scannet_data_utils.py 10.7 KB
Newer Older
1
import mmcv
2
import numpy as np
zhangwenwei's avatar
zhangwenwei committed
3
4
from concurrent import futures as futures
from os import path as osp
5
6


liyinhao's avatar
liyinhao committed
7
class ScanNetData(object):
liyinhao's avatar
liyinhao committed
8
    """ScanNet data.
liyinhao's avatar
liyinhao committed
9

liyinhao's avatar
liyinhao committed
10
    Generate scannet infos for scannet_converter.
liyinhao's avatar
liyinhao committed
11
12

    Args:
liyinhao's avatar
liyinhao committed
13
        root_path (str): Root path of the raw data.
liyinhao's avatar
liyinhao committed
14
        split (str): Set split type of the data. Default: 'train'.
liyinhao's avatar
liyinhao committed
15
    """
16
17
18
19

    def __init__(self, root_path, split='train'):
        self.root_dir = root_path
        self.split = split
liyinhao's avatar
liyinhao committed
20
        self.split_dir = osp.join(root_path)
21
22
23
24
25
26
27
28
29
        self.classes = [
            'cabinet', 'bed', 'chair', 'sofa', 'table', 'door', 'window',
            'bookshelf', 'picture', 'counter', 'desk', 'curtain',
            'refrigerator', 'showercurtrain', 'toilet', 'sink', 'bathtub',
            'garbagebin'
        ]
        self.cat2label = {cat: self.classes.index(cat) for cat in self.classes}
        self.label2cat = {self.cat2label[t]: t for t in self.cat2label}
        self.cat_ids = np.array(
30
            [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 24, 28, 33, 34, 36, 39])
31
        self.cat_ids2class = {
32
            nyu40id: i
33
            for i, nyu40id in enumerate(list(self.cat_ids))
34
35
        }
        assert split in ['train', 'val', 'test']
liyinhao's avatar
liyinhao committed
36
37
        split_file = osp.join(self.root_dir, 'meta_data',
                              f'scannetv2_{split}.txt')
38
39
        mmcv.check_file_exist(split_file)
        self.sample_id_list = mmcv.list_from_file(split_file)
40
        self.test_mode = (split == 'test')
41
42
43
44

    def __len__(self):
        return len(self.sample_id_list)

45
    def get_aligned_box_label(self, idx):
46
        box_file = osp.join(self.root_dir, 'scannet_instance_data',
47
                            f'{idx}_aligned_bbox.npy')
liyinhao's avatar
liyinhao committed
48
        mmcv.check_file_exist(box_file)
49
50
        return np.load(box_file)

51
52
53
54
55
56
57
58
59
60
61
62
    def get_unaligned_box_label(self, idx):
        box_file = osp.join(self.root_dir, 'scannet_instance_data',
                            f'{idx}_unaligned_bbox.npy')
        mmcv.check_file_exist(box_file)
        return np.load(box_file)

    def get_axis_align_matrix(self, idx):
        matrix_file = osp.join(self.root_dir, 'scannet_instance_data',
                               f'{idx}_axis_align_matrix.npy')
        mmcv.check_file_exist(matrix_file)
        return np.load(matrix_file)

liyinhao's avatar
liyinhao committed
63
    def get_infos(self, num_workers=4, has_label=True, sample_id_list=None):
liyinhao's avatar
liyinhao committed
64
        """Get data infos.
liyinhao's avatar
liyinhao committed
65
66
67
68
69
70

        This method gets information from the raw data.

        Args:
            num_workers (int): Number of threads to be used. Default: 4.
            has_label (bool): Whether the data has label. Default: True.
liyinhao's avatar
liyinhao committed
71
            sample_id_list (list[int]): Index list of the sample.
liyinhao's avatar
liyinhao committed
72
                Default: None.
liyinhao's avatar
liyinhao committed
73
74

        Returns:
liyinhao's avatar
liyinhao committed
75
            infos (list[dict]): Information of the raw data.
liyinhao's avatar
liyinhao committed
76
        """
77
78

        def process_single_scene(sample_idx):
liyinhao's avatar
liyinhao committed
79
            print(f'{self.split} sample_idx: {sample_idx}')
80
81
82
            info = dict()
            pc_info = {'num_features': 6, 'lidar_idx': sample_idx}
            info['point_cloud'] = pc_info
83
            pts_filename = osp.join(self.root_dir, 'scannet_instance_data',
liyinhao's avatar
liyinhao committed
84
85
86
87
88
89
                                    f'{sample_idx}_vert.npy')
            points = np.load(pts_filename)
            mmcv.mkdir_or_exist(osp.join(self.root_dir, 'points'))
            points.tofile(
                osp.join(self.root_dir, 'points', f'{sample_idx}.bin'))
            info['pts_path'] = osp.join('points', f'{sample_idx}.bin')
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117

            if not self.test_mode:
                pts_instance_mask_path = osp.join(
                    self.root_dir, 'scannet_instance_data',
                    f'{sample_idx}_ins_label.npy')
                pts_semantic_mask_path = osp.join(
                    self.root_dir, 'scannet_instance_data',
                    f'{sample_idx}_sem_label.npy')

                pts_instance_mask = np.load(pts_instance_mask_path).astype(
                    np.long)
                pts_semantic_mask = np.load(pts_semantic_mask_path).astype(
                    np.long)

                mmcv.mkdir_or_exist(osp.join(self.root_dir, 'instance_mask'))
                mmcv.mkdir_or_exist(osp.join(self.root_dir, 'semantic_mask'))

                pts_instance_mask.tofile(
                    osp.join(self.root_dir, 'instance_mask',
                             f'{sample_idx}.bin'))
                pts_semantic_mask.tofile(
                    osp.join(self.root_dir, 'semantic_mask',
                             f'{sample_idx}.bin'))

                info['pts_instance_mask_path'] = osp.join(
                    'instance_mask', f'{sample_idx}.bin')
                info['pts_semantic_mask_path'] = osp.join(
                    'semantic_mask', f'{sample_idx}.bin')
118
119
120

            if has_label:
                annotations = {}
121
122
123
124
                # box is of shape [k, 6 + class]
                aligned_box_label = self.get_aligned_box_label(sample_idx)
                unaligned_box_label = self.get_unaligned_box_label(sample_idx)
                annotations['gt_num'] = aligned_box_label.shape[0]
125
                if annotations['gt_num'] != 0:
126
127
128
                    aligned_box = aligned_box_label[:, :-1]  # k, 6
                    unaligned_box = unaligned_box_label[:, :-1]
                    classes = aligned_box_label[:, -1]  # k
129
                    annotations['name'] = np.array([
130
                        self.label2cat[self.cat_ids2class[classes[i]]]
131
132
                        for i in range(annotations['gt_num'])
                    ])
133
134
135
136
137
138
139
140
141
                    # default names are given to aligned bbox for compatibility
                    # we also save unaligned bbox info with marked names
                    annotations['location'] = aligned_box[:, :3]
                    annotations['dimensions'] = aligned_box[:, 3:6]
                    annotations['gt_boxes_upright_depth'] = aligned_box
                    annotations['unaligned_location'] = unaligned_box[:, :3]
                    annotations['unaligned_dimensions'] = unaligned_box[:, 3:6]
                    annotations[
                        'unaligned_gt_boxes_upright_depth'] = unaligned_box
142
143
144
                    annotations['index'] = np.arange(
                        annotations['gt_num'], dtype=np.int32)
                    annotations['class'] = np.array([
145
                        self.cat_ids2class[classes[i]]
146
147
                        for i in range(annotations['gt_num'])
                    ])
148
149
                axis_align_matrix = self.get_axis_align_matrix(sample_idx)
                annotations['axis_align_matrix'] = axis_align_matrix  # 4x4
150
151
152
153
154
155
156
157
                info['annos'] = annotations
            return info

        sample_id_list = sample_id_list if sample_id_list is not None \
            else self.sample_id_list
        with futures.ThreadPoolExecutor(num_workers) as executor:
            infos = executor.map(process_single_scene, sample_id_list)
        return list(infos)
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180


class ScanNetSegData(object):
    """ScanNet dataset used to generate infos for semantic segmentation task.

    Args:
        data_root (str): Root path of the raw data.
        ann_file (str): The generated scannet infos.
        split (str): Set split type of the data. Default: 'train'.
        num_points (int): Number of points in each data input. Default: 8192.
        label_weight_func (function): Function to compute the label weight.
            Default: None.
    """

    def __init__(self,
                 data_root,
                 ann_file,
                 split='train',
                 num_points=8192,
                 label_weight_func=None):
        self.data_root = data_root
        self.data_infos = mmcv.load(ann_file)
        self.split = split
181
        assert split in ['train', 'val', 'test']
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
        self.num_points = num_points

        self.all_ids = np.arange(41)  # all possible ids
        self.cat_ids = np.array([
            1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 24, 28, 33, 34, 36,
            39
        ])  # used for seg task
        self.ignore_index = len(self.cat_ids)

        self.cat_id2class = np.ones((self.all_ids.shape[0],), dtype=np.int) * \
            self.ignore_index
        for i, cat_id in enumerate(self.cat_ids):
            self.cat_id2class[cat_id] = i

        # label weighting function is taken from
        # https://github.com/charlesq34/pointnet2/blob/master/scannet/scannet_dataset.py#L24
        self.label_weight_func = (lambda x: 1.0 / np.log(1.2 + x)) if \
            label_weight_func is None else label_weight_func

    def get_seg_infos(self):
202
203
        if self.split == 'test':
            return
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
        scene_idxs, label_weight = self.get_scene_idxs_and_label_weight()
        save_folder = osp.join(self.data_root, 'seg_info')
        mmcv.mkdir_or_exist(save_folder)
        np.save(
            osp.join(save_folder, f'{self.split}_resampled_scene_idxs.npy'),
            scene_idxs)
        np.save(
            osp.join(save_folder, f'{self.split}_label_weight.npy'),
            label_weight)
        print(f'{self.split} resampled scene index and label weight saved')

    def _convert_to_label(self, mask):
        """Convert class_id in loaded segmentation mask to label."""
        if isinstance(mask, str):
            if mask.endswith('npy'):
                mask = np.load(mask)
            else:
                mask = np.fromfile(mask, dtype=np.long)
        label = self.cat_id2class[mask]
        return label

    def get_scene_idxs_and_label_weight(self):
        """Compute scene_idxs for data sampling and label weight for loss \
        calculation.

        We sample more times for scenes with more points. Label_weight is
        inversely proportional to number of class points.
        """
        num_classes = len(self.cat_ids)
        num_point_all = []
        label_weight = np.zeros((num_classes + 1, ))  # ignore_index
        for data_info in self.data_infos:
            label = self._convert_to_label(
                osp.join(self.data_root, data_info['pts_semantic_mask_path']))
            num_point_all.append(label.shape[0])
            class_count, _ = np.histogram(label, range(num_classes + 2))
            label_weight += class_count

        # repeat scene_idx for num_scene_point // num_sample_point times
        sample_prob = np.array(num_point_all) / float(np.sum(num_point_all))
        num_iter = int(np.sum(num_point_all) / float(self.num_points))
        scene_idxs = []
        for idx in range(len(self.data_infos)):
247
            scene_idxs.extend([idx] * int(round(sample_prob[idx] * num_iter)))
248
249
250
251
252
253
254
255
        scene_idxs = np.array(scene_idxs).astype(np.int32)

        # calculate label weight, adopted from PointNet++
        label_weight = label_weight[:-1].astype(np.float32)
        label_weight = label_weight / label_weight.sum()
        label_weight = self.label_weight_func(label_weight).astype(np.float32)

        return scene_idxs, label_weight