch.cuda.is_available():
        pytest.skip('test requires GPU and torch+cuda')
    _setup_seed(0)
    parta2 = _get_detector_cfg(
        'parta2/hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-3class.py')
    self = build_detector(parta2).cuda()
219
220
    points_0 = torch.rand([1000, 4], device='cuda')
    points_1 = torch.rand([1000, 4], device='cuda')
liyinhao's avatar
liyinhao committed
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
    points = [points_0, points_1]
    img_meta_0 = dict(box_type_3d=LiDARInstance3DBoxes)
    img_meta_1 = dict(box_type_3d=LiDARInstance3DBoxes)
    img_metas = [img_meta_0, img_meta_1]
    gt_bbox_0 = LiDARInstance3DBoxes(torch.rand([10, 7], device='cuda'))
    gt_bbox_1 = LiDARInstance3DBoxes(torch.rand([10, 7], device='cuda'))
    gt_bboxes = [gt_bbox_0, gt_bbox_1]
    gt_labels_0 = torch.randint(0, 3, [10], device='cuda')
    gt_labels_1 = torch.randint(0, 3, [10], device='cuda')
    gt_labels = [gt_labels_0, gt_labels_1]

    # test_forward_train
    losses = self.forward_train(points, img_metas, gt_bboxes, gt_labels)
    assert losses['loss_rpn_cls'][0] >= 0
    assert losses['loss_rpn_bbox'][0] >= 0
    assert losses['loss_rpn_dir'][0] >= 0
    assert losses['loss_seg'] >= 0
    assert losses['loss_part'] >= 0
    assert losses['loss_cls'] >= 0
    assert losses['loss_bbox'] >= 0
    assert losses['loss_corner'] >= 0

    # test_simple_test
244
245
    with torch.no_grad():
        results = self.simple_test(points, img_metas)
246
247
248
    boxes_3d = results[0]['boxes_3d']
    scores_3d = results[0]['scores_3d']
    labels_3d = results[0]['labels_3d']
liyinhao's avatar
liyinhao committed
249
250
251
252
    assert boxes_3d.tensor.shape[0] >= 0
    assert boxes_3d.tensor.shape[1] == 7
    assert scores_3d.shape[0] >= 0
    assert labels_3d.shape[0] >= 0
253
254
255
256
257
258


def test_centerpoint():
    if not torch.cuda.is_available():
        pytest.skip('test requires GPU and torch+cuda')
    centerpoint = _get_detector_cfg(
259
260
        'centerpoint/centerpoint_0075voxel_second_secfpn_'
        'dcn_4x8_cyclic_flip-tta_20e_nus.py')
261
262
263
264
    self = build_detector(centerpoint).cuda()
    points_0 = torch.rand([1000, 5], device='cuda')
    points_1 = torch.rand([1000, 5], device='cuda')
    points = [points_0, points_1]
265
266
267
268
269
270
271
272
273
274
    img_meta_0 = dict(
        box_type_3d=LiDARInstance3DBoxes,
        flip=True,
        pcd_horizontal_flip=True,
        pcd_vertical_flip=False)
    img_meta_1 = dict(
        box_type_3d=LiDARInstance3DBoxes,
        flip=True,
        pcd_horizontal_flip=False,
        pcd_vertical_flip=True)
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
    img_metas = [img_meta_0, img_meta_1]
    gt_bbox_0 = LiDARInstance3DBoxes(
        torch.rand([10, 9], device='cuda'), box_dim=9)
    gt_bbox_1 = LiDARInstance3DBoxes(
        torch.rand([10, 9], device='cuda'), box_dim=9)
    gt_bboxes = [gt_bbox_0, gt_bbox_1]
    gt_labels_0 = torch.randint(0, 3, [10], device='cuda')
    gt_labels_1 = torch.randint(0, 3, [10], device='cuda')
    gt_labels = [gt_labels_0, gt_labels_1]

    # test_forward_train
    losses = self.forward_train(points, img_metas, gt_bboxes, gt_labels)
    for key, value in losses.items():
        assert value >= 0

    # test_simple_test
291
292
    with torch.no_grad():
        results = self.simple_test(points, img_metas)
293
294
295
296
297
298
299
300
301
302
303
304
305
306
    boxes_3d_0 = results[0]['pts_bbox']['boxes_3d']
    scores_3d_0 = results[0]['pts_bbox']['scores_3d']
    labels_3d_0 = results[0]['pts_bbox']['labels_3d']
    assert boxes_3d_0.tensor.shape[0] >= 0
    assert boxes_3d_0.tensor.shape[1] == 9
    assert scores_3d_0.shape[0] >= 0
    assert labels_3d_0.shape[0] >= 0
    boxes_3d_1 = results[1]['pts_bbox']['boxes_3d']
    scores_3d_1 = results[1]['pts_bbox']['scores_3d']
    labels_3d_1 = results[1]['pts_bbox']['labels_3d']
    assert boxes_3d_1.tensor.shape[0] >= 0
    assert boxes_3d_1.tensor.shape[1] == 9
    assert scores_3d_1.shape[0] >= 0
    assert labels_3d_1.shape[0] >= 0
307
308
309
310
311
312
313
314
315
316
317

    # test_aug_test
    points = [[torch.rand([1000, 5], device='cuda')]]
    img_metas = [[
        dict(
            box_type_3d=LiDARInstance3DBoxes,
            pcd_scale_factor=1.0,
            flip=True,
            pcd_horizontal_flip=True,
            pcd_vertical_flip=False)
    ]]
318
319
    with torch.no_grad():
        results = self.aug_test(points, img_metas)
320
321
322
323
324
325
326
    boxes_3d_0 = results[0]['pts_bbox']['boxes_3d']
    scores_3d_0 = results[0]['pts_bbox']['scores_3d']
    labels_3d_0 = results[0]['pts_bbox']['labels_3d']
    assert boxes_3d_0.tensor.shape[0] >= 0
    assert boxes_3d_0.tensor.shape[1] == 9
    assert scores_3d_0.shape[0] >= 0
    assert labels_3d_0.shape[0] >= 0
twang's avatar
twang committed
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347


def test_fcos3d():
    if not torch.cuda.is_available():
        pytest.skip('test requires GPU and torch+cuda')

    _setup_seed(0)
    fcos3d_cfg = _get_detector_cfg(
        'fcos3d/fcos3d_r101_caffe_fpn_gn-head_dcn_2x8_1x_nus-mono3d.py')
    self = build_detector(fcos3d_cfg).cuda()
    imgs = torch.rand([1, 3, 928, 1600], dtype=torch.float32).cuda()
    gt_bboxes = [torch.rand([3, 4], dtype=torch.float32).cuda()]
    gt_bboxes_3d = CameraInstance3DBoxes(
        torch.rand([3, 9], device='cuda'), box_dim=9)
    gt_labels = [torch.randint(0, 10, [3], device='cuda')]
    gt_labels_3d = gt_labels
    centers2d = [torch.rand([3, 2], dtype=torch.float32).cuda()]
    depths = [torch.rand([3], dtype=torch.float32).cuda()]
    attr_labels = [torch.randint(0, 9, [3], device='cuda')]
    img_metas = [
        dict(
348
349
350
            cam2img=[[1260.8474446004698, 0.0, 807.968244525554],
                     [0.0, 1260.8474446004698, 495.3344268742088],
                     [0.0, 0.0, 1.0]],
twang's avatar
twang committed
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
            scale_factor=np.array([1., 1., 1., 1.], dtype=np.float32),
            box_type_3d=CameraInstance3DBoxes)
    ]

    # test forward_train
    losses = self.forward_train(imgs, img_metas, gt_bboxes, gt_labels,
                                gt_bboxes_3d, gt_labels_3d, centers2d, depths,
                                attr_labels)
    assert losses['loss_cls'] >= 0
    assert losses['loss_offset'] >= 0
    assert losses['loss_depth'] >= 0
    assert losses['loss_size'] >= 0
    assert losses['loss_rotsin'] >= 0
    assert losses['loss_centerness'] >= 0
    assert losses['loss_velo'] >= 0
    assert losses['loss_dir'] >= 0
    assert losses['loss_attr'] >= 0

    # test simple_test
370
371
    with torch.no_grad():
        results = self.simple_test(imgs, img_metas)
twang's avatar
twang committed
372
373
374
375
376
377
378
379
380
    boxes_3d = results[0]['img_bbox']['boxes_3d']
    scores_3d = results[0]['img_bbox']['scores_3d']
    labels_3d = results[0]['img_bbox']['labels_3d']
    attrs_3d = results[0]['img_bbox']['attrs_3d']
    assert boxes_3d.tensor.shape[0] >= 0
    assert boxes_3d.tensor.shape[1] == 9
    assert scores_3d.shape[0] >= 0
    assert labels_3d.shape[0] >= 0
    assert attrs_3d.shape[0] >= 0
381
382


hjin2902's avatar
hjin2902 committed
383
384
385
386
387
388
def test_groupfree3dnet():
    if not torch.cuda.is_available():
        pytest.skip('test requires GPU and torch+cuda')

    _setup_seed(0)
    groupfree3d_cfg = _get_detector_cfg(
389
        'groupfree3d/groupfree3d_8x4_scannet-3d-18class-L6-O256.py')
hjin2902's avatar
hjin2902 committed
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
    self = build_detector(groupfree3d_cfg).cuda()

    points_0 = torch.rand([50000, 3], device='cuda')
    points_1 = torch.rand([50000, 3], device='cuda')
    points = [points_0, points_1]
    img_meta_0 = dict(box_type_3d=DepthInstance3DBoxes)
    img_meta_1 = dict(box_type_3d=DepthInstance3DBoxes)
    img_metas = [img_meta_0, img_meta_1]
    gt_bbox_0 = DepthInstance3DBoxes(torch.rand([10, 7], device='cuda'))
    gt_bbox_1 = DepthInstance3DBoxes(torch.rand([10, 7], device='cuda'))
    gt_bboxes = [gt_bbox_0, gt_bbox_1]
    gt_labels_0 = torch.randint(0, 18, [10], device='cuda')
    gt_labels_1 = torch.randint(0, 18, [10], device='cuda')
    gt_labels = [gt_labels_0, gt_labels_1]
    pts_instance_mask_1 = torch.randint(0, 10, [50000], device='cuda')
    pts_instance_mask_2 = torch.randint(0, 10, [50000], device='cuda')
    pts_instance_mask = [pts_instance_mask_1, pts_instance_mask_2]
    pts_semantic_mask_1 = torch.randint(0, 19, [50000], device='cuda')
    pts_semantic_mask_2 = torch.randint(0, 19, [50000], device='cuda')
    pts_semantic_mask = [pts_semantic_mask_1, pts_semantic_mask_2]

    # test forward_train
    losses = self.forward_train(points, img_metas, gt_bboxes, gt_labels,
                                pts_semantic_mask, pts_instance_mask)

    assert losses['sampling_objectness_loss'] >= 0
    assert losses['s5.objectness_loss'] >= 0
    assert losses['s5.semantic_loss'] >= 0
    assert losses['s5.center_loss'] >= 0
    assert losses['s5.dir_class_loss'] >= 0
    assert losses['s5.dir_res_loss'] >= 0
    assert losses['s5.size_class_loss'] >= 0
    assert losses['s5.size_res_loss'] >= 0

    # test simple_test
    with torch.no_grad():
        results = self.simple_test(points, img_metas)
    boxes_3d = results[0]['boxes_3d']
    scores_3d = results[0]['scores_3d']
    labels_3d = results[0]['labels_3d']
    assert boxes_3d.tensor.shape[0] >= 0
    assert boxes_3d.tensor.shape[1] == 7
    assert scores_3d.shape[0] >= 0
    assert labels_3d.shape[0] >= 0


436
437
438
439
def test_imvoxelnet():
    if not torch.cuda.is_available():
        pytest.skip('test requires GPU and torch+cuda')

Yezhen Cong's avatar
Yezhen Cong committed
440
441
    imvoxelnet_cfg = _get_detector_cfg(
        'imvoxelnet/imvoxelnet_4x8_kitti-3d-car.py')
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
    self = build_detector(imvoxelnet_cfg).cuda()
    imgs = torch.rand([1, 3, 384, 1280], dtype=torch.float32).cuda()
    gt_bboxes_3d = [LiDARInstance3DBoxes(torch.rand([3, 7], device='cuda'))]
    gt_labels_3d = [torch.zeros([3], dtype=torch.long, device='cuda')]
    img_metas = [
        dict(
            box_type_3d=LiDARInstance3DBoxes,
            lidar2img=np.array([[6.0e+02, -7.2e+02, -1.2e+00, -1.2e+02],
                                [1.8e+02, 7.6e+00, -7.1e+02, -1.0e+02],
                                [9.9e-01, 1.2e-04, 1.0e-02, -2.6e-01],
                                [0.0e+00, 0.0e+00, 0.0e+00, 1.0e+00]],
                               dtype=np.float32),
            img_shape=(384, 1272, 3))
    ]

    # test forward_train
    losses = self.forward_train(imgs, img_metas, gt_bboxes_3d, gt_labels_3d)
    assert losses['loss_cls'][0] >= 0
    assert losses['loss_bbox'][0] >= 0
    assert losses['loss_dir'][0] >= 0

    # test simple_test
    with torch.no_grad():
        results = self.simple_test(imgs, img_metas)
    boxes_3d = results[0]['boxes_3d']
    scores_3d = results[0]['scores_3d']
    labels_3d = results[0]['labels_3d']
    assert boxes_3d.tensor.shape[0] >= 0
    assert boxes_3d.tensor.shape[1] == 7
    assert scores_3d.shape[0] >= 0
    assert labels_3d.shape[0] >= 0
473
474


475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
def test_pointrcnn():
    if not torch.cuda.is_available():
        pytest.skip('test requires GPU and torch+cuda')
    pointrcnn_cfg = _get_detector_cfg(
        'pointrcnn/pointrcnn_2x8_kitti-3d-3classes.py')
    self = build_detector(pointrcnn_cfg).cuda()
    points_0 = torch.rand([1000, 4], device='cuda')
    points_1 = torch.rand([1000, 4], device='cuda')
    points = [points_0, points_1]

    img_meta_0 = dict(box_type_3d=LiDARInstance3DBoxes)
    img_meta_1 = dict(box_type_3d=LiDARInstance3DBoxes)
    img_metas = [img_meta_0, img_meta_1]
    gt_bbox_0 = LiDARInstance3DBoxes(torch.rand([10, 7], device='cuda'))
    gt_bbox_1 = LiDARInstance3DBoxes(torch.rand([10, 7], device='cuda'))
    gt_bboxes = [gt_bbox_0, gt_bbox_1]
    gt_labels_0 = torch.randint(0, 3, [10], device='cuda')
    gt_labels_1 = torch.randint(0, 3, [10], device='cuda')
    gt_labels = [gt_labels_0, gt_labels_1]

    # test_forward_train
    losses = self.forward_train(points, img_metas, gt_bboxes, gt_labels)
    assert losses['bbox_loss'] >= 0
    assert losses['semantic_loss'] >= 0
    assert losses['loss_cls'] >= 0
    assert losses['loss_bbox'] >= 0
    assert losses['loss_corner'] >= 0


504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
def test_smoke():
    if not torch.cuda.is_available():
        pytest.skip('test requires GPU and torch+cuda')

    _setup_seed(0)
    smoke_cfg = _get_detector_cfg(
        'smoke/smoke_dla34_pytorch_dlaneck_gn-all_8x4_6x_kitti-mono3d.py')
    self = build_detector(smoke_cfg).cuda()
    imgs = torch.rand([1, 3, 384, 1280], dtype=torch.float32).cuda()
    gt_bboxes = [
        torch.Tensor([[563.63122442, 175.02195182, 614.81298184, 224.97763099],
                      [480.89676358, 179.86272635, 511.53017463, 202.54645962],
                      [541.48322272, 175.73767011, 564.55208966, 193.95009791],
                      [329.51448848, 176.14566789, 354.24670848,
                       213.82599081]]).cuda()
    ]
    gt_bboxes_3d = [
        CameraInstance3DBoxes(
            torch.Tensor([[-0.69, 1.69, 25.01, 3.20, 1.61, 1.66, -1.59],
                          [-7.43, 1.88, 47.55, 3.70, 1.40, 1.51, 1.55],
                          [-4.71, 1.71, 60.52, 4.05, 1.46, 1.66, 1.56],
                          [-12.63, 1.88, 34.09, 1.95, 1.72, 0.50,
                           1.54]]).cuda(),
            box_dim=7)
    ]
    gt_labels = [torch.tensor([0, 0, 0, 1]).cuda()]
    gt_labels_3d = gt_labels
    centers2d = [
        torch.Tensor([[589.6528477, 198.3862263], [496.8143155, 190.75967182],
                      [553.40528354, 184.53785991],
                      [342.23690317, 194.44298819]]).cuda()
    ]
    # depths is actually not used in smoke head loss computation
    depths = [torch.rand([3], dtype=torch.float32).cuda()]
    attr_labels = None
    img_metas = [
        dict(
            cam_intrinsic=[[721.5377, 0., 609.5593, 0.],
                           [0., 721.5377, 172.854, 0.], [0., 0., 1., 0.],
                           [0., 0., 0., 1.]],
            scale_factor=np.array([1., 1., 1., 1.], dtype=np.float32),
            pad_shape=[384, 1280],
            trans_mat=np.array([[0.25, 0., 0.], [0., 0.25, 0], [0., 0., 1.]],
                               dtype=np.float32),
            affine_aug=False,
            box_type_3d=CameraInstance3DBoxes)
    ]

    # test forward_train
    losses = self.forward_train(imgs, img_metas, gt_bboxes, gt_labels,
                                gt_bboxes_3d, gt_labels_3d, centers2d, depths,
                                attr_labels)

    assert losses['loss_cls'] >= 0
    assert losses['loss_bbox'] >= 0

    # test simple_test
    with torch.no_grad():
        results = self.simple_test(imgs, img_metas)
    boxes_3d = results[0]['img_bbox']['boxes_3d']
    scores_3d = results[0]['img_bbox']['scores_3d']
    labels_3d = results[0]['img_bbox']['labels_3d']
    assert boxes_3d.tensor.shape[0] >= 0
    assert boxes_3d.tensor.shape[1] == 7
    assert scores_3d.shape[0] >= 0
    assert labels_3d.shape[0] >= 0