transforms_3d.py 31.8 KB
Newer Older
zhangwenwei's avatar
zhangwenwei committed
1
import numpy as np
2
from mmcv import is_tuple_of
3
from mmcv.utils import build_from_cfg
zhangwenwei's avatar
zhangwenwei committed
4

5
from mmdet3d.core import VoxelGenerator
zhangwenwei's avatar
zhangwenwei committed
6
from mmdet3d.core.bbox import box_np_ops
7
from mmdet.datasets.builder import PIPELINES
zhangwenwei's avatar
zhangwenwei committed
8
from mmdet.datasets.pipelines import RandomFlip
zhangwenwei's avatar
zhangwenwei committed
9
10
11
12
from ..registry import OBJECTSAMPLERS
from .data_augment_utils import noise_per_object_v3_


13
@PIPELINES.register_module()
zhangwenwei's avatar
zhangwenwei committed
14
15
16
17
18
19
20
21
class RandomFlip3D(RandomFlip):
    """Flip the points & bbox.

    If the input dict contains the key "flip", then the flag will be used,
    otherwise it will be randomly decided by a ratio specified in the init
    method.

    Args:
zhangwenwei's avatar
zhangwenwei committed
22
23
24
        sync_2d (bool, optional): Whether to apply flip according to the 2D
            images. If True, it will apply the same flip as that to 2D images.
            If False, it will decide whether to flip randomly and independently
liyinhao's avatar
liyinhao committed
25
            to that of 2D images. Defaults to True.
wuyuefeng's avatar
wuyuefeng committed
26
        flip_ratio_bev_horizontal (float, optional): The flipping probability
liyinhao's avatar
liyinhao committed
27
            in horizontal direction. Defaults to 0.0.
wuyuefeng's avatar
wuyuefeng committed
28
        flip_ratio_bev_vertical (float, optional): The flipping probability
liyinhao's avatar
liyinhao committed
29
            in vertical direction. Defaults to 0.0.
zhangwenwei's avatar
zhangwenwei committed
30
31
    """

wuyuefeng's avatar
wuyuefeng committed
32
33
34
35
36
37
38
    def __init__(self,
                 sync_2d=True,
                 flip_ratio_bev_horizontal=0.0,
                 flip_ratio_bev_vertical=0.0,
                 **kwargs):
        super(RandomFlip3D, self).__init__(
            flip_ratio=flip_ratio_bev_horizontal, **kwargs)
zhangwenwei's avatar
zhangwenwei committed
39
        self.sync_2d = sync_2d
wuyuefeng's avatar
wuyuefeng committed
40
41
42
43
44
45
46
47
48
49
50
        self.flip_ratio_bev_vertical = flip_ratio_bev_vertical
        if flip_ratio_bev_horizontal is not None:
            assert isinstance(
                flip_ratio_bev_horizontal,
                (int, float)) and 0 <= flip_ratio_bev_horizontal <= 1
        if flip_ratio_bev_vertical is not None:
            assert isinstance(
                flip_ratio_bev_vertical,
                (int, float)) and 0 <= flip_ratio_bev_vertical <= 1

    def random_flip_data_3d(self, input_dict, direction='horizontal'):
51
52
53
54
55
56
57
58
59
60
        """Flip 3D data randomly.

        Args:
            input_dict (dict): Result dict from loading pipeline.
            direction (str): Flip direction. Default: horizontal.

        Returns:
            dict: Flipped results, 'points', 'bbox3d_fields' keys are \
                updated in the result dict.
        """
wuyuefeng's avatar
wuyuefeng committed
61
        assert direction in ['horizontal', 'vertical']
62
63
64
65
66
        if len(input_dict['bbox3d_fields']) == 0:  # test mode
            input_dict['bbox3d_fields'].append('empty_box3d')
            input_dict['empty_box3d'] = input_dict['box_type_3d'](
                np.array([], dtype=np.float32))
        assert len(input_dict['bbox3d_fields']) == 1
zhangwenwei's avatar
zhangwenwei committed
67
        for key in input_dict['bbox3d_fields']:
wuyuefeng's avatar
wuyuefeng committed
68
69
            input_dict['points'] = input_dict[key].flip(
                direction, points=input_dict['points'])
zhangwenwei's avatar
zhangwenwei committed
70
71

    def __call__(self, input_dict):
72
73
74
75
76
77
78
79
80
81
82
        """Call function to flip points, values in the ``bbox3d_fields`` and \
        also flip 2D image and its annotations.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Flipped results, 'flip', 'flip_direction', \
                'pcd_horizontal_flip' and 'pcd_vertical_flip' keys are added \
                into result dict.
        """
zhangwenwei's avatar
zhangwenwei committed
83
        # filp 2D image and its annotations
zhangwenwei's avatar
zhangwenwei committed
84
        super(RandomFlip3D, self).__call__(input_dict)
zhangwenwei's avatar
zhangwenwei committed
85

zhangwenwei's avatar
zhangwenwei committed
86
        if self.sync_2d:
wuyuefeng's avatar
wuyuefeng committed
87
88
            input_dict['pcd_horizontal_flip'] = input_dict['flip']
            input_dict['pcd_vertical_flip'] = False
zhangwenwei's avatar
zhangwenwei committed
89
        else:
wuyuefeng's avatar
wuyuefeng committed
90
91
92
93
94
95
96
97
98
            if 'pcd_horizontal_flip' not in input_dict:
                flip_horizontal = True if np.random.rand(
                ) < self.flip_ratio else False
                input_dict['pcd_horizontal_flip'] = flip_horizontal
            if 'pcd_vertical_flip' not in input_dict:
                flip_vertical = True if np.random.rand(
                ) < self.flip_ratio_bev_vertical else False
                input_dict['pcd_vertical_flip'] = flip_vertical

99
100
101
        if 'transformation_3d_flow' not in input_dict:
            input_dict['transformation_3d_flow'] = []

wuyuefeng's avatar
wuyuefeng committed
102
103
        if input_dict['pcd_horizontal_flip']:
            self.random_flip_data_3d(input_dict, 'horizontal')
104
            input_dict['transformation_3d_flow'].extend(['HF'])
wuyuefeng's avatar
wuyuefeng committed
105
106
        if input_dict['pcd_vertical_flip']:
            self.random_flip_data_3d(input_dict, 'vertical')
107
            input_dict['transformation_3d_flow'].extend(['VF'])
zhangwenwei's avatar
zhangwenwei committed
108
109
        return input_dict

zhangwenwei's avatar
zhangwenwei committed
110
    def __repr__(self):
111
        """str: Return a string that describes the module."""
wuyuefeng's avatar
wuyuefeng committed
112
113
        repr_str = self.__class__.__name__
        repr_str += '(sync_2d={},'.format(self.sync_2d)
yinchimaoliang's avatar
yinchimaoliang committed
114
        repr_str += 'flip_ratio_bev_vertical={})'.format(
wuyuefeng's avatar
wuyuefeng committed
115
116
            self.flip_ratio_bev_vertical)
        return repr_str
zhangwenwei's avatar
zhangwenwei committed
117

zhangwenwei's avatar
zhangwenwei committed
118

119
@PIPELINES.register_module()
zhangwenwei's avatar
zhangwenwei committed
120
class ObjectSample(object):
zhangwenwei's avatar
zhangwenwei committed
121
    """Sample GT objects to the data.
zhangwenwei's avatar
zhangwenwei committed
122
123
124
125
126

    Args:
        db_sampler (dict): Config dict of the database sampler.
        sample_2d (bool): Whether to also paste 2D image patch to the images
            This should be true when applying multi-modality cut-and-paste.
liyinhao's avatar
liyinhao committed
127
            Defaults to False.
zhangwenwei's avatar
zhangwenwei committed
128
    """
zhangwenwei's avatar
zhangwenwei committed
129
130
131
132
133
134
135
136
137
138

    def __init__(self, db_sampler, sample_2d=False):
        self.sampler_cfg = db_sampler
        self.sample_2d = sample_2d
        if 'type' not in db_sampler.keys():
            db_sampler['type'] = 'DataBaseSampler'
        self.db_sampler = build_from_cfg(db_sampler, OBJECTSAMPLERS)

    @staticmethod
    def remove_points_in_boxes(points, boxes):
139
140
141
142
143
144
145
146
147
        """Remove the points in the sampled bounding boxes.

        Args:
            points (np.ndarray): Input point cloud array.
            boxes (np.ndarray): Sampled ground truth boxes.

        Returns:
            np.ndarray: Points with those in the boxes removed.
        """
148
        masks = box_np_ops.points_in_rbbox(points.coord.numpy(), boxes)
zhangwenwei's avatar
zhangwenwei committed
149
150
151
152
        points = points[np.logical_not(masks.any(-1))]
        return points

    def __call__(self, input_dict):
153
154
155
156
157
158
159
160
161
162
        """Call function to sample ground truth objects to the data.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after object sampling augmentation, \
                'points', 'gt_bboxes_3d', 'gt_labels_3d' keys are updated \
                in the result dict.
        """
zhangwenwei's avatar
zhangwenwei committed
163
        gt_bboxes_3d = input_dict['gt_bboxes_3d']
zhangwenwei's avatar
zhangwenwei committed
164
165
        gt_labels_3d = input_dict['gt_labels_3d']

zhangwenwei's avatar
zhangwenwei committed
166
167
168
        # change to float for blending operation
        points = input_dict['points']
        if self.sample_2d:
wuyuefeng's avatar
wuyuefeng committed
169
            img = input_dict['img']
zhangwenwei's avatar
zhangwenwei committed
170
171
172
            gt_bboxes_2d = input_dict['gt_bboxes']
            # Assume for now 3D & 2D bboxes are the same
            sampled_dict = self.db_sampler.sample_all(
173
174
175
176
                gt_bboxes_3d.tensor.numpy(),
                gt_labels_3d,
                gt_bboxes_2d=gt_bboxes_2d,
                img=img)
zhangwenwei's avatar
zhangwenwei committed
177
178
        else:
            sampled_dict = self.db_sampler.sample_all(
179
                gt_bboxes_3d.tensor.numpy(), gt_labels_3d, img=None)
zhangwenwei's avatar
zhangwenwei committed
180
181
182
183

        if sampled_dict is not None:
            sampled_gt_bboxes_3d = sampled_dict['gt_bboxes_3d']
            sampled_points = sampled_dict['points']
zhangwenwei's avatar
zhangwenwei committed
184
            sampled_gt_labels = sampled_dict['gt_labels_3d']
zhangwenwei's avatar
zhangwenwei committed
185

zhangwenwei's avatar
zhangwenwei committed
186
187
            gt_labels_3d = np.concatenate([gt_labels_3d, sampled_gt_labels],
                                          axis=0)
188
189
190
            gt_bboxes_3d = gt_bboxes_3d.new_box(
                np.concatenate(
                    [gt_bboxes_3d.tensor.numpy(), sampled_gt_bboxes_3d]))
zhangwenwei's avatar
zhangwenwei committed
191

zhangwenwei's avatar
zhangwenwei committed
192
193
            points = self.remove_points_in_boxes(points, sampled_gt_bboxes_3d)
            # check the points dimension
194
            points = points.cat([sampled_points, points])
zhangwenwei's avatar
zhangwenwei committed
195
196
197
198
199

            if self.sample_2d:
                sampled_gt_bboxes_2d = sampled_dict['gt_bboxes_2d']
                gt_bboxes_2d = np.concatenate(
                    [gt_bboxes_2d, sampled_gt_bboxes_2d]).astype(np.float32)
zhangwenwei's avatar
zhangwenwei committed
200

zhangwenwei's avatar
zhangwenwei committed
201
                input_dict['gt_bboxes'] = gt_bboxes_2d
wuyuefeng's avatar
wuyuefeng committed
202
                input_dict['img'] = sampled_dict['img']
zhangwenwei's avatar
zhangwenwei committed
203
204

        input_dict['gt_bboxes_3d'] = gt_bboxes_3d
205
        input_dict['gt_labels_3d'] = gt_labels_3d.astype(np.long)
zhangwenwei's avatar
zhangwenwei committed
206
        input_dict['points'] = points
zhangwenwei's avatar
zhangwenwei committed
207

zhangwenwei's avatar
zhangwenwei committed
208
209
210
        return input_dict

    def __repr__(self):
211
        """str: Return a string that describes the module."""
212
213
214
215
216
217
218
219
220
        repr_str = self.__class__.__name__
        repr_str += f' sample_2d={self.sample_2d},'
        repr_str += f' data_root={self.sampler_cfg.data_root},'
        repr_str += f' info_path={self.sampler_cfg.info_path},'
        repr_str += f' rate={self.sampler_cfg.rate},'
        repr_str += f' prepare={self.sampler_cfg.prepare},'
        repr_str += f' classes={self.sampler_cfg.classes},'
        repr_str += f' sample_groups={self.sampler_cfg.sample_groups}'
        return repr_str
zhangwenwei's avatar
zhangwenwei committed
221
222


223
@PIPELINES.register_module()
zhangwenwei's avatar
zhangwenwei committed
224
class ObjectNoise(object):
zhangwenwei's avatar
zhangwenwei committed
225
    """Apply noise to each GT objects in the scene.
zhangwenwei's avatar
zhangwenwei committed
226
227

    Args:
228
        translation_std (list[float], optional): Standard deviation of the
zhangwenwei's avatar
zhangwenwei committed
229
230
            distribution where translation noise are sampled from.
            Defaults to [0.25, 0.25, 0.25].
231
        global_rot_range (list[float], optional): Global rotation to the scene.
zhangwenwei's avatar
zhangwenwei committed
232
            Defaults to [0.0, 0.0].
233
        rot_range (list[float], optional): Object rotation range.
zhangwenwei's avatar
zhangwenwei committed
234
235
236
237
            Defaults to [-0.15707963267, 0.15707963267].
        num_try (int, optional): Number of times to try if the noise applied is
            invalid. Defaults to 100.
    """
zhangwenwei's avatar
zhangwenwei committed
238
239

    def __init__(self,
zhangwenwei's avatar
zhangwenwei committed
240
                 translation_std=[0.25, 0.25, 0.25],
zhangwenwei's avatar
zhangwenwei committed
241
                 global_rot_range=[0.0, 0.0],
zhangwenwei's avatar
zhangwenwei committed
242
                 rot_range=[-0.15707963267, 0.15707963267],
zhangwenwei's avatar
zhangwenwei committed
243
                 num_try=100):
zhangwenwei's avatar
zhangwenwei committed
244
        self.translation_std = translation_std
zhangwenwei's avatar
zhangwenwei committed
245
        self.global_rot_range = global_rot_range
zhangwenwei's avatar
zhangwenwei committed
246
        self.rot_range = rot_range
zhangwenwei's avatar
zhangwenwei committed
247
248
249
        self.num_try = num_try

    def __call__(self, input_dict):
250
251
252
253
254
255
256
257
258
        """Call function to apply noise to each ground truth in the scene.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after adding noise to each object, \
                'points', 'gt_bboxes_3d' keys are updated in the result dict.
        """
zhangwenwei's avatar
zhangwenwei committed
259
260
        gt_bboxes_3d = input_dict['gt_bboxes_3d']
        points = input_dict['points']
zhangwenwei's avatar
zhangwenwei committed
261

zhangwenwei's avatar
zhangwenwei committed
262
        # TODO: check this inplace function
263
        numpy_box = gt_bboxes_3d.tensor.numpy()
264
265
        numpy_points = points.tensor.numpy()

zhangwenwei's avatar
zhangwenwei committed
266
        noise_per_object_v3_(
267
            numpy_box,
268
            numpy_points,
zhangwenwei's avatar
zhangwenwei committed
269
270
            rotation_perturb=self.rot_range,
            center_noise_std=self.translation_std,
zhangwenwei's avatar
zhangwenwei committed
271
272
            global_random_rot_range=self.global_rot_range,
            num_try=self.num_try)
273
274

        input_dict['gt_bboxes_3d'] = gt_bboxes_3d.new_box(numpy_box)
275
        input_dict['points'] = points.new_point(numpy_points)
zhangwenwei's avatar
zhangwenwei committed
276
277
278
        return input_dict

    def __repr__(self):
279
        """str: Return a string that describes the module."""
zhangwenwei's avatar
zhangwenwei committed
280
281
        repr_str = self.__class__.__name__
        repr_str += '(num_try={},'.format(self.num_try)
zhangwenwei's avatar
zhangwenwei committed
282
        repr_str += ' translation_std={},'.format(self.translation_std)
zhangwenwei's avatar
zhangwenwei committed
283
        repr_str += ' global_rot_range={},'.format(self.global_rot_range)
zhangwenwei's avatar
zhangwenwei committed
284
        repr_str += ' rot_range={})'.format(self.rot_range)
zhangwenwei's avatar
zhangwenwei committed
285
286
287
        return repr_str


288
@PIPELINES.register_module()
zhangwenwei's avatar
zhangwenwei committed
289
class GlobalRotScaleTrans(object):
zhangwenwei's avatar
zhangwenwei committed
290
    """Apply global rotation, scaling and translation to a 3D scene.
zhangwenwei's avatar
zhangwenwei committed
291
292
293

    Args:
        rot_range (list[float]): Range of rotation angle.
liyinhao's avatar
liyinhao committed
294
            Defaults to [-0.78539816, 0.78539816] (close to [-pi/4, pi/4]).
zhangwenwei's avatar
zhangwenwei committed
295
        scale_ratio_range (list[float]): Range of scale ratio.
liyinhao's avatar
liyinhao committed
296
            Defaults to [0.95, 1.05].
zhangwenwei's avatar
zhangwenwei committed
297
298
299
        translation_std (list[float]): The standard deviation of ranslation
            noise. This apply random translation to a scene by a noise, which
            is sampled from a gaussian distribution whose standard deviation
liyinhao's avatar
liyinhao committed
300
301
            is set by ``translation_std``. Defaults to [0, 0, 0]
        shift_height (bool): Whether to shift height.
wuyuefeng's avatar
wuyuefeng committed
302
            (the fourth dimension of indoor points) when scaling.
liyinhao's avatar
liyinhao committed
303
            Defaults to False.
zhangwenwei's avatar
zhangwenwei committed
304
    """
zhangwenwei's avatar
zhangwenwei committed
305
306

    def __init__(self,
zhangwenwei's avatar
zhangwenwei committed
307
308
                 rot_range=[-0.78539816, 0.78539816],
                 scale_ratio_range=[0.95, 1.05],
wuyuefeng's avatar
wuyuefeng committed
309
310
                 translation_std=[0, 0, 0],
                 shift_height=False):
zhangwenwei's avatar
zhangwenwei committed
311
312
313
        self.rot_range = rot_range
        self.scale_ratio_range = scale_ratio_range
        self.translation_std = translation_std
wuyuefeng's avatar
wuyuefeng committed
314
        self.shift_height = shift_height
zhangwenwei's avatar
zhangwenwei committed
315
316

    def _trans_bbox_points(self, input_dict):
317
318
319
320
321
322
323
324
325
326
        """Private function to translate bounding boxes and points.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after translation, 'points', 'pcd_trans' \
                and keys in input_dict['bbox3d_fields'] are updated \
                in the result dict.
        """
zhangwenwei's avatar
zhangwenwei committed
327
328
329
330
331
332
333
334
335
336
        if not isinstance(self.translation_std, (list, tuple, np.ndarray)):
            translation_std = [
                self.translation_std, self.translation_std,
                self.translation_std
            ]
        else:
            translation_std = self.translation_std
        translation_std = np.array(translation_std, dtype=np.float32)
        trans_factor = np.random.normal(scale=translation_std, size=3).T

337
        input_dict['points'].translate(trans_factor)
zhangwenwei's avatar
zhangwenwei committed
338
339
340
341
342
        input_dict['pcd_trans'] = trans_factor
        for key in input_dict['bbox3d_fields']:
            input_dict[key].translate(trans_factor)

    def _rot_bbox_points(self, input_dict):
343
344
345
346
347
348
349
350
351
352
        """Private function to rotate bounding boxes and points.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after rotation, 'points', 'pcd_rotation' \
                and keys in input_dict['bbox3d_fields'] are updated \
                in the result dict.
        """
zhangwenwei's avatar
zhangwenwei committed
353
        rotation = self.rot_range
zhangwenwei's avatar
zhangwenwei committed
354
355
356
        if not isinstance(rotation, list):
            rotation = [-rotation, rotation]
        noise_rotation = np.random.uniform(rotation[0], rotation[1])
zhangwenwei's avatar
zhangwenwei committed
357
358

        for key in input_dict['bbox3d_fields']:
wuyuefeng's avatar
wuyuefeng committed
359
360
361
362
363
            if len(input_dict[key].tensor) != 0:
                points, rot_mat_T = input_dict[key].rotate(
                    noise_rotation, input_dict['points'])
                input_dict['points'] = points
                input_dict['pcd_rotation'] = rot_mat_T
364
        # input_dict['points_instance'].rotate(noise_rotation)
365

zhangwenwei's avatar
zhangwenwei committed
366
    def _scale_bbox_points(self, input_dict):
367
368
369
370
371
372
373
374
375
        """Private function to scale bounding boxes and points.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after scaling, 'points'and keys in \
                input_dict['bbox3d_fields'] are updated in the result dict.
        """
zhangwenwei's avatar
zhangwenwei committed
376
        scale = input_dict['pcd_scale_factor']
377
378
        points = input_dict['points']
        points.scale(scale)
wuyuefeng's avatar
wuyuefeng committed
379
        if self.shift_height:
380
381
382
            assert 'height' in points.attribute_dims.keys()
            points.tensor[:, points.attribute_dims['height']] *= scale
        input_dict['points'] = points
wuyuefeng's avatar
wuyuefeng committed
383

zhangwenwei's avatar
zhangwenwei committed
384
385
        for key in input_dict['bbox3d_fields']:
            input_dict[key].scale(scale)
zhangwenwei's avatar
zhangwenwei committed
386

zhangwenwei's avatar
zhangwenwei committed
387
    def _random_scale(self, input_dict):
388
389
390
391
392
393
394
395
396
        """Private function to randomly set the scale factor.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after scaling, 'pcd_scale_factor' are updated \
                in the result dict.
        """
zhangwenwei's avatar
zhangwenwei committed
397
398
399
        scale_factor = np.random.uniform(self.scale_ratio_range[0],
                                         self.scale_ratio_range[1])
        input_dict['pcd_scale_factor'] = scale_factor
zhangwenwei's avatar
zhangwenwei committed
400
401

    def __call__(self, input_dict):
402
403
404
405
406
407
408
409
410
411
412
        """Private function to rotate, scale and translate bounding boxes and \
        points.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after scaling, 'points', 'pcd_rotation',
                'pcd_scale_factor', 'pcd_trans' and keys in \
                input_dict['bbox3d_fields'] are updated in the result dict.
        """
413
414
415
        if 'transformation_3d_flow' not in input_dict:
            input_dict['transformation_3d_flow'] = []

zhangwenwei's avatar
zhangwenwei committed
416
        self._rot_bbox_points(input_dict)
zhangwenwei's avatar
zhangwenwei committed
417

zhangwenwei's avatar
zhangwenwei committed
418
419
420
        if 'pcd_scale_factor' not in input_dict:
            self._random_scale(input_dict)
        self._scale_bbox_points(input_dict)
zhangwenwei's avatar
zhangwenwei committed
421

zhangwenwei's avatar
zhangwenwei committed
422
        self._trans_bbox_points(input_dict)
423
424

        input_dict['transformation_3d_flow'].extend(['R', 'S', 'T'])
zhangwenwei's avatar
zhangwenwei committed
425
426
427
        return input_dict

    def __repr__(self):
428
        """str: Return a string that describes the module."""
zhangwenwei's avatar
zhangwenwei committed
429
        repr_str = self.__class__.__name__
zhangwenwei's avatar
zhangwenwei committed
430
431
432
        repr_str += '(rot_range={},'.format(self.rot_range)
        repr_str += ' scale_ratio_range={},'.format(self.scale_ratio_range)
        repr_str += ' translation_std={})'.format(self.translation_std)
wuyuefeng's avatar
wuyuefeng committed
433
        repr_str += ' shift_height={})'.format(self.shift_height)
zhangwenwei's avatar
zhangwenwei committed
434
435
436
        return repr_str


437
@PIPELINES.register_module()
zhangwenwei's avatar
zhangwenwei committed
438
class PointShuffle(object):
439
    """Shuffle input points."""
zhangwenwei's avatar
zhangwenwei committed
440
441

    def __call__(self, input_dict):
442
443
444
445
446
447
448
449
450
        """Call function to shuffle points.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after filtering, 'points' keys are updated \
                in the result dict.
        """
451
        input_dict['points'].shuffle()
zhangwenwei's avatar
zhangwenwei committed
452
453
454
455
456
457
        return input_dict

    def __repr__(self):
        return self.__class__.__name__


458
@PIPELINES.register_module()
zhangwenwei's avatar
zhangwenwei committed
459
class ObjectRangeFilter(object):
460
461
462
463
464
    """Filter objects by the range.

    Args:
        point_cloud_range (list[float]): Point cloud range.
    """
zhangwenwei's avatar
zhangwenwei committed
465
466
467
468
469
470

    def __init__(self, point_cloud_range):
        self.pcd_range = np.array(point_cloud_range, dtype=np.float32)
        self.bev_range = self.pcd_range[[0, 1, 3, 4]]

    def __call__(self, input_dict):
471
472
473
474
475
476
477
478
479
        """Call function to filter objects by the range.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after filtering, 'gt_bboxes_3d', 'gt_labels_3d' \
                keys are updated in the result dict.
        """
zhangwenwei's avatar
zhangwenwei committed
480
        gt_bboxes_3d = input_dict['gt_bboxes_3d']
zhangwenwei's avatar
zhangwenwei committed
481
        gt_labels_3d = input_dict['gt_labels_3d']
482
        mask = gt_bboxes_3d.in_range_bev(self.bev_range)
zhangwenwei's avatar
zhangwenwei committed
483
        gt_bboxes_3d = gt_bboxes_3d[mask]
ZwwWayne's avatar
ZwwWayne committed
484
485
486
487
488
        # mask is a torch tensor but gt_labels_3d is still numpy array
        # using mask to index gt_labels_3d will cause bug when
        # len(gt_labels_3d) == 1, where mask=1 will be interpreted
        # as gt_labels_3d[1] and cause out of index error
        gt_labels_3d = gt_labels_3d[mask.numpy().astype(np.bool)]
zhangwenwei's avatar
zhangwenwei committed
489
490

        # limit rad to [-pi, pi]
491
492
        gt_bboxes_3d.limit_yaw(offset=0.5, period=2 * np.pi)
        input_dict['gt_bboxes_3d'] = gt_bboxes_3d
zhangwenwei's avatar
zhangwenwei committed
493
494
        input_dict['gt_labels_3d'] = gt_labels_3d

zhangwenwei's avatar
zhangwenwei committed
495
496
497
        return input_dict

    def __repr__(self):
498
        """str: Return a string that describes the module."""
zhangwenwei's avatar
zhangwenwei committed
499
500
501
502
503
        repr_str = self.__class__.__name__
        repr_str += '(point_cloud_range={})'.format(self.pcd_range.tolist())
        return repr_str


504
@PIPELINES.register_module()
zhangwenwei's avatar
zhangwenwei committed
505
class PointsRangeFilter(object):
506
507
508
509
510
    """Filter points by the range.

    Args:
        point_cloud_range (list[float]): Point cloud range.
    """
zhangwenwei's avatar
zhangwenwei committed
511
512

    def __init__(self, point_cloud_range):
513
        self.pcd_range = np.array(point_cloud_range, dtype=np.float32)
zhangwenwei's avatar
zhangwenwei committed
514
515

    def __call__(self, input_dict):
516
517
518
519
520
521
522
523
524
        """Call function to filter points by the range.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after filtering, 'points' keys are updated \
                in the result dict.
        """
zhangwenwei's avatar
zhangwenwei committed
525
        points = input_dict['points']
526
527
        points_mask = points.in_range_3d(self.pcd_range)
        clean_points = points[points_mask]
zhangwenwei's avatar
zhangwenwei committed
528
529
530
531
        input_dict['points'] = clean_points
        return input_dict

    def __repr__(self):
532
        """str: Return a string that describes the module."""
zhangwenwei's avatar
zhangwenwei committed
533
534
535
        repr_str = self.__class__.__name__
        repr_str += '(point_cloud_range={})'.format(self.pcd_range.tolist())
        return repr_str
zhangwenwei's avatar
zhangwenwei committed
536
537
538
539


@PIPELINES.register_module()
class ObjectNameFilter(object):
zhangwenwei's avatar
zhangwenwei committed
540
    """Filter GT objects by their names.
zhangwenwei's avatar
zhangwenwei committed
541
542

    Args:
liyinhao's avatar
liyinhao committed
543
        classes (list[str]): List of class names to be kept for training.
zhangwenwei's avatar
zhangwenwei committed
544
545
546
547
548
549
550
    """

    def __init__(self, classes):
        self.classes = classes
        self.labels = list(range(len(self.classes)))

    def __call__(self, input_dict):
551
552
553
554
555
556
557
558
559
        """Call function to filter objects by their names.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after filtering, 'gt_bboxes_3d', 'gt_labels_3d' \
                keys are updated in the result dict.
        """
zhangwenwei's avatar
zhangwenwei committed
560
561
562
563
564
565
566
567
568
        gt_labels_3d = input_dict['gt_labels_3d']
        gt_bboxes_mask = np.array([n in self.labels for n in gt_labels_3d],
                                  dtype=np.bool_)
        input_dict['gt_bboxes_3d'] = input_dict['gt_bboxes_3d'][gt_bboxes_mask]
        input_dict['gt_labels_3d'] = input_dict['gt_labels_3d'][gt_bboxes_mask]

        return input_dict

    def __repr__(self):
569
        """str: Return a string that describes the module."""
zhangwenwei's avatar
zhangwenwei committed
570
571
572
        repr_str = self.__class__.__name__
        repr_str += f'(classes={self.classes})'
        return repr_str
wuyuefeng's avatar
wuyuefeng committed
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598


@PIPELINES.register_module()
class IndoorPointSample(object):
    """Indoor point sample.

    Sampling data to a certain number.

    Args:
        name (str): Name of the dataset.
        num_points (int): Number of points to be sampled.
    """

    def __init__(self, num_points):
        self.num_points = num_points

    def points_random_sampling(self,
                               points,
                               num_samples,
                               replace=None,
                               return_choices=False):
        """Points random sampling.

        Sample points to a certain number.

        Args:
599
            points (np.ndarray): 3D Points.
wuyuefeng's avatar
wuyuefeng committed
600
601
            num_samples (int): Number of samples to be sampled.
            replace (bool): Whether the sample is with or without replacement.
liyinhao's avatar
liyinhao committed
602
603
            Defaults to None.
            return_choices (bool): Whether return choice. Defaults to False.
wuyuefeng's avatar
wuyuefeng committed
604
605

        Returns:
606
607
608
609
            tuple[np.ndarray] | np.ndarray:

                - points (np.ndarray): 3D Points.
                - choices (np.ndarray, optional): The generated random samples.
wuyuefeng's avatar
wuyuefeng committed
610
611
612
613
614
615
616
617
618
619
620
        """
        if replace is None:
            replace = (points.shape[0] < num_samples)
        choices = np.random.choice(
            points.shape[0], num_samples, replace=replace)
        if return_choices:
            return points[choices], choices
        else:
            return points[choices]

    def __call__(self, results):
621
622
623
624
625
626
627
628
629
        """Call function to sample points to in indoor scenes.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after sampling, 'points', 'pts_instance_mask' \
                and 'pts_semantic_mask' keys are updated in the result dict.
        """
wuyuefeng's avatar
wuyuefeng committed
630
631
632
        points = results['points']
        points, choices = self.points_random_sampling(
            points, self.num_points, return_choices=True)
633

wuyuefeng's avatar
wuyuefeng committed
634
635
636
637
638
639
640
641
642
643
644
645
646
        pts_instance_mask = results.get('pts_instance_mask', None)
        pts_semantic_mask = results.get('pts_semantic_mask', None)
        results['points'] = points

        if pts_instance_mask is not None and pts_semantic_mask is not None:
            pts_instance_mask = pts_instance_mask[choices]
            pts_semantic_mask = pts_semantic_mask[choices]
            results['pts_instance_mask'] = pts_instance_mask
            results['pts_semantic_mask'] = pts_semantic_mask

        return results

    def __repr__(self):
647
        """str: Return a string that describes the module."""
wuyuefeng's avatar
wuyuefeng committed
648
649
650
        repr_str = self.__class__.__name__
        repr_str += '(num_points={})'.format(self.num_points)
        return repr_str
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688


@PIPELINES.register_module()
class BackgroundPointsFilter(object):
    """Filter background points near the bounding box.

    Args:
        bbox_enlarge_range (tuple[float], float): Bbox enlarge range.
    """

    def __init__(self, bbox_enlarge_range):
        assert (is_tuple_of(bbox_enlarge_range, float)
                and len(bbox_enlarge_range) == 3) \
            or isinstance(bbox_enlarge_range, float), \
            f'Invalid arguments bbox_enlarge_range {bbox_enlarge_range}'

        if isinstance(bbox_enlarge_range, float):
            bbox_enlarge_range = [bbox_enlarge_range] * 3
        self.bbox_enlarge_range = np.array(
            bbox_enlarge_range, dtype=np.float32)[np.newaxis, :]

    def __call__(self, input_dict):
        """Call function to filter points by the range.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after filtering, 'points' keys are updated \
                in the result dict.
        """
        points = input_dict['points']
        gt_bboxes_3d = input_dict['gt_bboxes_3d']

        gt_bboxes_3d_np = gt_bboxes_3d.tensor.numpy()
        gt_bboxes_3d_np[:, :3] = gt_bboxes_3d.gravity_center.numpy()
        enlarged_gt_bboxes_3d = gt_bboxes_3d_np.copy()
        enlarged_gt_bboxes_3d[:, 3:6] += self.bbox_enlarge_range
689
690
691
        points_numpy = points.tensor.numpy()
        foreground_masks = box_np_ops.points_in_rbbox(points_numpy,
                                                      gt_bboxes_3d_np)
692
        enlarge_foreground_masks = box_np_ops.points_in_rbbox(
693
            points_numpy, enlarged_gt_bboxes_3d)
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
        foreground_masks = foreground_masks.max(1)
        enlarge_foreground_masks = enlarge_foreground_masks.max(1)
        valid_masks = ~np.logical_and(~foreground_masks,
                                      enlarge_foreground_masks)

        input_dict['points'] = points[valid_masks]
        pts_instance_mask = input_dict.get('pts_instance_mask', None)
        if pts_instance_mask is not None:
            input_dict['pts_instance_mask'] = pts_instance_mask[valid_masks]

        pts_semantic_mask = input_dict.get('pts_semantic_mask', None)
        if pts_semantic_mask is not None:
            input_dict['pts_semantic_mask'] = pts_semantic_mask[valid_masks]
        return input_dict

    def __repr__(self):
        """str: Return a string that describes the module."""
        repr_str = self.__class__.__name__
        repr_str += '(bbox_enlarge_range={})'.format(
            self.bbox_enlarge_range.tolist())
        return repr_str
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786


@PIPELINES.register_module()
class VoxelBasedPointSampler(object):
    """Voxel based point sampler.

    Apply voxel sampling to multiple sweep points.

    Args:
        cur_sweep_cfg (dict): Config for sampling current points.
        prev_sweep_cfg (dict): Config for sampling previous points.
        time_dim (int): Index that indicate the time dimention
            for input points.
    """

    def __init__(self, cur_sweep_cfg, prev_sweep_cfg=None, time_dim=3):
        self.cur_voxel_generator = VoxelGenerator(**cur_sweep_cfg)
        self.cur_voxel_num = self.cur_voxel_generator._max_voxels
        self.time_dim = time_dim
        if prev_sweep_cfg is not None:
            assert prev_sweep_cfg['max_num_points'] == \
                cur_sweep_cfg['max_num_points']
            self.prev_voxel_generator = VoxelGenerator(**prev_sweep_cfg)
            self.prev_voxel_num = self.prev_voxel_generator._max_voxels
        else:
            self.prev_voxel_generator = None
            self.prev_voxel_num = 0

    def _sample_points(self, points, sampler, point_dim):
        """Sample points for each points subset.

        Args:
            points (np.ndarray): Points subset to be sampled.
            sampler (VoxelGenerator): Voxel based sampler for
                each points subset.
            point_dim (int): The dimention of each points

        Returns:
            np.ndarray: Sampled points.
        """
        voxels, coors, num_points_per_voxel = sampler.generate(points)
        if voxels.shape[0] < sampler._max_voxels:
            padding_points = np.zeros([
                sampler._max_voxels - voxels.shape[0], sampler._max_num_points,
                point_dim
            ],
                                      dtype=points.dtype)
            padding_points[:] = voxels[0]
            sample_points = np.concatenate([voxels, padding_points], axis=0)
        else:
            sample_points = voxels

        return sample_points

    def __call__(self, results):
        """Call function to sample points from multiple sweeps.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after sampling, 'points', 'pts_instance_mask' \
                and 'pts_semantic_mask' keys are updated in the result dict.
        """
        points = results['points']
        original_dim = points.shape[1]

        # TODO: process instance and semantic mask while _max_num_points
        # is larger than 1
        # Extend points with seg and mask fields
        map_fields2dim = []
        start_dim = original_dim
787
788
        points_numpy = points.tensor.numpy()
        extra_channel = [points_numpy]
789
790
791
792
793
794
795
796
797
        for idx, key in enumerate(results['pts_mask_fields']):
            map_fields2dim.append((key, idx + start_dim))
            extra_channel.append(results[key][..., None])

        start_dim += len(results['pts_mask_fields'])
        for idx, key in enumerate(results['pts_seg_fields']):
            map_fields2dim.append((key, idx + start_dim))
            extra_channel.append(results[key][..., None])

798
        points_numpy = np.concatenate(extra_channel, axis=-1)
799
800
801
802
803

        # Split points into two part, current sweep points and
        # previous sweeps points.
        # TODO: support different sampling methods for next sweeps points
        # and previous sweeps points.
804
805
806
        cur_points_flag = (points_numpy[:, self.time_dim] == 0)
        cur_sweep_points = points_numpy[cur_points_flag]
        prev_sweeps_points = points_numpy[~cur_points_flag]
807
808
809
810
811
812
813
814
815
        if prev_sweeps_points.shape[0] == 0:
            prev_sweeps_points = cur_sweep_points

        # Shuffle points before sampling
        np.random.shuffle(cur_sweep_points)
        np.random.shuffle(prev_sweeps_points)

        cur_sweep_points = self._sample_points(cur_sweep_points,
                                               self.cur_voxel_generator,
816
                                               points_numpy.shape[1])
817
818
819
        if self.prev_voxel_generator is not None:
            prev_sweeps_points = self._sample_points(prev_sweeps_points,
                                                     self.prev_voxel_generator,
820
                                                     points_numpy.shape[1])
821

822
823
            points_numpy = np.concatenate(
                [cur_sweep_points, prev_sweeps_points], 0)
824
        else:
825
            points_numpy = cur_sweep_points
826
827

        if self.cur_voxel_generator._max_num_points == 1:
828
829
            points_numpy = points_numpy.squeeze(1)
        results['points'] = points.new_point(points_numpy[..., :original_dim])
830
831
832

        # Restore the correspoinding seg and mask fields
        for key, dim_index in map_fields2dim:
833
            results[key] = points_numpy[..., dim_index]
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856

        return results

    def __repr__(self):
        """str: Return a string that describes the module."""

        def _auto_indent(repr_str, indent):
            repr_str = repr_str.split('\n')
            repr_str = [' ' * indent + t + '\n' for t in repr_str]
            repr_str = ''.join(repr_str)[:-1]
            return repr_str

        repr_str = self.__class__.__name__
        indent = 4
        repr_str += '(\n'
        repr_str += ' ' * indent + f'num_cur_sweep={self.cur_voxel_num},\n'
        repr_str += ' ' * indent + f'num_prev_sweep={self.prev_voxel_num},\n'
        repr_str += ' ' * indent + f'time_dim={self.time_dim},\n'
        repr_str += ' ' * indent + 'cur_voxel_generator=\n'
        repr_str += f'{_auto_indent(repr(self.cur_voxel_generator), 8)},\n'
        repr_str += ' ' * indent + 'prev_voxel_generator=\n'
        repr_str += f'{_auto_indent(repr(self.prev_voxel_generator), 8)})'
        return repr_str