Commit 5002b8e4 authored by Qing Lian's avatar Qing Lian Committed by ZwwWayne
Browse files

update task name and config for fcos3d++ on nus (#1927)

parent 1071dab5
...@@ -81,7 +81,7 @@ train_dataloader = dict( ...@@ -81,7 +81,7 @@ train_dataloader = dict(
# we use box_type_3d='LiDAR' in kitti and nuscenes dataset # we use box_type_3d='LiDAR' in kitti and nuscenes dataset
# and box_type_3d='Depth' in sunrgbd and scannet dataset. # and box_type_3d='Depth' in sunrgbd and scannet dataset.
box_type_3d='Camera', box_type_3d='Camera',
task='mono3d', task='mono_det',
# load one frame every three frames # load one frame every three frames
load_interval=5)) load_interval=5))
...@@ -109,7 +109,7 @@ val_dataloader = dict( ...@@ -109,7 +109,7 @@ val_dataloader = dict(
# we use box_type_3d='LiDAR' in kitti and nuscenes dataset # we use box_type_3d='LiDAR' in kitti and nuscenes dataset
# and box_type_3d='Depth' in sunrgbd and scannet dataset. # and box_type_3d='Depth' in sunrgbd and scannet dataset.
box_type_3d='Camera', box_type_3d='Camera',
task='mono3d', task='mono_det',
)) ))
test_dataloader = dict( test_dataloader = dict(
...@@ -136,7 +136,7 @@ test_dataloader = dict( ...@@ -136,7 +136,7 @@ test_dataloader = dict(
# we use box_type_3d='LiDAR' in kitti and nuscenes dataset # we use box_type_3d='LiDAR' in kitti and nuscenes dataset
# and box_type_3d='Depth' in sunrgbd and scannet dataset. # and box_type_3d='Depth' in sunrgbd and scannet dataset.
box_type_3d='Camera', box_type_3d='Camera',
task='mono3d', task='mono_det',
)) ))
val_evaluator = dict( val_evaluator = dict(
...@@ -145,5 +145,5 @@ val_evaluator = dict( ...@@ -145,5 +145,5 @@ val_evaluator = dict(
waymo_bin_file='./data/waymo/waymo_format/cam_gt.bin', waymo_bin_file='./data/waymo/waymo_format/cam_gt.bin',
data_root='./data/waymo/waymo_format', data_root='./data/waymo/waymo_format',
metric='LET_mAP', metric='LET_mAP',
task='mono3d') task='mono_det')
test_evaluator = val_evaluator test_evaluator = val_evaluator
_base_ = [
'../_base_/datasets/waymoD5-mono3d-3class.py', '../_base_/models/pgd.py',
'../_base_/schedules/mmdet-schedule-1x.py', '../_base_/default_runtime.py'
]
# model settings
model = dict(
backbone=dict(
type='mmdet.ResNet',
depth=101,
num_stages=4,
out_indices=(0, 1, 2, 3),
frozen_stages=1,
norm_cfg=dict(type='BN', requires_grad=True),
norm_eval=True,
style='pytorch',
init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet101'),
dcn=dict(type='DCNv2', deform_groups=1, fallback_on_stride=False),
stage_with_dcn=(False, False, True, True)),
neck=dict(num_outs=3),
bbox_head=dict(
num_classes=3,
bbox_code_size=7,
pred_attrs=False,
pred_velo=False,
pred_bbox2d=True,
use_onlyreg_proj=True,
strides=(8, 16, 32),
regress_ranges=((-1, 128), (128, 256), (256, 1e8)),
group_reg_dims=(2, 1, 3, 1, 16,
4), # offset, depth, size, rot, kpts, bbox2d
reg_branch=(
(256, ), # offset
(256, ), # depth
(256, ), # size
(256, ), # rot
(256, ), # kpts
(256, ) # bbox2d
),
centerness_branch=(256, ),
loss_cls=dict(
type='mmdet.FocalLoss',
use_sigmoid=True,
gamma=2.0,
alpha=0.25,
loss_weight=1.0),
loss_bbox=dict(
type='mmdet.SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0),
loss_dir=dict(
type='mmdet.CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
loss_centerness=dict(
type='mmdet.CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
use_depth_classifier=True,
depth_branch=(256, ),
depth_range=(0, 50),
depth_unit=10,
division='uniform',
depth_bins=6,
pred_keypoints=True,
weight_dim=1,
loss_depth=dict(
type='UncertainSmoothL1Loss', alpha=1.0, beta=3.0,
loss_weight=1.0),
loss_bbox2d=dict(
type='mmdet.SmoothL1Loss', beta=1.0 / 9.0, loss_weight=0.0),
loss_consistency=dict(type='mmdet.GIoULoss', loss_weight=0.0),
bbox_coder=dict(
type='PGDBBoxCoder',
base_depths=((41.01, 18.44), ),
base_dims=(
(4.73, 1.77, 2.08),
(0.91, 1.74, 0.84),
(1.81, 1.77, 0.84),
),
code_size=7)),
# set weight 1.0 for base 7 dims (offset, depth, size, rot)
# 0.2 for 16-dim keypoint offsets and 1.0 for 4-dim 2D distance targets
train_cfg=dict(code_weight=[
1.0, 1.0, 0.2, 1.0, 1.0, 1.0, 1.0, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2,
0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 1.0, 1.0, 1.0, 1.0
]),
test_cfg=dict(nms_pre=100, nms_thr=0.05, score_thr=0.001, max_per_img=20))
# optimizer
optim_wrapper = dict(
optimizer=dict(
type='SGD',
lr=0.008,
),
paramwise_cfg=dict(bias_lr_mult=2., bias_decay_mult=0.),
clip_grad=dict(max_norm=35, norm_type=2))
param_scheduler = [
dict(
type='LinearLR',
start_factor=1.0 / 3,
by_epoch=False,
begin=0,
end=500),
dict(
type='MultiStepLR',
begin=0,
end=24,
by_epoch=True,
milestones=[16, 22],
gamma=0.1)
]
total_epochs = 24
runner = dict(max_epochs=total_epochs)
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=24, val_interval=24)
val_cfg = dict(type='ValLoop')
test_cfg = dict(type='TestLoop')
...@@ -93,7 +93,6 @@ class WaymoDataset(KittiDataset): ...@@ -93,7 +93,6 @@ class WaymoDataset(KittiDataset):
self.cat_ids = range(len(self.METAINFO['CLASSES'])) self.cat_ids = range(len(self.METAINFO['CLASSES']))
self.cat2label = {cat_id: i for i, cat_id in enumerate(self.cat_ids)} self.cat2label = {cat_id: i for i, cat_id in enumerate(self.cat_ids)}
self.max_sweeps = max_sweeps self.max_sweeps = max_sweeps
self.task = task
# we do not provide file_client_args to custom_3d init # we do not provide file_client_args to custom_3d init
# because we want disk loading for info # because we want disk loading for info
# while ceph loading for KITTI2Waymo # while ceph loading for KITTI2Waymo
...@@ -108,6 +107,7 @@ class WaymoDataset(KittiDataset): ...@@ -108,6 +107,7 @@ class WaymoDataset(KittiDataset):
default_cam_key=default_cam_key, default_cam_key=default_cam_key,
data_prefix=data_prefix, data_prefix=data_prefix,
test_mode=test_mode, test_mode=test_mode,
task=task,
**kwargs) **kwargs)
def parse_ann_info(self, info: dict) -> dict: def parse_ann_info(self, info: dict) -> dict:
...@@ -221,7 +221,7 @@ class WaymoDataset(KittiDataset): ...@@ -221,7 +221,7 @@ class WaymoDataset(KittiDataset):
# TODO check if need to modify the sample id # TODO check if need to modify the sample id
# TODO check when will use it except for evaluation. # TODO check when will use it except for evaluation.
camera_info['sample_idx'] = info['sample_idx'] camera_info['sample_id'] = info['sample_id']
if not self.test_mode: if not self.test_mode:
# used in training # used in training
......
...@@ -67,7 +67,7 @@ class WaymoMetric(KittiMetric): ...@@ -67,7 +67,7 @@ class WaymoMetric(KittiMetric):
prefix: Optional[str] = None, prefix: Optional[str] = None,
pklfile_prefix: str = None, pklfile_prefix: str = None,
submission_prefix: str = None, submission_prefix: str = None,
task='lidar', task='lidar_det',
default_cam_key: str = 'CAM_FRONT', default_cam_key: str = 'CAM_FRONT',
use_pred_sample_idx: bool = False, use_pred_sample_idx: bool = False,
collect_device: str = 'cpu', collect_device: str = 'cpu',
...@@ -106,7 +106,7 @@ class WaymoMetric(KittiMetric): ...@@ -106,7 +106,7 @@ class WaymoMetric(KittiMetric):
self.data_infos = load(self.ann_file)['data_list'] self.data_infos = load(self.ann_file)['data_list']
# different from kitti, waymo do not need to convert the ann file # different from kitti, waymo do not need to convert the ann file
# handle the mono3d task # handle the mono3d task
if self.task == 'mono3d': if self.task == 'mono_det':
new_data_infos = [] new_data_infos = []
for info in self.data_infos: for info in self.data_infos:
height = info['images'][self.default_cam_key]['height'] height = info['images'][self.default_cam_key]['height']
...@@ -461,7 +461,7 @@ class WaymoMetric(KittiMetric): ...@@ -461,7 +461,7 @@ class WaymoMetric(KittiMetric):
# If you want to use another camera, please modify it. # If you want to use another camera, please modify it.
image_shape = (info['images'][self.default_cam_key]['height'], image_shape = (info['images'][self.default_cam_key]['height'],
info['images'][self.default_cam_key]['width']) info['images'][self.default_cam_key]['width'])
if self.task == 'mono3d': if self.task == 'mono_det':
box_dict_per_frame.append(box_dict) box_dict_per_frame.append(box_dict)
if (idx + 1) % self.num_cams != 0: if (idx + 1) % self.num_cams != 0:
continue continue
...@@ -600,9 +600,9 @@ class WaymoMetric(KittiMetric): ...@@ -600,9 +600,9 @@ class WaymoMetric(KittiMetric):
sample_idx=sample_idx) sample_idx=sample_idx)
# Here default used 'CAM2' to compute metric. If you want to # Here default used 'CAM2' to compute metric. If you want to
# use another camera, please modify it. # use another camera, please modify it.
if self.task in ['mv3d', 'lidar']: if self.task in ['mv3d_det', 'lidar_det']:
cam_key = self.default_cam_key cam_key = self.default_cam_key
elif self.task == 'mono3d': elif self.task == 'mono_det':
cam_key = list(info['images'].keys())[0] cam_key = list(info['images'].keys())[0]
else: else:
raise NotImplementedError raise NotImplementedError
...@@ -635,12 +635,12 @@ class WaymoMetric(KittiMetric): ...@@ -635,12 +635,12 @@ class WaymoMetric(KittiMetric):
(box_2d_preds[:, 1] < image_shape[0]) & (box_2d_preds[:, 1] < image_shape[0]) &
(box_2d_preds[:, 2] > 0) & (box_2d_preds[:, 3] > 0)) (box_2d_preds[:, 2] > 0) & (box_2d_preds[:, 3] > 0))
# check box_preds_lidar # check box_preds_lidar
if self.task in ['lidar', 'mono3d']: if self.task in ['mv3d_det', 'lidar_det']:
limit_range = box_preds.tensor.new_tensor(self.pcd_limit_range) limit_range = box_preds.tensor.new_tensor(self.pcd_limit_range)
valid_pcd_inds = ((box_preds_lidar.center > limit_range[:3]) & valid_pcd_inds = ((box_preds_lidar.center > limit_range[:3]) &
(box_preds_lidar.center < limit_range[3:])) (box_preds_lidar.center < limit_range[3:]))
valid_inds = valid_pcd_inds.all(-1) valid_inds = valid_pcd_inds.all(-1)
elif self.task == 'mono3d': elif self.task == 'mono_det':
valid_inds = valid_cam_inds valid_inds = valid_cam_inds
if valid_inds.sum() > 0: if valid_inds.sum() > 0:
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment