scannet_data_utils.py 12.3 KB
Newer Older
dingchang's avatar
dingchang committed
1
# Copyright (c) OpenMMLab. All rights reserved.
2
import mmcv
3
import numpy as np
4
import os
zhangwenwei's avatar
zhangwenwei committed
5
6
from concurrent import futures as futures
from os import path as osp
7
8


liyinhao's avatar
liyinhao committed
9
class ScanNetData(object):
liyinhao's avatar
liyinhao committed
10
    """ScanNet data.
liyinhao's avatar
liyinhao committed
11

liyinhao's avatar
liyinhao committed
12
    Generate scannet infos for scannet_converter.
liyinhao's avatar
liyinhao committed
13
14

    Args:
liyinhao's avatar
liyinhao committed
15
        root_path (str): Root path of the raw data.
liyinhao's avatar
liyinhao committed
16
        split (str): Set split type of the data. Default: 'train'.
liyinhao's avatar
liyinhao committed
17
    """
18
19
20
21

    def __init__(self, root_path, split='train'):
        self.root_dir = root_path
        self.split = split
liyinhao's avatar
liyinhao committed
22
        self.split_dir = osp.join(root_path)
23
24
25
26
27
28
29
30
31
        self.classes = [
            'cabinet', 'bed', 'chair', 'sofa', 'table', 'door', 'window',
            'bookshelf', 'picture', 'counter', 'desk', 'curtain',
            'refrigerator', 'showercurtrain', 'toilet', 'sink', 'bathtub',
            'garbagebin'
        ]
        self.cat2label = {cat: self.classes.index(cat) for cat in self.classes}
        self.label2cat = {self.cat2label[t]: t for t in self.cat2label}
        self.cat_ids = np.array(
32
            [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 24, 28, 33, 34, 36, 39])
33
        self.cat_ids2class = {
34
            nyu40id: i
35
            for i, nyu40id in enumerate(list(self.cat_ids))
36
37
        }
        assert split in ['train', 'val', 'test']
liyinhao's avatar
liyinhao committed
38
39
        split_file = osp.join(self.root_dir, 'meta_data',
                              f'scannetv2_{split}.txt')
40
41
        mmcv.check_file_exist(split_file)
        self.sample_id_list = mmcv.list_from_file(split_file)
42
        self.test_mode = (split == 'test')
43
44
45
46

    def __len__(self):
        return len(self.sample_id_list)

47
    def get_aligned_box_label(self, idx):
48
        box_file = osp.join(self.root_dir, 'scannet_instance_data',
49
                            f'{idx}_aligned_bbox.npy')
liyinhao's avatar
liyinhao committed
50
        mmcv.check_file_exist(box_file)
51
52
        return np.load(box_file)

53
54
55
56
57
58
59
60
61
62
63
64
    def get_unaligned_box_label(self, idx):
        box_file = osp.join(self.root_dir, 'scannet_instance_data',
                            f'{idx}_unaligned_bbox.npy')
        mmcv.check_file_exist(box_file)
        return np.load(box_file)

    def get_axis_align_matrix(self, idx):
        matrix_file = osp.join(self.root_dir, 'scannet_instance_data',
                               f'{idx}_axis_align_matrix.npy')
        mmcv.check_file_exist(matrix_file)
        return np.load(matrix_file)

65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
    def get_images(self, idx):
        paths = []
        path = osp.join(self.root_dir, 'posed_images', idx)
        for file in sorted(os.listdir(path)):
            if file.endswith('.jpg'):
                paths.append(osp.join('posed_images', idx, file))
        return paths

    def get_extrinsics(self, idx):
        extrinsics = []
        path = osp.join(self.root_dir, 'posed_images', idx)
        for file in sorted(os.listdir(path)):
            if file.endswith('.txt') and not file == 'intrinsic.txt':
                extrinsics.append(np.loadtxt(osp.join(path, file)))
        return extrinsics

    def get_intrinsics(self, idx):
        matrix_file = osp.join(self.root_dir, 'posed_images', idx,
                               'intrinsic.txt')
        mmcv.check_file_exist(matrix_file)
        return np.loadtxt(matrix_file)

liyinhao's avatar
liyinhao committed
87
    def get_infos(self, num_workers=4, has_label=True, sample_id_list=None):
liyinhao's avatar
liyinhao committed
88
        """Get data infos.
liyinhao's avatar
liyinhao committed
89
90
91
92
93
94

        This method gets information from the raw data.

        Args:
            num_workers (int): Number of threads to be used. Default: 4.
            has_label (bool): Whether the data has label. Default: True.
liyinhao's avatar
liyinhao committed
95
            sample_id_list (list[int]): Index list of the sample.
liyinhao's avatar
liyinhao committed
96
                Default: None.
liyinhao's avatar
liyinhao committed
97
98

        Returns:
liyinhao's avatar
liyinhao committed
99
            infos (list[dict]): Information of the raw data.
liyinhao's avatar
liyinhao committed
100
        """
101
102

        def process_single_scene(sample_idx):
liyinhao's avatar
liyinhao committed
103
            print(f'{self.split} sample_idx: {sample_idx}')
104
105
106
            info = dict()
            pc_info = {'num_features': 6, 'lidar_idx': sample_idx}
            info['point_cloud'] = pc_info
107
            pts_filename = osp.join(self.root_dir, 'scannet_instance_data',
liyinhao's avatar
liyinhao committed
108
109
110
111
112
113
                                    f'{sample_idx}_vert.npy')
            points = np.load(pts_filename)
            mmcv.mkdir_or_exist(osp.join(self.root_dir, 'points'))
            points.tofile(
                osp.join(self.root_dir, 'points', f'{sample_idx}.bin'))
            info['pts_path'] = osp.join('points', f'{sample_idx}.bin')
114

115
116
117
118
119
120
121
122
123
124
125
126
127
128
            # update with RGB image paths if exist
            if os.path.exists(osp.join(self.root_dir, 'posed_images')):
                info['intrinsics'] = self.get_intrinsics(sample_idx)
                all_extrinsics = self.get_extrinsics(sample_idx)
                all_img_paths = self.get_images(sample_idx)
                # some poses in ScanNet are invalid
                extrinsics, img_paths = [], []
                for extrinsic, img_path in zip(all_extrinsics, all_img_paths):
                    if np.all(np.isfinite(extrinsic)):
                        img_paths.append(img_path)
                        extrinsics.append(extrinsic)
                info['extrinsics'] = extrinsics
                info['img_paths'] = img_paths

129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
            if not self.test_mode:
                pts_instance_mask_path = osp.join(
                    self.root_dir, 'scannet_instance_data',
                    f'{sample_idx}_ins_label.npy')
                pts_semantic_mask_path = osp.join(
                    self.root_dir, 'scannet_instance_data',
                    f'{sample_idx}_sem_label.npy')

                pts_instance_mask = np.load(pts_instance_mask_path).astype(
                    np.long)
                pts_semantic_mask = np.load(pts_semantic_mask_path).astype(
                    np.long)

                mmcv.mkdir_or_exist(osp.join(self.root_dir, 'instance_mask'))
                mmcv.mkdir_or_exist(osp.join(self.root_dir, 'semantic_mask'))

                pts_instance_mask.tofile(
                    osp.join(self.root_dir, 'instance_mask',
                             f'{sample_idx}.bin'))
                pts_semantic_mask.tofile(
                    osp.join(self.root_dir, 'semantic_mask',
                             f'{sample_idx}.bin'))

                info['pts_instance_mask_path'] = osp.join(
                    'instance_mask', f'{sample_idx}.bin')
                info['pts_semantic_mask_path'] = osp.join(
                    'semantic_mask', f'{sample_idx}.bin')
156
157
158

            if has_label:
                annotations = {}
159
160
161
162
                # box is of shape [k, 6 + class]
                aligned_box_label = self.get_aligned_box_label(sample_idx)
                unaligned_box_label = self.get_unaligned_box_label(sample_idx)
                annotations['gt_num'] = aligned_box_label.shape[0]
163
                if annotations['gt_num'] != 0:
164
165
166
                    aligned_box = aligned_box_label[:, :-1]  # k, 6
                    unaligned_box = unaligned_box_label[:, :-1]
                    classes = aligned_box_label[:, -1]  # k
167
                    annotations['name'] = np.array([
168
                        self.label2cat[self.cat_ids2class[classes[i]]]
169
170
                        for i in range(annotations['gt_num'])
                    ])
171
172
173
174
175
176
177
178
179
                    # default names are given to aligned bbox for compatibility
                    # we also save unaligned bbox info with marked names
                    annotations['location'] = aligned_box[:, :3]
                    annotations['dimensions'] = aligned_box[:, 3:6]
                    annotations['gt_boxes_upright_depth'] = aligned_box
                    annotations['unaligned_location'] = unaligned_box[:, :3]
                    annotations['unaligned_dimensions'] = unaligned_box[:, 3:6]
                    annotations[
                        'unaligned_gt_boxes_upright_depth'] = unaligned_box
180
181
182
                    annotations['index'] = np.arange(
                        annotations['gt_num'], dtype=np.int32)
                    annotations['class'] = np.array([
183
                        self.cat_ids2class[classes[i]]
184
185
                        for i in range(annotations['gt_num'])
                    ])
186
187
                axis_align_matrix = self.get_axis_align_matrix(sample_idx)
                annotations['axis_align_matrix'] = axis_align_matrix  # 4x4
188
189
190
191
192
193
194
195
                info['annos'] = annotations
            return info

        sample_id_list = sample_id_list if sample_id_list is not None \
            else self.sample_id_list
        with futures.ThreadPoolExecutor(num_workers) as executor:
            infos = executor.map(process_single_scene, sample_id_list)
        return list(infos)
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218


class ScanNetSegData(object):
    """ScanNet dataset used to generate infos for semantic segmentation task.

    Args:
        data_root (str): Root path of the raw data.
        ann_file (str): The generated scannet infos.
        split (str): Set split type of the data. Default: 'train'.
        num_points (int): Number of points in each data input. Default: 8192.
        label_weight_func (function): Function to compute the label weight.
            Default: None.
    """

    def __init__(self,
                 data_root,
                 ann_file,
                 split='train',
                 num_points=8192,
                 label_weight_func=None):
        self.data_root = data_root
        self.data_infos = mmcv.load(ann_file)
        self.split = split
219
        assert split in ['train', 'val', 'test']
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
        self.num_points = num_points

        self.all_ids = np.arange(41)  # all possible ids
        self.cat_ids = np.array([
            1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 24, 28, 33, 34, 36,
            39
        ])  # used for seg task
        self.ignore_index = len(self.cat_ids)

        self.cat_id2class = np.ones((self.all_ids.shape[0],), dtype=np.int) * \
            self.ignore_index
        for i, cat_id in enumerate(self.cat_ids):
            self.cat_id2class[cat_id] = i

        # label weighting function is taken from
        # https://github.com/charlesq34/pointnet2/blob/master/scannet/scannet_dataset.py#L24
        self.label_weight_func = (lambda x: 1.0 / np.log(1.2 + x)) if \
            label_weight_func is None else label_weight_func

    def get_seg_infos(self):
240
241
        if self.split == 'test':
            return
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
        scene_idxs, label_weight = self.get_scene_idxs_and_label_weight()
        save_folder = osp.join(self.data_root, 'seg_info')
        mmcv.mkdir_or_exist(save_folder)
        np.save(
            osp.join(save_folder, f'{self.split}_resampled_scene_idxs.npy'),
            scene_idxs)
        np.save(
            osp.join(save_folder, f'{self.split}_label_weight.npy'),
            label_weight)
        print(f'{self.split} resampled scene index and label weight saved')

    def _convert_to_label(self, mask):
        """Convert class_id in loaded segmentation mask to label."""
        if isinstance(mask, str):
            if mask.endswith('npy'):
                mask = np.load(mask)
            else:
                mask = np.fromfile(mask, dtype=np.long)
        label = self.cat_id2class[mask]
        return label

    def get_scene_idxs_and_label_weight(self):
        """Compute scene_idxs for data sampling and label weight for loss \
        calculation.

        We sample more times for scenes with more points. Label_weight is
        inversely proportional to number of class points.
        """
        num_classes = len(self.cat_ids)
        num_point_all = []
        label_weight = np.zeros((num_classes + 1, ))  # ignore_index
        for data_info in self.data_infos:
            label = self._convert_to_label(
                osp.join(self.data_root, data_info['pts_semantic_mask_path']))
            num_point_all.append(label.shape[0])
            class_count, _ = np.histogram(label, range(num_classes + 2))
            label_weight += class_count

        # repeat scene_idx for num_scene_point // num_sample_point times
        sample_prob = np.array(num_point_all) / float(np.sum(num_point_all))
        num_iter = int(np.sum(num_point_all) / float(self.num_points))
        scene_idxs = []
        for idx in range(len(self.data_infos)):
285
            scene_idxs.extend([idx] * int(round(sample_prob[idx] * num_iter)))
286
287
288
289
290
291
292
293
        scene_idxs = np.array(scene_idxs).astype(np.int32)

        # calculate label weight, adopted from PointNet++
        label_weight = label_weight[:-1].astype(np.float32)
        label_weight = label_weight / label_weight.sum()
        label_weight = self.label_weight_func(label_weight).astype(np.float32)

        return scene_idxs, label_weight